1// Copyright 2011 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package parse builds parse trees for templates as defined by text/template
6// and html/template. Clients should use those packages to construct templates
7// rather than this one, which provides shared internal data structures not
8// intended for general use.
9package parse
10
11import (
12	"bytes"
13	"fmt"
14	"runtime"
15	"strconv"
16	"strings"
17)
18
19// Tree is the representation of a single parsed template.
20type Tree struct {
21	Name      string    // name of the template represented by the tree.
22	ParseName string    // name of the top-level template during parsing, for error messages.
23	Root      *ListNode // top-level root of the tree.
24	text      string    // text parsed to create the template (or its parent)
25	// Parsing only; cleared after parse.
26	funcs     []map[string]interface{}
27	lex       *lexer
28	token     [3]item // three-token lookahead for parser.
29	peekCount int
30	vars      []string // variables defined at the moment.
31	treeSet   map[string]*Tree
32}
33
34// Copy returns a copy of the Tree. Any parsing state is discarded.
35func (t *Tree) Copy() *Tree {
36	if t == nil {
37		return nil
38	}
39	return &Tree{
40		Name:      t.Name,
41		ParseName: t.ParseName,
42		Root:      t.Root.CopyList(),
43		text:      t.text,
44	}
45}
46
47// Parse returns a map from template name to parse.Tree, created by parsing the
48// templates described in the argument string. The top-level template will be
49// given the specified name. If an error is encountered, parsing stops and an
50// empty map is returned with the error.
51func Parse(name, text, leftDelim, rightDelim string, funcs ...map[string]interface{}) (map[string]*Tree, error) {
52	treeSet := make(map[string]*Tree)
53	t := New(name)
54	t.text = text
55	_, err := t.Parse(text, leftDelim, rightDelim, treeSet, funcs...)
56	return treeSet, err
57}
58
59// next returns the next token.
60func (t *Tree) next() item {
61	if t.peekCount > 0 {
62		t.peekCount--
63	} else {
64		t.token[0] = t.lex.nextItem()
65	}
66	return t.token[t.peekCount]
67}
68
69// backup backs the input stream up one token.
70func (t *Tree) backup() {
71	t.peekCount++
72}
73
74// backup2 backs the input stream up two tokens.
75// The zeroth token is already there.
76func (t *Tree) backup2(t1 item) {
77	t.token[1] = t1
78	t.peekCount = 2
79}
80
81// backup3 backs the input stream up three tokens
82// The zeroth token is already there.
83func (t *Tree) backup3(t2, t1 item) { // Reverse order: we're pushing back.
84	t.token[1] = t1
85	t.token[2] = t2
86	t.peekCount = 3
87}
88
89// peek returns but does not consume the next token.
90func (t *Tree) peek() item {
91	if t.peekCount > 0 {
92		return t.token[t.peekCount-1]
93	}
94	t.peekCount = 1
95	t.token[0] = t.lex.nextItem()
96	return t.token[0]
97}
98
99// nextNonSpace returns the next non-space token.
100func (t *Tree) nextNonSpace() (token item) {
101	for {
102		token = t.next()
103		if token.typ != itemSpace {
104			break
105		}
106	}
107	return token
108}
109
110// peekNonSpace returns but does not consume the next non-space token.
111func (t *Tree) peekNonSpace() item {
112	token := t.nextNonSpace()
113	t.backup()
114	return token
115}
116
117// Parsing.
118
119// New allocates a new parse tree with the given name.
120func New(name string, funcs ...map[string]interface{}) *Tree {
121	return &Tree{
122		Name:  name,
123		funcs: funcs,
124	}
125}
126
127// ErrorContext returns a textual representation of the location of the node in the input text.
128// The receiver is only used when the node does not have a pointer to the tree inside,
129// which can occur in old code.
