1 /*
2  * This file is part of the MicroPython project, http://micropython.org/
3  *
4  * The MIT License (MIT)
5  *
6  * Copyright (c) 2013, 2014 Damien P. George
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
21  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include <stdint.h>
28 #include <string.h>
29 
30 #include "py/runtime.h"
31 #include "py/gc.h"
32 #include "timer.h"
33 #include "servo.h"
34 #include "pin.h"
35 #include "irq.h"
36 
37 /// \moduleref pyb
38 /// \class Timer - periodically call a function
39 ///
40 /// Timers can be used for a great variety of tasks.  At the moment, only
41 /// the simplest case is implemented: that of calling a function periodically.
42 ///
43 /// Each timer consists of a counter that counts up at a certain rate.  The rate
44 /// at which it counts is the peripheral clock frequency (in Hz) divided by the
45 /// timer prescaler.  When the counter reaches the timer period it triggers an
46 /// event, and the counter resets back to zero.  By using the callback method,
47 /// the timer event can call a Python function.
48 ///
49 /// Example usage to toggle an LED at a fixed frequency:
50 ///
51 ///     tim = pyb.Timer(4)              # create a timer object using timer 4
52 ///     tim.init(freq=2)                # trigger at 2Hz
53 ///     tim.callback(lambda t:pyb.LED(1).toggle())
54 ///
55 /// Further examples:
56 ///
57 ///     tim = pyb.Timer(4, freq=100)    # freq in Hz
58 ///     tim = pyb.Timer(4, prescaler=0, period=99)
59 ///     tim.counter()                   # get counter (can also set)
60 ///     tim.prescaler(2)                # set prescaler (can also get)
61 ///     tim.period(199)                 # set period (can also get)
62 ///     tim.callback(lambda t: ...)     # set callback for update interrupt (t=tim instance)
63 ///     tim.callback(None)              # clear callback
64 ///
65 /// *Note:* Timer 3 is used for fading the blue LED.  Timer 5 controls
66 /// the servo driver, and Timer 6 is used for timed ADC/DAC reading/writing.
67 /// It is recommended to use the other timers in your programs.
68 
69 // The timers can be used by multiple drivers, and need a common point for
70 // the interrupts to be dispatched, so they are all collected here.
71 //
72 // TIM3:
73 //  - LED 4, PWM to set the LED intensity
74 //
75 // TIM5:
76 //  - servo controller, PWM
77 //
78 // TIM6:
79 //  - ADC, DAC for read_timed and write_timed
80 
81 typedef enum {
82     CHANNEL_MODE_PWM_NORMAL,
83     CHANNEL_MODE_PWM_INVERTED,
84     CHANNEL_MODE_OC_TIMING,
85     CHANNEL_MODE_OC_ACTIVE,
86     CHANNEL_MODE_OC_INACTIVE,
87     CHANNEL_MODE_OC_TOGGLE,
88     CHANNEL_MODE_OC_FORCED_ACTIVE,
89     CHANNEL_MODE_OC_FORCED_INACTIVE,
90     CHANNEL_MODE_IC,
91     CHANNEL_MODE_ENC_A,
92     CHANNEL_MODE_ENC_B,
93     CHANNEL_MODE_ENC_AB,
94 } pyb_channel_mode;
95 
96 STATIC const struct {
97     qstr name;
98     uint32_t oc_mode;
99 } channel_mode_info[] = {
100     { MP_QSTR_PWM,                TIM_OCMODE_PWM1 },
101     { MP_QSTR_PWM_INVERTED,       TIM_OCMODE_PWM2 },
102     { MP_QSTR_OC_TIMING,          TIM_OCMODE_TIMING },
103     { MP_QSTR_OC_ACTIVE,          TIM_OCMODE_ACTIVE },
104     { MP_QSTR_OC_INACTIVE,        TIM_OCMODE_INACTIVE },
105     { MP_QSTR_OC_TOGGLE,          TIM_OCMODE_TOGGLE },
106     { MP_QSTR_OC_FORCED_ACTIVE,   TIM_OCMODE_FORCED_ACTIVE },
107     { MP_QSTR_OC_FORCED_INACTIVE, TIM_OCMODE_FORCED_INACTIVE },
108     { MP_QSTR_IC,                 0 },
109     { MP_QSTR_ENC_A,              TIM_ENCODERMODE_TI1 },
110     { MP_QSTR_ENC_B,              TIM_ENCODERMODE_TI2 },
111     { MP_QSTR_ENC_AB,             TIM_ENCODERMODE_TI12 },
112 };
113 
114 enum {
115     BRK_OFF,
116     BRK_LOW,
117     BRK_HIGH,
118 };
119 
120 typedef struct _pyb_timer_channel_obj_t {
121     mp_obj_base_t base;
122     struct _pyb_timer_obj_t *timer;
123     uint8_t channel;
124     uint8_t mode;
125     mp_obj_t callback;
126     struct _pyb_timer_channel_obj_t *next;
127 } pyb_timer_channel_obj_t;
128 
129 typedef struct _pyb_timer_obj_t {
130     mp_obj_base_t base;
131     uint8_t tim_id;
132     uint8_t is_32bit;
133     mp_obj_t callback;
134     TIM_HandleTypeDef tim;
135     IRQn_Type irqn;
136     pyb_timer_channel_obj_t *channel;
137 } pyb_timer_obj_t;
138 
139 // The following yields TIM_IT_UPDATE when channel is zero and
140 // TIM_IT_CC1..TIM_IT_CC4 when channel is 1..4
141 #define TIMER_IRQ_MASK(channel) (1 << (channel))
142 #define TIMER_CNT_MASK(self)    ((self)->is_32bit ? 0xffffffff : 0xffff)
143 #define TIMER_CHANNEL(self)     ((((self)->channel) - 1) << 2)
144 
145 TIM_HandleTypeDef TIM5_Handle;
146 TIM_HandleTypeDef TIM6_Handle;
147 
148 #define PYB_TIMER_OBJ_ALL_NUM MP_ARRAY_SIZE(MP_STATE_PORT(pyb_timer_obj_all))
149 
150 STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in);
151 STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback);
152 STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback);
153 
timer_init0(void)154 void timer_init0(void) {
155     for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
156         MP_STATE_PORT(pyb_timer_obj_all)[i] = NULL;
157     }
158 }
159 
160 // unregister all interrupt sources
timer_deinit(void)161 void timer_deinit(void) {
162     for (uint i = 0; i < PYB_TIMER_OBJ_ALL_NUM; i++) {
163         pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[i];
164         if (tim != NULL) {
165             pyb_timer_deinit(MP_OBJ_FROM_PTR(tim));
166         }
167     }
168 }
169 
170 #if defined(TIM5)
171 // TIM5 is set-up for the servo controller
172 // This function inits but does not start the timer
timer_tim5_init(void)173 void timer_tim5_init(void) {
174     // TIM5 clock enable
175     __HAL_RCC_TIM5_CLK_ENABLE();
176 
177     // set up and enable interrupt
178     NVIC_SetPriority(TIM5_IRQn, IRQ_PRI_TIM5);
179     HAL_NVIC_EnableIRQ(TIM5_IRQn);
180 
181     // PWM clock configuration
182     TIM5_Handle.Instance = TIM5;
183     TIM5_Handle.Init.Period = 2000 - 1; // timer cycles at 50Hz
184     TIM5_Handle.Init.Prescaler = (timer_get_source_freq(5) / 100000) - 1; // timer runs at 100kHz
185     TIM5_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1;
186     TIM5_Handle.Init.CounterMode = TIM_COUNTERMODE_UP;
187 
188     HAL_TIM_PWM_Init(&TIM5_Handle);
189 }
190 #endif
191 
192 #if defined(TIM6)
193 // Init TIM6 with a counter-overflow at the given frequency (given in Hz)
194 // TIM6 is used by the DAC and ADC for auto sampling at a given frequency
195 // This function inits but does not start the timer
timer_tim6_init(uint freq)196 TIM_HandleTypeDef *timer_tim6_init(uint freq) {
197     // TIM6 clock enable
198     __HAL_RCC_TIM6_CLK_ENABLE();
199 
200     // Timer runs at SystemCoreClock / 2
201     // Compute the prescaler value so TIM6 triggers at freq-Hz
202     uint32_t period = MAX(1, timer_get_source_freq(6) / freq);
203     uint32_t prescaler = 1;
204     while (period > 0xffff) {
205         period >>= 1;
206         prescaler <<= 1;
207     }
208 
209     // Time base clock configuration
210     TIM6_Handle.Instance = TIM6;
211     TIM6_Handle.Init.Period = period - 1;
212     TIM6_Handle.Init.Prescaler = prescaler - 1;
213     TIM6_Handle.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; // unused for TIM6
214     TIM6_Handle.Init.CounterMode = TIM_COUNTERMODE_UP; // unused for TIM6
215     HAL_TIM_Base_Init(&TIM6_Handle);
216 
217     return &TIM6_Handle;
218 }
219 #endif
220 
221 // Interrupt dispatch
HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef * htim)222 void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim) {
223     #if MICROPY_HW_ENABLE_SERVO
224     if (htim == &TIM5_Handle) {
225         servo_timer_irq_callback();
226     }
227     #endif
228 }
229 
230 // Get the frequency (in Hz) of the source clock for the given timer.
231 // On STM32F405/407/415/417 there are 2 cases for how the clock freq is set.
232 // If the APB prescaler is 1, then the timer clock is equal to its respective
233 // APB clock.  Otherwise (APB prescaler > 1) the timer clock is twice its
234 // respective APB clock.  See DM00031020 Rev 4, page 115.
timer_get_source_freq(uint32_t tim_id)235 uint32_t timer_get_source_freq(uint32_t tim_id) {
236     uint32_t source, clk_div;
237     if (tim_id == 1 || (8 <= tim_id && tim_id <= 11)) {
238         // TIM{1,8,9,10,11} are on APB2
239         #if defined(STM32F0)
240         source = HAL_RCC_GetPCLK1Freq();
241         clk_div = RCC->CFGR & RCC_CFGR_PPRE;
242         #elif defined(STM32H7)
243         source = HAL_RCC_GetPCLK2Freq();
244         clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE2;
245         #else
246         source = HAL_RCC_GetPCLK2Freq();
247         clk_div = RCC->CFGR & RCC_CFGR_PPRE2;
248         #endif
249     } else {
250         // TIM{2,3,4,5,6,7,12,13,14} are on APB1
251         source = HAL_RCC_GetPCLK1Freq();
252         #if defined(STM32F0)
253         clk_div = RCC->CFGR & RCC_CFGR_PPRE;
254         #elif defined(STM32H7)
255         clk_div = RCC->D2CFGR & RCC_D2CFGR_D2PPRE1;
256         #else
257         clk_div = RCC->CFGR & RCC_CFGR_PPRE1;
258         #endif
259     }
260     if (clk_div != 0) {
261         // APB prescaler for this timer is > 1
262         source *= 2;
263     }
264     return source;
265 }
266 
267 /******************************************************************************/
268 /* MicroPython bindings                                                       */
269 
270 STATIC const mp_obj_type_t pyb_timer_channel_type;
271 
272 // This is the largest value that we can multiply by 100 and have the result
273 // fit in a uint32_t.
274 #define MAX_PERIOD_DIV_100  42949672
275 
276 // computes prescaler and period so TIM triggers at freq-Hz
compute_prescaler_period_from_freq(pyb_timer_obj_t * self,mp_obj_t freq_in,uint32_t * period_out)277 STATIC uint32_t compute_prescaler_period_from_freq(pyb_timer_obj_t *self, mp_obj_t freq_in, uint32_t *period_out) {
278     uint32_t source_freq = timer_get_source_freq(self->tim_id);
279     uint32_t prescaler = 1;
280     uint32_t period;
281     if (0) {
282     #if MICROPY_PY_BUILTINS_FLOAT
283     } else if (mp_obj_is_type(freq_in, &mp_type_float)) {
284         float freq = mp_obj_get_float_to_f(freq_in);
285         if (freq <= 0) {
286             goto bad_freq;
287         }
288         while (freq < 1 && prescaler < 6553) {
289             prescaler *= 10;
290             freq *= 10.0f;
291         }
292         period = (uint32_t)((float)source_freq / freq);
293     #endif
294     } else {
295         mp_int_t freq = mp_obj_get_int(freq_in);
296         if (freq <= 0) {
297             goto bad_freq;
298         bad_freq:
299             mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq"));
300         }
301         period = source_freq / freq;
302     }
303     period = MAX(1, period);
304     while (period > TIMER_CNT_MASK(self)) {
305         // if we can divide exactly, do that first
306         if (period % 5 == 0) {
307             prescaler *= 5;
308             period /= 5;
309         } else if (period % 3 == 0) {
310             prescaler *= 3;
311             period /= 3;
312         } else {
313             // may not divide exactly, but loses minimal precision
314             prescaler <<= 1;
315             period >>= 1;
316         }
317     }
318     *period_out = (period - 1) & TIMER_CNT_MASK(self);
319     return (prescaler - 1) & 0xffff;
320 }
321 
322 // computes prescaler and period so TIM triggers with a period of t_num/t_den seconds
compute_prescaler_period_from_t(pyb_timer_obj_t * self,int32_t t_num,int32_t t_den,uint32_t * period_out)323 STATIC uint32_t compute_prescaler_period_from_t(pyb_timer_obj_t *self, int32_t t_num, int32_t t_den, uint32_t *period_out) {
324     uint32_t source_freq = timer_get_source_freq(self->tim_id);
325     if (t_num <= 0 || t_den <= 0) {
326         mp_raise_ValueError(MP_ERROR_TEXT("must have positive freq"));
327     }
328     uint64_t period = (uint64_t)source_freq * (uint64_t)t_num / (uint64_t)t_den;
329     uint32_t prescaler = 1;
330     while (period > TIMER_CNT_MASK(self)) {
331         // if we can divide exactly, and without prescaler overflow, do that first
332         if (prescaler <= 13107 && period % 5 == 0) {
333             prescaler *= 5;
334             period /= 5;
335         } else if (prescaler <= 21845 && period % 3 == 0) {
336             prescaler *= 3;
337             period /= 3;
338         } else {
339             // may not divide exactly, but loses minimal precision
340             uint32_t period_lsb = period & 1;
341             prescaler <<= 1;
342             period >>= 1;
343             if (period < prescaler) {
344                 // round division up
345                 prescaler |= period_lsb;
346             }
347             if (prescaler > 0x10000) {
348                 mp_raise_ValueError(MP_ERROR_TEXT("period too large"));
349             }
350         }
351     }
352     *period_out = (period - 1) & TIMER_CNT_MASK(self);
353     return (prescaler - 1) & 0xffff;
354 }
355 
356 // Helper function for determining the period used for calculating percent
compute_period(pyb_timer_obj_t * self)357 STATIC uint32_t compute_period(pyb_timer_obj_t *self) {
358     // In center mode,  compare == period corresponds to 100%
359     // In edge mode, compare == (period + 1) corresponds to 100%
360     uint32_t period = (__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
361     if (period != 0xffffffff) {
362         if (self->tim.Init.CounterMode == TIM_COUNTERMODE_UP ||
363             self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN) {
364             // Edge mode
365             period++;
366         }
367     }
368     return period;
369 }
370 
371 // Helper function to compute PWM value from timer period and percent value.
372 // 'percent_in' can be an int or a float between 0 and 100 (out of range
373 // values are clamped).
compute_pwm_value_from_percent(uint32_t period,mp_obj_t percent_in)374 STATIC uint32_t compute_pwm_value_from_percent(uint32_t period, mp_obj_t percent_in) {
375     uint32_t cmp;
376     if (0) {
377     #if MICROPY_PY_BUILTINS_FLOAT
378     } else if (mp_obj_is_type(percent_in, &mp_type_float)) {
379         mp_float_t percent = mp_obj_get_float(percent_in);
380         if (percent <= 0.0) {
381             cmp = 0;
382         } else if (percent >= 100.0) {
383             cmp = period;
384         } else {
385             cmp = (uint32_t)(percent / MICROPY_FLOAT_CONST(100.0) * ((mp_float_t)period));
386         }
387     #endif
388     } else {
389         // For integer arithmetic, if period is large and 100*period will
390         // overflow, then divide period before multiplying by cmp.  Otherwise
391         // do it the other way round to retain precision.
392         mp_int_t percent = mp_obj_get_int(percent_in);
393         if (percent <= 0) {
394             cmp = 0;
395         } else if (percent >= 100) {
396             cmp = period;
397         } else if (period > MAX_PERIOD_DIV_100) {
398             cmp = (uint32_t)percent * (period / 100);
399         } else {
400             cmp = ((uint32_t)percent * period) / 100;
401         }
402     }
403     return cmp;
404 }
405 
406 // Helper function to compute percentage from timer perion and PWM value.
compute_percent_from_pwm_value(uint32_t period,uint32_t cmp)407 STATIC mp_obj_t compute_percent_from_pwm_value(uint32_t period, uint32_t cmp) {
408     #if MICROPY_PY_BUILTINS_FLOAT
409     mp_float_t percent;
410     if (cmp >= period) {
411         percent = 100.0;
412     } else {
413         percent = (mp_float_t)cmp * 100.0 / ((mp_float_t)period);
414     }
415     return mp_obj_new_float(percent);
416     #else
417     mp_int_t percent;
418     if (cmp >= period) {
419         percent = 100;
420     } else if (cmp > MAX_PERIOD_DIV_100) {
421         percent = cmp / (period / 100);
422     } else {
423         percent = cmp * 100 / period;
424     }
425     return mp_obj_new_int(percent);
426     #endif
427 }
428 
429 #if !defined(STM32L0)
430 
431 // Computes the 8-bit value for the DTG field in the BDTR register.
432 //
433 // 1 tick = 1 count of the timer's clock (source_freq) divided by div.
434 // 0-128 ticks in inrements of 1
435 // 128-256 ticks in increments of 2
436 // 256-512 ticks in increments of 8
437 // 512-1008 ticks in increments of 16
compute_dtg_from_ticks(mp_int_t ticks)438 STATIC uint32_t compute_dtg_from_ticks(mp_int_t ticks) {
439     if (ticks <= 0) {
440         return 0;
441     }
442     if (ticks < 128) {
443         return ticks;
444     }
445     if (ticks < 256) {
446         return 0x80 | ((ticks - 128) / 2);
447     }
448     if (ticks < 512) {
449         return 0xC0 | ((ticks - 256) / 8);
450     }
451     if (ticks < 1008) {
452         return 0xE0 | ((ticks - 512) / 16);
453     }
454     return 0xFF;
455 }
456 
457 // Given the 8-bit value stored in the DTG field of the BDTR register, compute
458 // the number of ticks.