130func (t *Tree) ErrorContext(n Node) (location, context string) {
131	pos := int(n.Position())
132	tree := n.tree()
133	if tree == nil {
134		tree = t
135	}
136	text := tree.text[:pos]
137	byteNum := strings.LastIndex(text, "\n")
138	if byteNum == -1 {
139		byteNum = pos // On first line.
140	} else {
141		byteNum++ // After the newline.
142		byteNum = pos - byteNum
143	}
144	lineNum := 1 + strings.Count(text, "\n")
145	context = n.String()
146	return fmt.Sprintf("%s:%d:%d", tree.ParseName, lineNum, byteNum), context
147}
148
149// errorf formats the error and terminates processing.
150func (t *Tree) errorf(format string, args ...interface{}) {
151	t.Root = nil
152	format = fmt.Sprintf("template: %s:%d: %s", t.ParseName, t.token[0].line, format)
153	panic(fmt.Errorf(format, args...))
154}
155
156// error terminates processing.
157func (t *Tree) error(err error) {
158	t.errorf("%s", err)
159}
160
161// expect consumes the next token and guarantees it has the required type.
162func (t *Tree) expect(expected itemType, context string) item {
163	token := t.nextNonSpace()
164	if token.typ != expected {
165		t.unexpected(token, context)
166	}
167	return token
168}
169
170// expectOneOf consumes the next token and guarantees it has one of the required types.
171func (t *Tree) expectOneOf(expected1, expected2 itemType, context string) item {
172	token := t.nextNonSpace()
173	if token.typ != expected1 && token.typ != expected2 {
174		t.unexpected(token, context)
175	}
176	return token
177}
178
179// unexpected complains about the token and terminates processing.
180func (t *Tree) unexpected(token item, context string) {
181	t.errorf("unexpected %s in %s", token, context)
182}
183
184// recover is the handler that turns panics into returns from the top level of Parse.
185func (t *Tree) recover(errp *error) {
186	e := recover()
187	if e != nil {
188		if _, ok := e.(runtime.Error); ok {
189			panic(e)
190		}
191		if t != nil {
192			t.lex.drain()
193			t.stopParse()
194		}
195		*errp = e.(error)
196	}
197}
198
199// startParse initializes the parser, using the lexer.
200func (t *Tree) startParse(funcs []map[string]interface{}, lex *lexer, treeSet map[string]*Tree) {
201	t.Root = nil
202	t.lex = lex
203	t.vars = []string{"$"}
204	t.funcs = funcs
205	t.treeSet = treeSet
206}
207
208// stopParse terminates parsing.
209func (t *Tree) stopParse() {
210	t.lex = nil
211	t.vars = nil
212	t.funcs = nil
213	t.treeSet = nil
214}
215
216// Parse parses the template definition string to construct a representation of
217// the template for execution. If either action delimiter string is empty, the
218// default ("{{" or "}}") is used. Embedded template definitions are added to
219// the treeSet map.
220func (t *Tree) Parse(text, leftDelim, rightDelim string, treeSet map[string]*Tree, funcs ...map[string]interface{}) (tree *Tree, err error) {
221	defer t.recover(&err)
222	t.ParseName = t.Name
223	t.startParse(funcs, lex(t.Name, text, leftDelim, rightDelim), treeSet)
224	t.text = text
225	t.parse()
226	t.add()
227	t.stopParse()
228	return t, nil
229}
230
231// add adds tree to t.treeSet.
232func (t *Tree) add() {
233	tree := t.treeSet[t.Name]
234	if tree == nil || IsEmptyTree(tree.Root) {
235		t.treeSet[t.Name] = t
236		return
237	}
238	if !IsEmptyTree(t.Root) {
239		t.errorf("template: multiple definition of template %q", t.Name)
240	}
241}
242
243// IsEmptyTree reports whether this tree (node) is empty of everything but space.