compute_ticks_from_dtg(uint32_t dtg)459 STATIC mp_int_t compute_ticks_from_dtg(uint32_t dtg) {
460     if ((dtg & 0x80) == 0) {
461         return dtg & 0x7F;
462     }
463     if ((dtg & 0xC0) == 0x80) {
464         return 128 + ((dtg & 0x3F) * 2);
465     }
466     if ((dtg & 0xE0) == 0xC0) {
467         return 256 + ((dtg & 0x1F) * 8);
468     }
469     return 512 + ((dtg & 0x1F) * 16);
470 }
471 
config_deadtime(pyb_timer_obj_t * self,mp_int_t ticks,mp_int_t brk)472 STATIC void config_deadtime(pyb_timer_obj_t *self, mp_int_t ticks, mp_int_t brk) {
473     TIM_BreakDeadTimeConfigTypeDef deadTimeConfig;
474     deadTimeConfig.OffStateRunMode = TIM_OSSR_DISABLE;
475     deadTimeConfig.OffStateIDLEMode = TIM_OSSI_DISABLE;
476     deadTimeConfig.LockLevel = TIM_LOCKLEVEL_OFF;
477     deadTimeConfig.DeadTime = compute_dtg_from_ticks(ticks);
478     deadTimeConfig.BreakState = brk == BRK_OFF ? TIM_BREAK_DISABLE : TIM_BREAK_ENABLE;
479     deadTimeConfig.BreakPolarity = brk == BRK_LOW ? TIM_BREAKPOLARITY_LOW : TIM_BREAKPOLARITY_HIGH;
480     #if defined(STM32F7) || defined(STM32H7) || defined(STM32L4) || defined(STM32WB)
481     deadTimeConfig.BreakFilter = 0;
482     deadTimeConfig.Break2State = TIM_BREAK_DISABLE;
483     deadTimeConfig.Break2Polarity = TIM_BREAKPOLARITY_LOW;
484     deadTimeConfig.Break2Filter = 0;
485     #endif
486     deadTimeConfig.AutomaticOutput = TIM_AUTOMATICOUTPUT_DISABLE;
487     HAL_TIMEx_ConfigBreakDeadTime(&self->tim, &deadTimeConfig);
488 }
489 
490 #endif
491 
pyb_timer_get_handle(mp_obj_t timer)492 TIM_HandleTypeDef *pyb_timer_get_handle(mp_obj_t timer) {
493     if (mp_obj_get_type(timer) != &pyb_timer_type) {
494         mp_raise_ValueError(MP_ERROR_TEXT("need a Timer object"));
495     }
496     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(timer);
497     return &self->tim;
498 }
499 
pyb_timer_print(const mp_print_t * print,mp_obj_t self_in,mp_print_kind_t kind)500 STATIC void pyb_timer_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
501     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
502 
503     if (self->tim.State == HAL_TIM_STATE_RESET) {
504         mp_printf(print, "Timer(%u)", self->tim_id);
505     } else {
506         uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
507         uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
508         // for efficiency, we compute and print freq as an int (not a float)
509         uint32_t freq = timer_get_source_freq(self->tim_id) / ((prescaler + 1) * (period + 1));
510         mp_printf(print, "Timer(%u, freq=%u, prescaler=%u, period=%u, mode=%s, div=%u",
511             self->tim_id,
512             freq,
513             prescaler,
514             period,
515             self->tim.Init.CounterMode == TIM_COUNTERMODE_UP     ? "UP" :
516             self->tim.Init.CounterMode == TIM_COUNTERMODE_DOWN   ? "DOWN" : "CENTER",
517             self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV4 ? 4 :
518             self->tim.Init.ClockDivision == TIM_CLOCKDIVISION_DIV2 ? 2 : 1);
519 
520         #if !defined(STM32L0)
521         #if defined(IS_TIM_ADVANCED_INSTANCE)
522         if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
523         #elif defined(IS_TIM_BREAK_INSTANCE)
524         if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
525         #else
526         if (0)
527         #endif
528         {
529             mp_printf(print, ", deadtime=%u",
530                 compute_ticks_from_dtg(self->tim.Instance->BDTR & TIM_BDTR_DTG));
531             if ((self->tim.Instance->BDTR & TIM_BDTR_BKE) == TIM_BDTR_BKE) {
532                 mp_printf(print, ", brk=%s",
533                     ((self->tim.Instance->BDTR & TIM_BDTR_BKP) == TIM_BDTR_BKP) ? "BRK_HIGH" : "BRK_LOW");
534             } else {
535                 mp_printf(print, ", brk=BRK_OFF");
536             }
537         }
538         #endif
539         mp_print_str(print, ")");
540     }
541 }
542 
543 /// \method init(*, freq, prescaler, period)
544 /// Initialise the timer.  Initialisation must be either by frequency (in Hz)
545 /// or by prescaler and period:
546 ///
547 ///     tim.init(freq=100)                  # set the timer to trigger at 100Hz
548 ///     tim.init(prescaler=83, period=999)  # set the prescaler and period directly
549 ///
550 /// Keyword arguments:
551 ///
552 ///   - `freq` - specifies the periodic frequency of the timer. You migh also
553 ///              view this as the frequency with which the timer goes through
554 ///              one complete cycle.
555 ///
556 ///   - `prescaler` [0-0xffff] - specifies the value to be loaded into the
557 ///                 timer's Prescaler Register (PSC). The timer clock source is divided by
558 ///     (`prescaler + 1`) to arrive at the timer clock. Timers 2-7 and 12-14
559 ///     have a clock source of 84 MHz (pyb.freq()[2] * 2), and Timers 1, and 8-11
560 ///     have a clock source of 168 MHz (pyb.freq()[3] * 2).
561 ///
562 ///   - `period` [0-0xffff] for timers 1, 3, 4, and 6-15. [0-0x3fffffff] for timers 2 & 5.
563 ///              Specifies the value to be loaded into the timer's AutoReload
564 ///     Register (ARR). This determines the period of the timer (i.e. when the
565 ///     counter cycles). The timer counter will roll-over after `period + 1`
566 ///     timer clock cycles.
567 ///
568 ///   - `mode` can be one of:
569 ///     - `Timer.UP` - configures the timer to count from 0 to ARR (default)
570 ///     - `Timer.DOWN` - configures the timer to count from ARR down to 0.
571 ///     - `Timer.CENTER` - confgures the timer to count from 0 to ARR and
572 ///       then back down to 0.
573 ///
574 ///   - `div` can be one of 1, 2, or 4. Divides the timer clock to determine
575 ///       the sampling clock used by the digital filters.
576 ///
577 ///   - `callback` - as per Timer.callback()
578 ///
579 ///   - `deadtime` - specifies the amount of "dead" or inactive time between
580 ///       transitions on complimentary channels (both channels will be inactive)
581 ///       for this time). `deadtime` may be an integer between 0 and 1008, with
582 ///       the following restrictions: 0-128 in steps of 1. 128-256 in steps of
583 ///       2, 256-512 in steps of 8, and 512-1008 in steps of 16. `deadime`
584 ///       measures ticks of `source_freq` divided by `div` clock ticks.
585 ///       `deadtime` is only available on timers 1 and 8.
586 ///
587 ///   - `brk` - specifies if the break mode is used to kill the output of
588 ///       the PWM when the BRK_IN input is asserted. The polarity set how the
589 ///       BRK_IN input is triggered. It can be set to `BRK_OFF`, `BRK_LOW`
590 ///       and `BRK_HIGH`.
591 ///
592 ///
593 ///  You must either specify freq or both of period and prescaler.
pyb_timer_init_helper(pyb_timer_obj_t * self,size_t n_args,const mp_obj_t * pos_args,mp_map_t * kw_args)594 STATIC mp_obj_t pyb_timer_init_helper(pyb_timer_obj_t *self, size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
595     enum { ARG_freq, ARG_prescaler, ARG_period, ARG_tick_hz, ARG_mode, ARG_div, ARG_callback, ARG_deadtime, ARG_brk };
596     static const mp_arg_t allowed_args[] = {
597         { MP_QSTR_freq,         MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
598         { MP_QSTR_prescaler,    MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
599         { MP_QSTR_period,       MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
600         { MP_QSTR_tick_hz,      MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1000} },
601         { MP_QSTR_mode,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = TIM_COUNTERMODE_UP} },
602         { MP_QSTR_div,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 1} },
603         { MP_QSTR_callback,     MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
604         { MP_QSTR_deadtime,     MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
605         { MP_QSTR_brk,          MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = BRK_OFF} },
606     };
607 
608     // parse args
609     mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
610     mp_arg_parse_all(n_args, pos_args, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
611 
612     // set the TIM configuration values
613     TIM_Base_InitTypeDef *init = &self->tim.Init;
614 
615     if (args[ARG_freq].u_obj != mp_const_none) {
616         // set prescaler and period from desired frequency
617         init->Prescaler = compute_prescaler_period_from_freq(self, args[ARG_freq].u_obj, &init->Period);
618     } else if (args[ARG_prescaler].u_int != 0xffffffff && args[ARG_period].u_int != 0xffffffff) {
619         // set prescaler and period directly
620         init->Prescaler = args[ARG_prescaler].u_int;
621         init->Period = args[ARG_period].u_int;
622     } else if (args[ARG_period].u_int != 0xffffffff) {
623         // set prescaler and period from desired period and tick_hz scale
624         init->Prescaler = compute_prescaler_period_from_t(self, args[ARG_period].u_int, args[ARG_tick_hz].u_int, &init->Period);
625     } else {
626         mp_raise_TypeError(MP_ERROR_TEXT("must specify either freq, period, or prescaler and period"));
627     }
628 
629     init->CounterMode = args[ARG_mode].u_int;
630     if (!IS_TIM_COUNTER_MODE(init->CounterMode)) {
631         mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), init->CounterMode);
632     }
633 
634     init->ClockDivision = args[ARG_div].u_int == 2 ? TIM_CLOCKDIVISION_DIV2 :
635         args[ARG_div].u_int == 4 ? TIM_CLOCKDIVISION_DIV4 :
636         TIM_CLOCKDIVISION_DIV1;
637 
638     #if !defined(STM32L0)
639     init->RepetitionCounter = 0;
640     #endif
641 
642     // enable TIM clock
643     switch (self->tim_id) {
644         #if defined(TIM1)
645         case 1:
646             __HAL_RCC_TIM1_CLK_ENABLE();
647             break;
648         #endif
649         case 2:
650             __HAL_RCC_TIM2_CLK_ENABLE();
651             break;
652         #if defined(TIM3)
653         case 3:
654             __HAL_RCC_TIM3_CLK_ENABLE();
655             break;
656         #endif
657         #if defined(TIM4)
658         case 4:
659             __HAL_RCC_TIM4_CLK_ENABLE();
660             break;
661         #endif
662         #if defined(TIM5)
663         case 5:
664             __HAL_RCC_TIM5_CLK_ENABLE();
665             break;
666         #endif
667         #if defined(TIM6)
668         case 6:
669             __HAL_RCC_TIM6_CLK_ENABLE();
670             break;
671         #endif
672         #if defined(TIM7)
673         case 7:
674             __HAL_RCC_TIM7_CLK_ENABLE();
675             break;
676         #endif
677         #if defined(TIM8)
678         case 8:
679             __HAL_RCC_TIM8_CLK_ENABLE();
680             break;
681         #endif
682         #if defined(TIM9)
683         case 9:
684             __HAL_RCC_TIM9_CLK_ENABLE();
685             break;
686         #endif
687         #if defined(TIM10)
688         case 10:
689             __HAL_RCC_TIM10_CLK_ENABLE();
690             break;
691         #endif
692         #if defined(TIM11)
693         case 11:
694             __HAL_RCC_TIM11_CLK_ENABLE();
695             break;
696         #endif
697         #if defined(TIM12)
698         case 12:
699             __HAL_RCC_TIM12_CLK_ENABLE();
700             break;
701         #endif
702         #if defined(TIM13)
703         case 13:
704             __HAL_RCC_TIM13_CLK_ENABLE();
705             break;
706         #endif
707         #if defined(TIM14)
708         case 14:
709             __HAL_RCC_TIM14_CLK_ENABLE();
710             break;
711         #endif
712         #if defined(TIM15)
713         case 15:
714             __HAL_RCC_TIM15_CLK_ENABLE();
715             break;
716         #endif
717         #if defined(TIM16)
718         case 16:
719             __HAL_RCC_TIM16_CLK_ENABLE();
720             break;
721         #endif
722         #if defined(TIM17)
723         case 17:
724             __HAL_RCC_TIM17_CLK_ENABLE();
725             break;
726         #endif
727         #if defined(TIM18)
728         case 18:
729             __HAL_RCC_TIM18_CLK_ENABLE();
730             break;
731         #endif
732         #if defined(TIM19)
733         case 19:
734             __HAL_RCC_TIM19_CLK_ENABLE();
735             break;
736         #endif
737         #if defined(TIM20)
738         case 20:
739             __HAL_RCC_TIM20_CLK_ENABLE();
740             break;
741         #endif
742         #if defined(TIM21)
743         case 21:
744             __HAL_RCC_TIM21_CLK_ENABLE();
745             break;
746         #endif
747         #if defined(TIM22)
748         case 22:
749             __HAL_RCC_TIM22_CLK_ENABLE();
750             break;
751         #endif
752     }
753 
754     // set IRQ priority (if not a special timer)
755     if (self->tim_id != 5) {
756         NVIC_SetPriority(IRQn_NONNEG(self->irqn), IRQ_PRI_TIMX);
757         if (self->tim_id == 1) {
758             #if defined(TIM1)
759             NVIC_SetPriority(TIM1_CC_IRQn, IRQ_PRI_TIMX);
760             #endif
761         } else if (self->tim_id == 8) {
762             #if defined(TIM8)
763             NVIC_SetPriority(TIM8_CC_IRQn, IRQ_PRI_TIMX);
764             #endif
765         }
766     }
767 
768     // init TIM
769     HAL_TIM_Base_Init(&self->tim);
770     #if !defined(STM32L0)
771     #if defined(IS_TIM_ADVANCED_INSTANCE)
772     if (IS_TIM_ADVANCED_INSTANCE(self->tim.Instance))
773     #elif defined(IS_TIM_BREAK_INSTANCE)
774     if (IS_TIM_BREAK_INSTANCE(self->tim.Instance))
775     #else
776     if (0)
777     #endif
778     {
779         config_deadtime(self, args[ARG_deadtime].u_int, args[ARG_brk].u_int);
780     }
781     #endif
782 
783     // Enable ARPE so that the auto-reload register is buffered.
784     // This allows to smoothly change the frequency of the timer.
785     self->tim.Instance->CR1 |= TIM_CR1_ARPE;
786 
787     // Start the timer running
788     if (args[ARG_callback].u_obj == mp_const_none) {
789         HAL_TIM_Base_Start(&self->tim);
790     } else {
791         pyb_timer_callback(MP_OBJ_FROM_PTR(self), args[ARG_callback].u_obj);
792     }
793 
794     return mp_const_none;
795 }
796 
797 // This table encodes the timer instance and irq number (for the update irq).
798 // It assumes that timer instance pointer has the lower 8 bits cleared.
799 #define TIM_ENTRY(id, irq) [id - 1] = (uint32_t)TIM##id | irq
800 STATIC const uint32_t tim_instance_table[MICROPY_HW_MAX_TIMER] = {
801     #if defined(TIM1)
802     #if defined(STM32F0)
803     TIM_ENTRY(1, TIM1_BRK_UP_TRG_COM_IRQn),
804     #elif defined(STM32F4) || defined(STM32F7)
805     TIM_ENTRY(1, TIM1_UP_TIM10_IRQn),
806     #elif defined(STM32H7)
807     TIM_ENTRY(1, TIM1_UP_IRQn),
808     #elif defined(STM32L4) || defined(STM32WB)
809     TIM_ENTRY(1, TIM1_UP_TIM16_IRQn),
810     #endif
811     #endif
812     TIM_ENTRY(2, TIM2_IRQn),
813     #if defined(TIM3)
814     TIM_ENTRY(3, TIM3_IRQn),
815     #endif
816     #if defined(TIM4)
817     TIM_ENTRY(4, TIM4_IRQn),
818     #endif
819     #if defined(TIM5)
820     TIM_ENTRY(5, TIM5_IRQn),
821     #endif
822     #if defined(TIM6)
823     #if defined(STM32F412Zx)
824     TIM_ENTRY(6, TIM6_IRQn),
825     #else
826     TIM_ENTRY(6, TIM6_DAC_IRQn),
827     #endif
828     #endif
829     #if defined(TIM7)
830     TIM_ENTRY(7, TIM7_IRQn),
831     #endif
832     #if defined(TIM8)
833     #if defined(STM32F4) || defined(STM32F7) || defined(STM32H7)
834     TIM_ENTRY(8, TIM8_UP_TIM13_IRQn),
835     #elif defined(STM32L4)
836     TIM_ENTRY(8, TIM8_UP_IRQn),
837     #endif
838     #endif
839     #if defined(TIM9)
840     TIM_ENTRY(9, TIM1_BRK_TIM9_IRQn),
841     #endif
842     #if defined(TIM10)
843     TIM_ENTRY(10, TIM1_UP_TIM10_IRQn),
844     #endif
845     #if defined(TIM11)
846     TIM_ENTRY(11, TIM1_TRG_COM_TIM11_IRQn),
847     #endif
848     #if defined(TIM12)
849     TIM_ENTRY(12, TIM8_BRK_TIM12_IRQn),
850     #endif
851     #if defined(TIM13)
852     TIM_ENTRY(13, TIM8_UP_TIM13_IRQn),
853     #endif
854     #if defined(STM32F0)
855     TIM_ENTRY(14, TIM14_IRQn),
856     #elif defined(TIM14)
857     TIM_ENTRY(14, TIM8_TRG_COM_TIM14_IRQn),
858     #endif
859     #if defined(TIM15)
860     #if defined(STM32F0) || defined(STM32H7)
861     TIM_ENTRY(15, TIM15_IRQn),
862     #else
863     TIM_ENTRY(15, TIM1_BRK_TIM15_IRQn),
864     #endif
865     #endif
866     #if defined(TIM16)
867     #if defined(STM32F0) || defined(STM32H7)
868     TIM_ENTRY(16, TIM16_IRQn),
869     #else
870     TIM_ENTRY(16, TIM1_UP_TIM16_IRQn),
871     #endif
872     #endif
873     #if defined(TIM17)
874     #if defined(STM32F0) || defined(STM32H7)
875     TIM_ENTRY(17, TIM17_IRQn),
876     #else
877     TIM_ENTRY(17, TIM1_TRG_COM_TIM17_IRQn),
878     #endif
879     #endif
880 };
881 #undef TIM_ENTRY
882 
883 /// \classmethod \constructor(id, ...)
884 /// Construct a new timer object of the given id.  If additional
885 /// arguments are given, then the timer is initialised by `init(...)`.
886 /// `id` can be 1 to 14, excluding 3.
pyb_timer_make_new(const mp_obj_type_t * type,size_t n_args,size_t n_kw,const mp_obj_t * args)887 STATIC mp_obj_t pyb_timer_make_new(const mp_obj_type_t *type, size_t n_args, size_t n_kw, const mp_obj_t *args) {
888     // check arguments
889     mp_arg_check_num(n_args, n_kw, 1, MP_OBJ_FUN_ARGS_MAX, true);
890 
891     // get the timer id
892     mp_int_t tim_id = mp_obj_get_int(args[0]);
893 
894     // check if the timer exists
895     if (tim_id <= 0 || tim_id > MICROPY_HW_MAX_TIMER || tim_instance_table[tim_id - 1] == 0) {
896         mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) doesn't exist"), tim_id);
897     }
898 
899     // check if the timer is reserved for system use or not
900     if (MICROPY_HW_TIM_IS_RESERVED(tim_id)) {
901         mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Timer(%d) is reserved"), tim_id);
902     }
903 
904     pyb_timer_obj_t *tim;
905     if (MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] == NULL) {
906         // create new Timer object
907         tim = m_new_obj(pyb_timer_obj_t);
908         memset(tim, 0, sizeof(*tim));
909         tim->base.type = &pyb_timer_type;
910         tim->tim_id = tim_id;
911         tim->is_32bit = tim_id == 2 || tim_id == 5;
912         tim->callback = mp_const_none;
913         uint32_t ti = tim_instance_table[tim_id - 1];
914         tim->tim.Instance = (TIM_TypeDef *)(ti & 0xffffff00);
915         tim->irqn = ti & 0xff;
916         MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1] = tim;
917     } else {
918         // reference existing Timer object
919         tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
920     }
921 
922     if (n_args > 1 || n_kw > 0) {
923         // start the peripheral
924         mp_map_t kw_args;
925         mp_map_init_fixed_table(&kw_args, n_kw, args + n_args);
926         pyb_timer_init_helper(tim, n_args - 1, args + 1, &kw_args);
927     }
928 
929     return MP_OBJ_FROM_PTR(tim);
930 }
931 
pyb_timer_init(size_t n_args,const mp_obj_t * args,mp_map_t * kw_args)932 STATIC mp_obj_t pyb_timer_init(size_t n_args, const mp_obj_t *args, mp_map_t *kw_args) {
933     return pyb_timer_init_helper(MP_OBJ_TO_PTR(args[0]), n_args - 1, args + 1, kw_args);
934 }
935 STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_init_obj, 1, pyb_timer_init);
936 
937 // timer.deinit()
pyb_timer_deinit(mp_obj_t self_in)938 STATIC mp_obj_t pyb_timer_deinit(mp_obj_t self_in) {
939     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
940 
941     // Disable the base interrupt
942     pyb_timer_callback(self_in, mp_const_none);
943 
944     pyb_timer_channel_obj_t *chan = self->channel;
945     self->channel = NULL;
946 
947     // Disable the channel interrupts
948     while (chan != NULL) {
949         pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);
950         pyb_timer_channel_obj_t *prev_chan = chan;
951         chan = chan->next;
952         prev_chan->next = NULL;
953     }
954 
955     self->tim.State = HAL_TIM_STATE_RESET;
956     self->tim.Instance->CCER = 0x0000; // disable all capture/compare outputs
957     self->tim.Instance->CR1 = 0x0000; // disable the timer and reset its state
958 
959     return mp_const_none;
960 }
961 STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_deinit_obj, pyb_timer_deinit);
962 
963 /// \method channel(channel, mode, ...)