244func IsEmptyTree(n Node) bool {
245	switch n := n.(type) {
246	case nil:
247		return true
248	case *ActionNode:
249	case *IfNode:
250	case *ListNode:
251		for _, node := range n.Nodes {
252			if !IsEmptyTree(node) {
253				return false
254			}
255		}
256		return true
257	case *RangeNode:
258	case *TemplateNode:
259	case *TextNode:
260		return len(bytes.TrimSpace(n.Text)) == 0
261	case *WithNode:
262	default:
263		panic("unknown node: " + n.String())
264	}
265	return false
266}
267
268// parse is the top-level parser for a template, essentially the same
269// as itemList except it also parses {{define}} actions.
270// It runs to EOF.
271func (t *Tree) parse() {
272	t.Root = t.newList(t.peek().pos)
273	for t.peek().typ != itemEOF {
274		if t.peek().typ == itemLeftDelim {
275			delim := t.next()
276			if t.nextNonSpace().typ == itemDefine {
277				newT := New("definition") // name will be updated once we know it.
278				newT.text = t.text
279				newT.ParseName = t.ParseName
280				newT.startParse(t.funcs, t.lex, t.treeSet)
281				newT.parseDefinition()
282				continue
283			}
284			t.backup2(delim)
285		}
286		switch n := t.textOrAction(); n.Type() {
287		case nodeEnd, nodeElse:
288			t.errorf("unexpected %s", n)
289		default:
290			t.Root.append(n)
291		}
292	}
293}
294
295// parseDefinition parses a {{define}} ...  {{end}} template definition and
296// installs the definition in t.treeSet. The "define" keyword has already
297// been scanned.
298func (t *Tree) parseDefinition() {
299	const context = "define clause"
300	name := t.expectOneOf(itemString, itemRawString, context)
301	var err error
302	t.Name, err = strconv.Unquote(name.val)
303	if err != nil {
304		t.error(err)
305	}
306	t.expect(itemRightDelim, context)
307	var end Node
308	t.Root, end = t.itemList()
309	if end.Type() != nodeEnd {
310		t.errorf("unexpected %s in %s", end, context)
311	}
312	t.add()
313	t.stopParse()
314}
315
316// itemList:
317//	textOrAction*
318// Terminates at {{end}} or {{else}}, returned separately.
319func (t *Tree) itemList() (list *ListNode, next Node) {
320	list = t.newList(t.peekNonSpace().pos)
321	for t.peekNonSpace().typ != itemEOF {
322		n := t.textOrAction()
323		switch n.Type() {
324		case nodeEnd, nodeElse:
325			return list, n
326		}
327		list.append(n)
328	}
329	t.errorf("unexpected EOF")
330	return
331}
332
333// textOrAction:
334//	text | action
335func (t *Tree) textOrAction() Node {
336	switch token := t.nextNonSpace(); token.typ {
337	case itemText:
338		return t.newText(token.pos, token.val)
339	case itemLeftDelim:
340		return t.action()
341	default:
342		t.unexpected(token, "input")
343	}
344	return nil
345}
346
347// Action:
348//	control
349//	command ("|" command)*
350// Left delim is past. Now get actions.
351// First word could be a keyword such as range.
352func (t *Tree) action() (n Node) {
353	switch token := t.nextNonSpace(); token.typ {
354	case itemBlock:
355		return t.blockControl()
356	case itemElse:
357		return t.elseControl()
358	case itemEnd:
359		return t.endControl()
360	case itemIf:
361		return t.ifControl()
362	case itemRange:
363		return t.rangeControl()
364	case itemTemplate:
365		return t.templateControl()
366	case itemWith:
367		return t.withControl()
368	}
369	t.backup()
370	token := t.peek()
371	// Do not pop variables; they persist until "end".
372	return t.newAction(token.pos, token.line, t.pipeline("command"))
373}
374
375// Pipeline:
376//	declarations? command ('|' command)*
377func (t *Tree) pipeline(context string) (pipe *PipeNode) {
378	token := t.peekNonSpace()
379	pipe = t.newPipeline(token.pos, token.line, nil)
380	// Are there declarations or assignments?
381decls:
382	if v := t.peekNonSpace(); v.typ == itemVariable {
383		t.next()
384		// Since space is a token, we need 3-token look-ahead here in the worst case:
385		// in "$x foo" we need to read "foo" (as opposed to ":=") to know that $x is an
386		// argument variable rather than a declaration. So remember the token
387		// adjacent to the variable so we can push it back if necessary.
388		tokenAfterVariable := t.peek()
389		next := t.peekNonSpace()
390		switch {
391		case next.typ == itemAssign, next.typ == itemDeclare:
392			pipe.IsAssign = next.typ == itemAssign
393			t.nextNonSpace()
394			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
395			t.vars = append(t.vars, v.val)
396		case next.typ == itemChar && next.val == ",":
397			t.nextNonSpace()
398			pipe.Decl = append(pipe.Decl, t.newVariable(v.pos, v.val))
399			t.vars = append(t.vars, v.val)
400			if context == "range" && len(pipe.Decl) < 2 {
401				switch t.peekNonSpace().typ {
402				case itemVariable, itemRightDelim, itemRightParen:
403					// second initialized variable in a range pipeline
404					goto decls
405				default:
406					t.errorf("range can only initialize variables")
407				}
408			}
409			t.errorf("too many declarations in %s", context)
410		case tokenAfterVariable.typ == itemSpace:
411			t.backup3(v, tokenAfterVariable)
412		default:
413			t.backup2(v)
414		}
415	}
416	for {
417		switch token := t.nextNonSpace(); token.typ {
418		case itemRightDelim, itemRightParen:
419			// At this point, the pipeline is complete
420			t.checkPipeline(pipe, context)
421			if token.typ == itemRightParen {
422				t.backup()
423			}
424			return
425		case itemBool, itemCharConstant, itemComplex, itemDot, itemField, itemIdentifier,
426			itemNumber, itemNil, itemRawString, itemString, itemVariable, itemLeftParen:
427			t.backup()
428			pipe.append(t.command())
429		default:
430			t.unexpected(token, context)
431		}
432	}
433}
434
435func (t *Tree) checkPipeline(pipe *PipeNode, context string) {
436	// Reject empty pipelines
437	if len(pipe.Cmds) == 0 {
438		t.errorf("missing value for %s", context)
439	}
440	// Only the first command of a pipeline can start with a non executable operand
441	for i, c := range pipe.Cmds[1:] {
442		switch c.Args[0].Type() {
443		case NodeBool, NodeDot, NodeNil, NodeNumber, NodeString:
444			// With A|B|C, pipeline stage 2 is B
445			t.errorf("non executable command in pipeline stage %d", i+2)
446		}
447	}
448}
449
450func (t *Tree) parseControl(allowElseIf bool, context string) (pos Pos, line int, pipe *PipeNode, list, elseList *ListNode) {
451	defer t.popVars(len(t.vars))
452	pipe = t.pipeline(context)
453	var next Node
454	list, next = t.itemList()
455	switch next.Type() {
456	case nodeEnd: //done
457	case nodeElse:
458		if allowElseIf {
459			// Special case for "else if". If the "else" is followed immediately by an "if",
460			// the elseControl will have left the "if" token pending. Treat
461			//	{{if a}}_{{else if b}}_{{end}}
462			// as
463			//	{{if a}}_{{else}}{{if b}}_{{end}}{{end}}.
464			// To do this, parse the if as usual and stop at it {{end}}; the subsequent{{end}}
465			// is assumed. This technique works even for long if-else-if chains.
466			// TODO: Should we allow else-if in with and range?
467			if t.peek().typ == itemIf {
468				t.next() // Consume the "if" token.
469				elseList = t.newList(next.Position())
470				elseList.append(t.ifControl())
471				// Do not consume the next item - only one {{end}} required.