964 ///
965 /// If only a channel number is passed, then a previously initialized channel
966 /// object is returned (or `None` if there is no previous channel).
967 ///
968 /// Othwerwise, a TimerChannel object is initialized and returned.
969 ///
970 /// Each channel can be configured to perform pwm, output compare, or
971 /// input capture. All channels share the same underlying timer, which means
972 /// that they share the same timer clock.
973 ///
974 /// Keyword arguments:
975 ///
976 ///   - `mode` can be one of:
977 ///     - `Timer.PWM` - configure the timer in PWM mode (active high).
978 ///     - `Timer.PWM_INVERTED` - configure the timer in PWM mode (active low).
979 ///     - `Timer.OC_TIMING` - indicates that no pin is driven.
980 ///     - `Timer.OC_ACTIVE` - the pin will be made active when a compare
981 ///        match occurs (active is determined by polarity)
982 ///     - `Timer.OC_INACTIVE` - the pin will be made inactive when a compare
983 ///        match occurs.
984 ///     - `Timer.OC_TOGGLE` - the pin will be toggled when an compare match occurs.
985 ///     - `Timer.OC_FORCED_ACTIVE` - the pin is forced active (compare match is ignored).
986 ///     - `Timer.OC_FORCED_INACTIVE` - the pin is forced inactive (compare match is ignored).
987 ///     - `Timer.IC` - configure the timer in Input Capture mode.
988 ///     - `Timer.ENC_A` --- configure the timer in Encoder mode. The counter only changes when CH1 changes.
989 ///     - `Timer.ENC_B` --- configure the timer in Encoder mode. The counter only changes when CH2 changes.
990 ///     - `Timer.ENC_AB` --- configure the timer in Encoder mode. The counter changes when CH1 or CH2 changes.
991 ///
992 ///   - `callback` - as per TimerChannel.callback()
993 ///
994 ///   - `pin` None (the default) or a Pin object. If specified (and not None)
995 ///           this will cause the alternate function of the the indicated pin
996 ///      to be configured for this timer channel. An error will be raised if
997 ///      the pin doesn't support any alternate functions for this timer channel.
998 ///
999 /// Keyword arguments for Timer.PWM modes:
1000 ///
1001 ///   - `pulse_width` - determines the initial pulse width value to use.
1002 ///   - `pulse_width_percent` - determines the initial pulse width percentage to use.
1003 ///
1004 /// Keyword arguments for Timer.OC modes:
1005 ///
1006 ///   - `compare` - determines the initial value of the compare register.
1007 ///
1008 ///   - `polarity` can be one of:
1009 ///     - `Timer.HIGH` - output is active high
1010 ///     - `Timer.LOW` - output is acive low
1011 ///
1012 /// Optional keyword arguments for Timer.IC modes:
1013 ///
1014 ///   - `polarity` can be one of:
1015 ///     - `Timer.RISING` - captures on rising edge.
1016 ///     - `Timer.FALLING` - captures on falling edge.
1017 ///     - `Timer.BOTH` - captures on both edges.
1018 ///
1019 ///   Note that capture only works on the primary channel, and not on the
1020 ///   complimentary channels.
1021 ///
1022 /// Notes for Timer.ENC modes:
1023 ///
1024 ///   - Requires 2 pins, so one or both pins will need to be configured to use
1025 ///     the appropriate timer AF using the Pin API.
1026 ///   - Read the encoder value using the timer.counter() method.
1027 ///   - Only works on CH1 and CH2 (and not on CH1N or CH2N)
1028 ///   - The channel number is ignored when setting the encoder mode.
1029 ///
1030 /// PWM Example:
1031 ///
1032 ///     timer = pyb.Timer(2, freq=1000)
1033 ///     ch2 = timer.channel(2, pyb.Timer.PWM, pin=pyb.Pin.board.X2, pulse_width=210000)
1034 ///     ch3 = timer.channel(3, pyb.Timer.PWM, pin=pyb.Pin.board.X3, pulse_width=420000)
pyb_timer_channel(size_t n_args,const mp_obj_t * pos_args,mp_map_t * kw_args)1035 STATIC mp_obj_t pyb_timer_channel(size_t n_args, const mp_obj_t *pos_args, mp_map_t *kw_args) {
1036     static const mp_arg_t allowed_args[] = {
1037         { MP_QSTR_mode,                MP_ARG_REQUIRED | MP_ARG_INT, {.u_int = 0} },
1038         { MP_QSTR_callback,            MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
1039         { MP_QSTR_pin,                 MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
1040         { MP_QSTR_pulse_width,         MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
1041         { MP_QSTR_pulse_width_percent, MP_ARG_KW_ONLY | MP_ARG_OBJ, {.u_rom_obj = MP_ROM_NONE} },
1042         { MP_QSTR_compare,             MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0} },
1043         { MP_QSTR_polarity,            MP_ARG_KW_ONLY | MP_ARG_INT, {.u_int = 0xffffffff} },
1044     };
1045 
1046     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(pos_args[0]);
1047     mp_int_t channel = mp_obj_get_int(pos_args[1]);
1048 
1049     if (channel < 1 || channel > 4) {
1050         mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid channel (%d)"), channel);
1051     }
1052 
1053     pyb_timer_channel_obj_t *chan = self->channel;
1054     pyb_timer_channel_obj_t *prev_chan = NULL;
1055 
1056     while (chan != NULL) {
1057         if (chan->channel == channel) {
1058             break;
1059         }
1060         prev_chan = chan;
1061         chan = chan->next;
1062     }
1063 
1064     // If only the channel number is given return the previously allocated
1065     // channel (or None if no previous channel).
1066     if (n_args == 2 && kw_args->used == 0) {
1067         if (chan) {
1068             return MP_OBJ_FROM_PTR(chan);
1069         }
1070         return mp_const_none;
1071     }
1072 
1073     // If there was already a channel, then remove it from the list. Note that
1074     // the order we do things here is important so as to appear atomic to
1075     // the IRQ handler.
1076     if (chan) {
1077         // Turn off any IRQ associated with the channel.
1078         pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), mp_const_none);
1079 
1080         // Unlink the channel from the list.
1081         if (prev_chan) {
1082             prev_chan->next = chan->next;
1083         }
1084         self->channel = chan->next;
1085         chan->next = NULL;
1086     }
1087 
1088     // Allocate and initialize a new channel
1089     mp_arg_val_t args[MP_ARRAY_SIZE(allowed_args)];
1090     mp_arg_parse_all(n_args - 2, pos_args + 2, kw_args, MP_ARRAY_SIZE(allowed_args), allowed_args, args);
1091 
1092     chan = m_new_obj(pyb_timer_channel_obj_t);
1093     memset(chan, 0, sizeof(*chan));
1094     chan->base.type = &pyb_timer_channel_type;
1095     chan->timer = self;
1096     chan->channel = channel;
1097     chan->mode = args[0].u_int;
1098     chan->callback = args[1].u_obj;
1099 
1100     mp_obj_t pin_obj = args[2].u_obj;
1101     if (pin_obj != mp_const_none) {
1102         if (!mp_obj_is_type(pin_obj, &pin_type)) {
1103             mp_raise_ValueError(MP_ERROR_TEXT("pin argument needs to be be a Pin type"));
1104         }
1105         const pin_obj_t *pin = MP_OBJ_TO_PTR(pin_obj);
1106         const pin_af_obj_t *af = pin_find_af(pin, AF_FN_TIM, self->tim_id);
1107         if (af == NULL) {
1108             mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("Pin(%q) doesn't have an af for Timer(%d)"), pin->name, self->tim_id);
1109         }
1110         // pin.init(mode=AF_PP, af=idx)
1111         const mp_obj_t args2[6] = {
1112             MP_OBJ_FROM_PTR(&pin_init_obj),
1113             pin_obj,
1114             MP_OBJ_NEW_QSTR(MP_QSTR_mode),  MP_OBJ_NEW_SMALL_INT(GPIO_MODE_AF_PP),
1115             MP_OBJ_NEW_QSTR(MP_QSTR_af),    MP_OBJ_NEW_SMALL_INT(af->idx)
1116         };
1117         mp_call_method_n_kw(0, 2, args2);
1118     }
1119 
1120     // Link the channel to the timer before we turn the channel on.
1121     // Note that this needs to appear atomic to the IRQ handler (the write
1122     // to self->channel is atomic, so we're good, but I thought I'd mention
1123     // in case this was ever changed in the future).
1124     chan->next = self->channel;
1125     self->channel = chan;
1126 
1127     switch (chan->mode) {
1128 
1129         case CHANNEL_MODE_PWM_NORMAL:
1130         case CHANNEL_MODE_PWM_INVERTED: {
1131             TIM_OC_InitTypeDef oc_config;
1132             oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
1133             if (args[4].u_obj != mp_const_none) {
1134                 // pulse width percent given
1135                 uint32_t period = compute_period(self);
1136                 oc_config.Pulse = compute_pwm_value_from_percent(period, args[4].u_obj);
1137             } else {
1138                 // use absolute pulse width value (defaults to 0 if nothing given)
1139                 oc_config.Pulse = args[3].u_int;
1140             }
1141             oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
1142             oc_config.OCFastMode = TIM_OCFAST_DISABLE;
1143             #if !defined(STM32L0)
1144             oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
1145             oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
1146             oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
1147             #endif
1148 
1149             HAL_TIM_PWM_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
1150             if (chan->callback == mp_const_none) {
1151                 HAL_TIM_PWM_Start(&self->tim, TIMER_CHANNEL(chan));
1152             } else {
1153                 pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
1154             }
1155             #if !defined(STM32L0)
1156             // Start the complimentary channel too (if its supported)
1157             if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
1158                 HAL_TIMEx_PWMN_Start(&self->tim, TIMER_CHANNEL(chan));
1159             }
1160             #endif
1161             break;
1162         }
1163 
1164         case CHANNEL_MODE_OC_TIMING:
1165         case CHANNEL_MODE_OC_ACTIVE:
1166         case CHANNEL_MODE_OC_INACTIVE:
1167         case CHANNEL_MODE_OC_TOGGLE:
1168         case CHANNEL_MODE_OC_FORCED_ACTIVE:
1169         case CHANNEL_MODE_OC_FORCED_INACTIVE: {
1170             TIM_OC_InitTypeDef oc_config;
1171             oc_config.OCMode = channel_mode_info[chan->mode].oc_mode;
1172             oc_config.Pulse = args[5].u_int;
1173             oc_config.OCPolarity = args[6].u_int;
1174             if (oc_config.OCPolarity == 0xffffffff) {
1175                 oc_config.OCPolarity = TIM_OCPOLARITY_HIGH;
1176             }
1177             oc_config.OCFastMode = TIM_OCFAST_DISABLE;
1178             #if !defined(STM32L0)
1179             if (oc_config.OCPolarity == TIM_OCPOLARITY_HIGH) {
1180                 oc_config.OCNPolarity = TIM_OCNPOLARITY_HIGH;
1181             } else {
1182                 oc_config.OCNPolarity = TIM_OCNPOLARITY_LOW;
1183             }
1184             oc_config.OCIdleState = TIM_OCIDLESTATE_SET;
1185             oc_config.OCNIdleState = TIM_OCNIDLESTATE_SET;
1186             #endif
1187 
1188             if (!IS_TIM_OC_POLARITY(oc_config.OCPolarity)) {
1189                 mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), oc_config.OCPolarity);
1190             }
1191             HAL_TIM_OC_ConfigChannel(&self->tim, &oc_config, TIMER_CHANNEL(chan));
1192             if (chan->callback == mp_const_none) {
1193                 HAL_TIM_OC_Start(&self->tim, TIMER_CHANNEL(chan));
1194             } else {
1195                 pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
1196             }
1197             #if !defined(STM32L0)
1198             // Start the complimentary channel too (if its supported)
1199             if (IS_TIM_CCXN_INSTANCE(self->tim.Instance, TIMER_CHANNEL(chan))) {
1200                 HAL_TIMEx_OCN_Start(&self->tim, TIMER_CHANNEL(chan));
1201             }
1202             #endif
1203             break;
1204         }
1205 
1206         case CHANNEL_MODE_IC: {
1207             TIM_IC_InitTypeDef ic_config;
1208 
1209             ic_config.ICPolarity = args[6].u_int;
1210             if (ic_config.ICPolarity == 0xffffffff) {
1211                 ic_config.ICPolarity = TIM_ICPOLARITY_RISING;
1212             }
1213             ic_config.ICSelection = TIM_ICSELECTION_DIRECTTI;
1214             ic_config.ICPrescaler = TIM_ICPSC_DIV1;
1215             ic_config.ICFilter = 0;
1216 
1217             if (!IS_TIM_IC_POLARITY(ic_config.ICPolarity)) {
1218                 mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), ic_config.ICPolarity);
1219             }
1220             HAL_TIM_IC_ConfigChannel(&self->tim, &ic_config, TIMER_CHANNEL(chan));
1221             if (chan->callback == mp_const_none) {
1222                 HAL_TIM_IC_Start(&self->tim, TIMER_CHANNEL(chan));
1223             } else {
1224                 pyb_timer_channel_callback(MP_OBJ_FROM_PTR(chan), chan->callback);
1225             }
1226             break;
1227         }
1228 
1229         case CHANNEL_MODE_ENC_A:
1230         case CHANNEL_MODE_ENC_B:
1231         case CHANNEL_MODE_ENC_AB: {
1232             TIM_Encoder_InitTypeDef enc_config;
1233 
1234             enc_config.EncoderMode = channel_mode_info[chan->mode].oc_mode;
1235             enc_config.IC1Polarity = args[6].u_int;
1236             if (enc_config.IC1Polarity == 0xffffffff) {
1237                 enc_config.IC1Polarity = TIM_ICPOLARITY_RISING;
1238             }
1239             enc_config.IC2Polarity = enc_config.IC1Polarity;
1240             enc_config.IC1Selection = TIM_ICSELECTION_DIRECTTI;
1241             enc_config.IC2Selection = TIM_ICSELECTION_DIRECTTI;
1242             enc_config.IC1Prescaler = TIM_ICPSC_DIV1;
1243             enc_config.IC2Prescaler = TIM_ICPSC_DIV1;
1244             enc_config.IC1Filter = 0;
1245             enc_config.IC2Filter = 0;
1246 
1247             if (!IS_TIM_IC_POLARITY(enc_config.IC1Polarity)) {
1248                 mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid polarity (%d)"), enc_config.IC1Polarity);
1249             }
1250             // Only Timers 1, 2, 3, 4, 5, and 8 support encoder mode
1251             if (
1252                 #if defined(TIM1)
1253                 self->tim.Instance != TIM1
1254                 &&
1255                 #endif
1256                 self->tim.Instance != TIM2
1257                 #if defined(TIM3)
1258                 && self->tim.Instance != TIM3
1259                 #endif
1260                 #if defined(TIM4)
1261                 && self->tim.Instance != TIM4
1262                 #endif
1263                 #if defined(TIM5)
1264                 && self->tim.Instance != TIM5
1265                 #endif
1266                 #if defined(TIM8)
1267                 && self->tim.Instance != TIM8
1268                 #endif
1269                 ) {
1270                 mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("encoder not supported on timer %d"), self->tim_id);
1271             }
1272 
1273             // Disable & clear the timer interrupt so that we don't trigger
1274             // an interrupt by initializing the timer.
1275             __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1276             HAL_TIM_Encoder_Init(&self->tim, &enc_config);
1277             __HAL_TIM_SET_COUNTER(&self->tim, 0);
1278             if (self->callback != mp_const_none) {
1279                 __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
1280                 __HAL_TIM_ENABLE_IT(&self->tim, TIM_IT_UPDATE);
1281             }
1282             HAL_TIM_Encoder_Start(&self->tim, TIM_CHANNEL_ALL);
1283             break;
1284         }
1285 
1286         default:
1287             mp_raise_msg_varg(&mp_type_ValueError, MP_ERROR_TEXT("invalid mode (%d)"), chan->mode);
1288     }
1289 
1290     return MP_OBJ_FROM_PTR(chan);
1291 }
1292 STATIC MP_DEFINE_CONST_FUN_OBJ_KW(pyb_timer_channel_obj, 2, pyb_timer_channel);
1293 
1294 /// \method counter([value])
1295 /// Get or set the timer counter.
pyb_timer_counter(size_t n_args,const mp_obj_t * args)1296 STATIC mp_obj_t pyb_timer_counter(size_t n_args, const mp_obj_t *args) {
1297     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1298     if (n_args == 1) {
1299         // get
1300         return mp_obj_new_int(self->tim.Instance->CNT);
1301     } else {
1302         // set
1303         __HAL_TIM_SET_COUNTER(&self->tim, mp_obj_get_int(args[1]));
1304         return mp_const_none;
1305     }
1306 }
1307 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_counter_obj, 1, 2, pyb_timer_counter);
1308 
1309 /// \method source_freq()
1310 /// Get the frequency of the source of the timer.
pyb_timer_source_freq(mp_obj_t self_in)1311 STATIC mp_obj_t pyb_timer_source_freq(mp_obj_t self_in) {
1312     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
1313     uint32_t source_freq = timer_get_source_freq(self->tim_id);
1314     return mp_obj_new_int(source_freq);
1315 }
1316 STATIC MP_DEFINE_CONST_FUN_OBJ_1(pyb_timer_source_freq_obj, pyb_timer_source_freq);
1317 
1318 /// \method freq([value])
1319 /// Get or set the frequency for the timer (changes prescaler and period if set).