472				break
473			}
474		}
475		elseList, next = t.itemList()
476		if next.Type() != nodeEnd {
477			t.errorf("expected end; found %s", next)
478		}
479	}
480	return pipe.Position(), pipe.Line, pipe, list, elseList
481}
482
483// If:
484//	{{if pipeline}} itemList {{end}}
485//	{{if pipeline}} itemList {{else}} itemList {{end}}
486// If keyword is past.
487func (t *Tree) ifControl() Node {
488	return t.newIf(t.parseControl(true, "if"))
489}
490
491// Range:
492//	{{range pipeline}} itemList {{end}}
493//	{{range pipeline}} itemList {{else}} itemList {{end}}
494// Range keyword is past.
495func (t *Tree) rangeControl() Node {
496	return t.newRange(t.parseControl(false, "range"))
497}
498
499// With:
500//	{{with pipeline}} itemList {{end}}
501//	{{with pipeline}} itemList {{else}} itemList {{end}}
502// If keyword is past.
503func (t *Tree) withControl() Node {
504	return t.newWith(t.parseControl(false, "with"))
505}
506
507// End:
508//	{{end}}
509// End keyword is past.
510func (t *Tree) endControl() Node {
511	return t.newEnd(t.expect(itemRightDelim, "end").pos)
512}
513
514// Else:
515//	{{else}}
516// Else keyword is past.
517func (t *Tree) elseControl() Node {
518	// Special case for "else if".
519	peek := t.peekNonSpace()
520	if peek.typ == itemIf {
521		// We see "{{else if ... " but in effect rewrite it to {{else}}{{if ... ".
522		return t.newElse(peek.pos, peek.line)
523	}
524	token := t.expect(itemRightDelim, "else")
525	return t.newElse(token.pos, token.line)
526}
527
528// Block:
529//	{{block stringValue pipeline}}
530// Block keyword is past.
531// The name must be something that can evaluate to a string.
532// The pipeline is mandatory.
533func (t *Tree) blockControl() Node {
534	const context = "block clause"
535
536	token := t.nextNonSpace()
537	name := t.parseTemplateName(token, context)
538	pipe := t.pipeline(context)
539
540	block := New(name) // name will be updated once we know it.
541	block.text = t.text
542	block.ParseName = t.ParseName
543	block.startParse(t.funcs, t.lex, t.treeSet)
544	var end Node
545	block.Root, end = block.itemList()
546	if end.Type() != nodeEnd {
547		t.errorf("unexpected %s in %s", end, context)
548	}
549	block.add()
550	block.stopParse()
551
552	return t.newTemplate(token.pos, token.line, name, pipe)
553}
554
555// Template:
556//	{{template stringValue pipeline}}
557// Template keyword is past. The name must be something that can evaluate
558// to a string.
559func (t *Tree) templateControl() Node {
560	const context = "template clause"
561	token := t.nextNonSpace()
562	name := t.parseTemplateName(token, context)
563	var pipe *PipeNode
564	if t.nextNonSpace().typ != itemRightDelim {
565		t.backup()
566		// Do not pop variables; they persist until "end".
567		pipe = t.pipeline(context)
568	}
569	return t.newTemplate(token.pos, token.line, name, pipe)
570}
571
572func (t *Tree) parseTemplateName(token item, context string) (name string) {
573	switch token.typ {
574	case itemString, itemRawString:
575		s, err := strconv.Unquote(token.val)
576		if err != nil {
577			t.error(err)
578		}
579		name = s
580	default:
581		t.unexpected(token, context)
582	}
583	return
584}
585
586// command:
587//	operand (space operand)*
588// space-separated arguments up to a pipeline character or right delimiter.
589// we consume the pipe character but leave the right delim to terminate the action.
590func (t *Tree) command() *CommandNode {
591	cmd := t.newCommand(t.peekNonSpace().pos)
592	for {
593		t.peekNonSpace() // skip leading spaces.