pyb_timer_freq(size_t n_args,const mp_obj_t * args)1320 STATIC mp_obj_t pyb_timer_freq(size_t n_args, const mp_obj_t *args) {
1321     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1322     if (n_args == 1) {
1323         // get
1324         uint32_t prescaler = self->tim.Instance->PSC & 0xffff;
1325         uint32_t period = __HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self);
1326         uint32_t source_freq = timer_get_source_freq(self->tim_id);
1327         uint32_t divide_a = prescaler + 1;
1328         uint32_t divide_b = period + 1;
1329         #if MICROPY_PY_BUILTINS_FLOAT
1330         if (source_freq % divide_a != 0) {
1331             return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_a / (mp_float_t)divide_b);
1332         }
1333         source_freq /= divide_a;
1334         if (source_freq % divide_b != 0) {
1335             return mp_obj_new_float((mp_float_t)source_freq / (mp_float_t)divide_b);
1336         } else {
1337             return mp_obj_new_int(source_freq / divide_b);
1338         }
1339         #else
1340         return mp_obj_new_int(source_freq / divide_a / divide_b);
1341         #endif
1342     } else {
1343         // set
1344         uint32_t period;
1345         uint32_t prescaler = compute_prescaler_period_from_freq(self, args[1], &period);
1346         self->tim.Instance->PSC = prescaler;
1347         __HAL_TIM_SET_AUTORELOAD(&self->tim, period);
1348         return mp_const_none;
1349     }
1350 }
1351 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_freq_obj, 1, 2, pyb_timer_freq);
1352 
1353 /// \method prescaler([value])
1354 /// Get or set the prescaler for the timer.
pyb_timer_prescaler(size_t n_args,const mp_obj_t * args)1355 STATIC mp_obj_t pyb_timer_prescaler(size_t n_args, const mp_obj_t *args) {
1356     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1357     if (n_args == 1) {
1358         // get
1359         return mp_obj_new_int(self->tim.Instance->PSC & 0xffff);
1360     } else {
1361         // set
1362         self->tim.Instance->PSC = mp_obj_get_int(args[1]) & 0xffff;
1363         return mp_const_none;
1364     }
1365 }
1366 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_prescaler_obj, 1, 2, pyb_timer_prescaler);
1367 
1368 /// \method period([value])
1369 /// Get or set the period of the timer.
pyb_timer_period(size_t n_args,const mp_obj_t * args)1370 STATIC mp_obj_t pyb_timer_period(size_t n_args, const mp_obj_t *args) {
1371     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1372     if (n_args == 1) {
1373         // get
1374         return mp_obj_new_int(__HAL_TIM_GET_AUTORELOAD(&self->tim) & TIMER_CNT_MASK(self));
1375     } else {
1376         // set
1377         __HAL_TIM_SET_AUTORELOAD(&self->tim, mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self));
1378         return mp_const_none;
1379     }
1380 }
1381 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_period_obj, 1, 2, pyb_timer_period);
1382 
1383 /// \method callback(fun)
1384 /// Set the function to be called when the timer triggers.
1385 /// `fun` is passed 1 argument, the timer object.
1386 /// If `fun` is `None` then the callback will be disabled.
pyb_timer_callback(mp_obj_t self_in,mp_obj_t callback)1387 STATIC mp_obj_t pyb_timer_callback(mp_obj_t self_in, mp_obj_t callback) {
1388     pyb_timer_obj_t *self = MP_OBJ_TO_PTR(self_in);
1389     if (callback == mp_const_none) {
1390         // stop interrupt (but not timer)
1391         __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1392         self->callback = mp_const_none;
1393     } else if (mp_obj_is_callable(callback)) {
1394         __HAL_TIM_DISABLE_IT(&self->tim, TIM_IT_UPDATE);
1395         self->callback = callback;
1396         // start timer, so that it interrupts on overflow, but clear any
1397         // pending interrupts which may have been set by initializing it.
1398         __HAL_TIM_CLEAR_FLAG(&self->tim, TIM_IT_UPDATE);
1399         HAL_TIM_Base_Start_IT(&self->tim); // This will re-enable the IRQ
1400         HAL_NVIC_EnableIRQ(self->irqn);
1401     } else {
1402         mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object"));
1403     }
1404     return mp_const_none;
1405 }
1406 STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_callback_obj, pyb_timer_callback);
1407 
1408 STATIC const mp_rom_map_elem_t pyb_timer_locals_dict_table[] = {
1409     // instance methods
1410     { MP_ROM_QSTR(MP_QSTR_init), MP_ROM_PTR(&pyb_timer_init_obj) },
1411     { MP_ROM_QSTR(MP_QSTR_deinit), MP_ROM_PTR(&pyb_timer_deinit_obj) },
1412     { MP_ROM_QSTR(MP_QSTR_channel), MP_ROM_PTR(&pyb_timer_channel_obj) },
1413     { MP_ROM_QSTR(MP_QSTR_counter), MP_ROM_PTR(&pyb_timer_counter_obj) },
1414     { MP_ROM_QSTR(MP_QSTR_source_freq), MP_ROM_PTR(&pyb_timer_source_freq_obj) },
1415     { MP_ROM_QSTR(MP_QSTR_freq), MP_ROM_PTR(&pyb_timer_freq_obj) },
1416     { MP_ROM_QSTR(MP_QSTR_prescaler), MP_ROM_PTR(&pyb_timer_prescaler_obj) },
1417     { MP_ROM_QSTR(MP_QSTR_period), MP_ROM_PTR(&pyb_timer_period_obj) },
1418     { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_callback_obj) },
1419     { MP_ROM_QSTR(MP_QSTR_UP), MP_ROM_INT(TIM_COUNTERMODE_UP) },
1420     { MP_ROM_QSTR(MP_QSTR_DOWN), MP_ROM_INT(TIM_COUNTERMODE_DOWN) },
1421     { MP_ROM_QSTR(MP_QSTR_CENTER), MP_ROM_INT(TIM_COUNTERMODE_CENTERALIGNED1) },
1422     { MP_ROM_QSTR(MP_QSTR_PWM), MP_ROM_INT(CHANNEL_MODE_PWM_NORMAL) },
1423     { MP_ROM_QSTR(MP_QSTR_PWM_INVERTED), MP_ROM_INT(CHANNEL_MODE_PWM_INVERTED) },
1424     { MP_ROM_QSTR(MP_QSTR_OC_TIMING), MP_ROM_INT(CHANNEL_MODE_OC_TIMING) },
1425     { MP_ROM_QSTR(MP_QSTR_OC_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_ACTIVE) },
1426     { MP_ROM_QSTR(MP_QSTR_OC_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_INACTIVE) },
1427     { MP_ROM_QSTR(MP_QSTR_OC_TOGGLE), MP_ROM_INT(CHANNEL_MODE_OC_TOGGLE) },
1428     { MP_ROM_QSTR(MP_QSTR_OC_FORCED_ACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_ACTIVE) },
1429     { MP_ROM_QSTR(MP_QSTR_OC_FORCED_INACTIVE), MP_ROM_INT(CHANNEL_MODE_OC_FORCED_INACTIVE) },
1430     { MP_ROM_QSTR(MP_QSTR_IC), MP_ROM_INT(CHANNEL_MODE_IC) },
1431     { MP_ROM_QSTR(MP_QSTR_ENC_A), MP_ROM_INT(CHANNEL_MODE_ENC_A) },
1432     { MP_ROM_QSTR(MP_QSTR_ENC_B), MP_ROM_INT(CHANNEL_MODE_ENC_B) },
1433     { MP_ROM_QSTR(MP_QSTR_ENC_AB), MP_ROM_INT(CHANNEL_MODE_ENC_AB) },
1434     { MP_ROM_QSTR(MP_QSTR_HIGH), MP_ROM_INT(TIM_OCPOLARITY_HIGH) },
1435     { MP_ROM_QSTR(MP_QSTR_LOW), MP_ROM_INT(TIM_OCPOLARITY_LOW) },
1436     { MP_ROM_QSTR(MP_QSTR_RISING), MP_ROM_INT(TIM_ICPOLARITY_RISING) },
1437     { MP_ROM_QSTR(MP_QSTR_FALLING), MP_ROM_INT(TIM_ICPOLARITY_FALLING) },
1438     { MP_ROM_QSTR(MP_QSTR_BOTH), MP_ROM_INT(TIM_ICPOLARITY_BOTHEDGE) },
1439     { MP_ROM_QSTR(MP_QSTR_BRK_OFF), MP_ROM_INT(BRK_OFF) },
1440     { MP_ROM_QSTR(MP_QSTR_BRK_LOW), MP_ROM_INT(BRK_LOW) },
1441     { MP_ROM_QSTR(MP_QSTR_BRK_HIGH), MP_ROM_INT(BRK_HIGH) },
1442 };
1443 STATIC MP_DEFINE_CONST_DICT(pyb_timer_locals_dict, pyb_timer_locals_dict_table);
1444 
1445 const mp_obj_type_t pyb_timer_type = {
1446     { &mp_type_type },
1447     .name = MP_QSTR_Timer,
1448     .print = pyb_timer_print,
1449     .make_new = pyb_timer_make_new,
1450     .locals_dict = (mp_obj_dict_t *)&pyb_timer_locals_dict,
1451 };
1452 
1453 /// \moduleref pyb
1454 /// \class TimerChannel - setup a channel for a timer.
1455 ///
1456 /// Timer channels are used to generate/capture a signal using a timer.
1457 ///
1458 /// TimerChannel objects are created using the Timer.channel() method.
pyb_timer_channel_print(const mp_print_t * print,mp_obj_t self_in,mp_print_kind_t kind)1459 STATIC void pyb_timer_channel_print(const mp_print_t *print, mp_obj_t self_in, mp_print_kind_t kind) {
1460     pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);
1461 
1462     mp_printf(print, "TimerChannel(timer=%u, channel=%u, mode=%s)",
1463         self->timer->tim_id,
1464         self->channel,
1465         qstr_str(channel_mode_info[self->mode].name));
1466 }
1467 
1468 /// \method capture([value])
1469 /// Get or set the capture value associated with a channel.
1470 /// capture, compare, and pulse_width are all aliases for the same function.
1471 /// capture is the logical name to use when the channel is in input capture mode.
1472 
1473 /// \method compare([value])
1474 /// Get or set the compare value associated with a channel.
1475 /// capture, compare, and pulse_width are all aliases for the same function.
1476 /// compare is the logical name to use when the channel is in output compare mode.
1477 
1478 /// \method pulse_width([value])
1479 /// Get or set the pulse width value associated with a channel.
1480 /// capture, compare, and pulse_width are all aliases for the same function.
1481 /// pulse_width is the logical name to use when the channel is in PWM mode.
1482 ///
1483 /// In edge aligned mode, a pulse_width of `period + 1` corresponds to a duty cycle of 100%
1484 /// In center aligned mode, a pulse width of `period` corresponds to a duty cycle of 100%
pyb_timer_channel_capture_compare(size_t n_args,const mp_obj_t * args)1485 STATIC mp_obj_t pyb_timer_channel_capture_compare(size_t n_args, const mp_obj_t *args) {
1486     pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1487     if (n_args == 1) {
1488         // get
1489         return mp_obj_new_int(__HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer));
1490     } else {
1491         // set
1492         __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), mp_obj_get_int(args[1]) & TIMER_CNT_MASK(self->timer));
1493         return mp_const_none;
1494     }
1495 }
1496 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_capture_compare_obj, 1, 2, pyb_timer_channel_capture_compare);
1497 
1498 /// \method pulse_width_percent([value])
1499 /// Get or set the pulse width percentage associated with a channel.  The value
1500 /// is a number between 0 and 100 and sets the percentage of the timer period
1501 /// for which the pulse is active.  The value can be an integer or
1502 /// floating-point number for more accuracy.  For example, a value of 25 gives
1503 /// a duty cycle of 25%.
pyb_timer_channel_pulse_width_percent(size_t n_args,const mp_obj_t * args)1504 STATIC mp_obj_t pyb_timer_channel_pulse_width_percent(size_t n_args, const mp_obj_t *args) {
1505     pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(args[0]);
1506     uint32_t period = compute_period(self->timer);
1507     if (n_args == 1) {
1508         // get
1509         uint32_t cmp = __HAL_TIM_GET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self)) & TIMER_CNT_MASK(self->timer);
1510         return compute_percent_from_pwm_value(period, cmp);
1511     } else {
1512         // set
1513         uint32_t cmp = compute_pwm_value_from_percent(period, args[1]);
1514         __HAL_TIM_SET_COMPARE(&self->timer->tim, TIMER_CHANNEL(self), cmp & TIMER_CNT_MASK(self->timer));
1515         return mp_const_none;
1516     }
1517 }
1518 STATIC MP_DEFINE_CONST_FUN_OBJ_VAR_BETWEEN(pyb_timer_channel_pulse_width_percent_obj, 1, 2, pyb_timer_channel_pulse_width_percent);
1519 
1520 /// \method callback(fun)
1521 /// Set the function to be called when the timer channel triggers.
1522 /// `fun` is passed 1 argument, the timer object.
1523 /// If `fun` is `None` then the callback will be disabled.
pyb_timer_channel_callback(mp_obj_t self_in,mp_obj_t callback)1524 STATIC mp_obj_t pyb_timer_channel_callback(mp_obj_t self_in, mp_obj_t callback) {
1525     pyb_timer_channel_obj_t *self = MP_OBJ_TO_PTR(self_in);
1526     if (callback == mp_const_none) {
1527         // stop interrupt (but not timer)
1528         __HAL_TIM_DISABLE_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
1529         self->callback = mp_const_none;
1530     } else if (mp_obj_is_callable(callback)) {
1531         self->callback = callback;
1532         __HAL_TIM_CLEAR_IT(&self->timer->tim, TIMER_IRQ_MASK(self->channel));
1533         #if defined(TIM1)
1534         if (self->timer->tim_id == 1) {
1535             HAL_NVIC_EnableIRQ(TIM1_CC_IRQn);
1536         } else
1537         #endif
1538         #if defined(TIM8) // STM32F401 doesn't have a TIM8
1539         if (self->timer->tim_id == 8) {
1540             HAL_NVIC_EnableIRQ(TIM8_CC_IRQn);
1541         } else
1542         #endif
1543         {
1544             HAL_NVIC_EnableIRQ(self->timer->irqn);
1545         }
1546         // start timer, so that it interrupts on overflow
1547         switch (self->mode) {
1548             case CHANNEL_MODE_PWM_NORMAL:
1549             case CHANNEL_MODE_PWM_INVERTED:
1550                 HAL_TIM_PWM_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
1551                 break;
1552             case CHANNEL_MODE_OC_TIMING:
1553             case CHANNEL_MODE_OC_ACTIVE:
1554             case CHANNEL_MODE_OC_INACTIVE:
1555             case CHANNEL_MODE_OC_TOGGLE:
1556             case CHANNEL_MODE_OC_FORCED_ACTIVE:
1557             case CHANNEL_MODE_OC_FORCED_INACTIVE:
1558                 HAL_TIM_OC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
1559                 break;
1560             case CHANNEL_MODE_IC:
1561                 HAL_TIM_IC_Start_IT(&self->timer->tim, TIMER_CHANNEL(self));
1562                 break;
1563         }
1564     } else {
1565         mp_raise_ValueError(MP_ERROR_TEXT("callback must be None or a callable object"));
1566     }
1567     return mp_const_none;
1568 }
1569 STATIC MP_DEFINE_CONST_FUN_OBJ_2(pyb_timer_channel_callback_obj, pyb_timer_channel_callback);
1570 
1571 STATIC const mp_rom_map_elem_t pyb_timer_channel_locals_dict_table[] = {
1572     // instance methods
1573     { MP_ROM_QSTR(MP_QSTR_callback), MP_ROM_PTR(&pyb_timer_channel_callback_obj) },
1574     { MP_ROM_QSTR(MP_QSTR_pulse_width), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
1575     { MP_ROM_QSTR(MP_QSTR_pulse_width_percent), MP_ROM_PTR(&pyb_timer_channel_pulse_width_percent_obj) },
1576     { MP_ROM_QSTR(MP_QSTR_capture), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
1577     { MP_ROM_QSTR(MP_QSTR_compare), MP_ROM_PTR(&pyb_timer_channel_capture_compare_obj) },
1578 };
1579 STATIC MP_DEFINE_CONST_DICT(pyb_timer_channel_locals_dict, pyb_timer_channel_locals_dict_table);
1580 
1581 STATIC const mp_obj_type_t pyb_timer_channel_type = {
1582     { &mp_type_type },
1583     .name = MP_QSTR_TimerChannel,
1584     .print = pyb_timer_channel_print,
1585     .locals_dict = (mp_obj_dict_t *)&pyb_timer_channel_locals_dict,
1586 };
1587 
timer_handle_irq_channel(pyb_timer_obj_t * tim,uint8_t channel,mp_obj_t callback)1588 STATIC void timer_handle_irq_channel(pyb_timer_obj_t *tim, uint8_t channel, mp_obj_t callback) {
1589     uint32_t irq_mask = TIMER_IRQ_MASK(channel);
1590 
1591     if (__HAL_TIM_GET_FLAG(&tim->tim, irq_mask) != RESET) {
1592         if (__HAL_TIM_GET_IT_SOURCE(&tim->tim, irq_mask) != RESET) {
1593             // clear the interrupt
1594             __HAL_TIM_CLEAR_IT(&tim->tim, irq_mask);
1595 
1596             // execute callback if it's set
1597             if (callback != mp_const_none) {
1598                 mp_sched_lock();
1599                 // When executing code within a handler we must lock the GC to prevent
1600                 // any memory allocations.  We must also catch any exceptions.
1601                 gc_lock();
1602                 nlr_buf_t nlr;
1603                 if (nlr_push(&nlr) == 0) {
1604                     mp_call_function_1(callback, MP_OBJ_FROM_PTR(tim));
1605                     nlr_pop();
1606                 } else {
1607                     // Uncaught exception; disable the callback so it doesn't run again.
1608                     tim->callback = mp_const_none;
1609                     __HAL_TIM_DISABLE_IT(&tim->tim, irq_mask);
1610                     if (channel == 0) {
1611                         mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) interrupt handler\n", tim->tim_id);
1612                     } else {
1613                         mp_printf(MICROPY_ERROR_PRINTER, "uncaught exception in Timer(%u) channel %u interrupt handler\n", tim->tim_id, channel);
1614                     }
1615                     mp_obj_print_exception(&mp_plat_print, MP_OBJ_FROM_PTR(nlr.ret_val));
1616                 }
1617                 gc_unlock();
1618                 mp_sched_unlock();
1619             }
1620         }
1621     }
1622 }
1623 
timer_irq_handler(uint tim_id)1624 void timer_irq_handler(uint tim_id) {
1625     if (tim_id - 1 < PYB_TIMER_OBJ_ALL_NUM) {
1626         // get the timer object
1627         pyb_timer_obj_t *tim = MP_STATE_PORT(pyb_timer_obj_all)[tim_id - 1];
1628 
1629         if (tim == NULL) {
1630             // Timer object has not been set, so we can't do anything.
1631             // This can happen under normal circumstances for timers like
1632             // 1 & 10 which use the same IRQ.
1633             return;
1634         }
1635 
1636         // Check for timer (versus timer channel) interrupt.
1637         timer_handle_irq_channel(tim, 0, tim->callback);
1638         uint32_t handled = TIMER_IRQ_MASK(0);
1639 
1640         // Check to see if a timer channel interrupt was pending
1641         pyb_timer_channel_obj_t *chan = tim->channel;
1642         while (chan != NULL) {
1643             timer_handle_irq_channel(tim, chan->channel, chan->callback);
1644             handled |= TIMER_IRQ_MASK(chan->channel);
1645             chan = chan->next;
1646         }
1647 
1648         // Finally, clear any remaining interrupt sources. Otherwise we'll
1649         // just get called continuously.
1650         uint32_t unhandled = tim->tim.Instance->DIER & 0xff & ~handled;
1651         if (unhandled != 0) {
1652             __HAL_TIM_DISABLE_IT(&tim->tim, unhandled);
1653             __HAL_TIM_CLEAR_IT(&tim->tim, unhandled);
1654             mp_printf(MICROPY_ERROR_PRINTER, "unhandled interrupt SR=0x%02x (now disabled)\n", (unsigned int)unhandled);
1655         }
1656     }
1657 }
1658