594		operand := t.operand()
595		if operand != nil {
596			cmd.append(operand)
597		}
598		switch token := t.next(); token.typ {
599		case itemSpace:
600			continue
601		case itemError:
602			t.errorf("%s", token.val)
603		case itemRightDelim, itemRightParen:
604			t.backup()
605		case itemPipe:
606		default:
607			t.errorf("unexpected %s in operand", token)
608		}
609		break
610	}
611	if len(cmd.Args) == 0 {
612		t.errorf("empty command")
613	}
614	return cmd
615}
616
617// operand:
618//	term .Field*
619// An operand is a space-separated component of a command,
620// a term possibly followed by field accesses.
621// A nil return means the next item is not an operand.
622func (t *Tree) operand() Node {
623	node := t.term()
624	if node == nil {
625		return nil
626	}
627	if t.peek().typ == itemField {
628		chain := t.newChain(t.peek().pos, node)
629		for t.peek().typ == itemField {
630			chain.Add(t.next().val)
631		}
632		// Compatibility with original API: If the term is of type NodeField
633		// or NodeVariable, just put more fields on the original.
634		// Otherwise, keep the Chain node.
635		// Obvious parsing errors involving literal values are detected here.
636		// More complex error cases will have to be handled at execution time.
637		switch node.Type() {
638		case NodeField:
639			node = t.newField(chain.Position(), chain.String())
640		case NodeVariable:
641			node = t.newVariable(chain.Position(), chain.String())
642		case NodeBool, NodeString, NodeNumber, NodeNil, NodeDot:
643			t.errorf("unexpected . after term %q", node.String())
644		default:
645			node = chain
646		}
647	}
648	return node
649}
650
651// term:
652//	literal (number, string, nil, boolean)
653//	function (identifier)
654//	.
655//	.Field
656//	$
657//	'(' pipeline ')'
658// A term is a simple "expression".
659// A nil return means the next item is not a term.
660func (t *Tree) term() Node {
661	switch token := t.nextNonSpace(); token.typ {
662	case itemError:
663		t.errorf("%s", token.val)
664	case itemIdentifier:
665		if !t.hasFunction(token.val) {
666			t.errorf("function %q not defined", token.val)
667		}
668		return NewIdentifier(token.val).SetTree(t).SetPos(token.pos)
669	case itemDot:
670		return t.newDot(token.pos)
671	case itemNil:
672		return t.newNil(token.pos)
673	case itemVariable:
674		return t.useVar(token.pos, token.val)
675	case itemField:
676		return t.newField(token.pos, token.val)
677	case itemBool:
678		return t.newBool(token.pos, token.val == "true")
679	case itemCharConstant, itemComplex, itemNumber:
680		number, err := t.newNumber(token.pos, token.val, token.typ)
681		if err != nil {
682			t.error(err)
683		}
684		return number
685	case itemLeftParen:
686		pipe := t.pipeline("parenthesized pipeline")
687		if token := t.next(); token.typ != itemRightParen {
688			t.errorf("unclosed right paren: unexpected %s", token)
689		}
690		return pipe
691	case itemString, itemRawString:
692		s, err := strconv.Unquote(token.val)
693		if err != nil {
694			t.error(err)
695		}
696		return t.newString(token.pos, token.val, s)
697	}
698	t.backup()
699	return nil
700}
701
702// hasFunction reports if a function name exists in the Tree's maps.
703func (t *Tree) hasFunction(name string) bool {
704	for _, funcMap := range t.funcs {
705		if funcMap == nil {
706			continue
707		}
708		if funcMap[name] != nil {
709			return true
710		}
711	}
712	return false
713}
714
715// popVars trims the variable list to the specified length
716func (t *Tree) popVars(n int) {
717	t.vars = t.vars[:n]
718}
719
720// useVar returns a node for a variable reference. It errors if the
721// variable is not defined.
722func (t *Tree) useVar(pos Pos, name string) Node {
723	v := t.newVariable(pos, name)
724	for _, varName := range t.vars {
725		if varName == v.Ident[0] {
726			return v
727		}
728	}
729	t.errorf("undefined variable %q", v.Ident[0])
730	return nil
731}
732