1 /*
2  * Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
3  * Copyright (c) 1991-1995 by Xerox Corporation.  All rights reserved.
4  * Copyright (c) 1996-1999 by Silicon Graphics.  All rights reserved.
5  * Copyright (c) 1999 by Hewlett-Packard Company.  All rights reserved.
6  *
7  * THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
8  * OR IMPLIED.  ANY USE IS AT YOUR OWN RISK.
9  *
10  * Permission is hereby granted to use or copy this program
11  * for any purpose,  provided the above notices are retained on all copies.
12  * Permission to modify the code and to distribute modified code is granted,
13  * provided the above notices are retained, and a notice that the code was
14  * modified is included with the above copyright notice.
15  */
16 
17 # include "private/gc_priv.h"
18 
19 # if defined(LINUX) && !defined(POWERPC)
20 #   include <linux/version.h>
21 #   if (LINUX_VERSION_CODE <= 0x10400)
22       /* Ugly hack to get struct sigcontext_struct definition.  Required      */
23       /* for some early 1.3.X releases.  Will hopefully go away soon. */
24       /* in some later Linux releases, asm/sigcontext.h may have to   */
25       /* be included instead.                                         */
26 #     define __KERNEL__
27 #     include <asm/signal.h>
28 #     undef __KERNEL__
29 #   elif defined(__GLIBC__)
30       /* Kernels prior to 2.1.1 defined struct sigcontext_struct instead of */
31       /* struct sigcontext.  libc6 (glibc2) uses "struct sigcontext" in     */
32       /* prototypes, so we have to include the top-level sigcontext.h to    */
33       /* make sure the former gets defined to be the latter if appropriate. */
34 #     include <features.h>
35 #     if 2 <= __GLIBC__
36 #       if 2 == __GLIBC__ && 0 == __GLIBC_MINOR__
37 	  /* glibc 2.1 no longer has sigcontext.h.  But signal.h	*/
38 	  /* has the right declaration for glibc 2.1.			*/
39 #         include <sigcontext.h>
40 #       endif /* 0 == __GLIBC_MINOR__ */
41 #     else /* not 2 <= __GLIBC__ */
42         /* libc5 doesn't have <sigcontext.h>: go directly with the kernel   */
43         /* one.  Check LINUX_VERSION_CODE to see which we should reference. */
44 #       include <asm/sigcontext.h>
45 #     endif /* 2 <= __GLIBC__ */
46 #   endif
47 # endif
48 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) && !defined(MACOS) \
49     && !defined(MSWINCE)
50 #   include <sys/types.h>
51 #   if !defined(MSWIN32) && !defined(SUNOS4)
52 #   	include <unistd.h>
53 #   endif
54 # endif
55 
56 # include <stdio.h>
57 # if defined(MSWINCE) || defined (SN_TARGET_PS3)
58 #   define SIGSEGV 0 /* value is irrelevant */
59 # else
60 #   include <signal.h>
61 # endif
62 
63 #if defined(LINUX) || defined(LINUX_STACKBOTTOM)
64 # include <ctype.h>
65 #endif
66 
67 /* Blatantly OS dependent routines, except for those that are related 	*/
68 /* to dynamic loading.							*/
69 
70 # if defined(HEURISTIC2) || defined(SEARCH_FOR_DATA_START)
71 #   define NEED_FIND_LIMIT
72 # endif
73 
74 # if !defined(STACKBOTTOM) && defined(HEURISTIC2)
75 #   define NEED_FIND_LIMIT
76 # endif
77 
78 # if (defined(SUNOS4) && defined(DYNAMIC_LOADING)) && !defined(PCR)
79 #   define NEED_FIND_LIMIT
80 # endif
81 
82 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
83       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
84 #   define NEED_FIND_LIMIT
85 # endif
86 
87 #if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__))
88 #  include <machine/trap.h>
89 #  if !defined(PCR)
90 #    define NEED_FIND_LIMIT
91 #  endif
92 #endif
93 
94 #if (defined(NETBSD) || defined(OPENBSD)) && defined(__ELF__) \
95     && !defined(NEED_FIND_LIMIT)
96    /* Used by GC_init_netbsd_elf() below.	*/
97 #  define NEED_FIND_LIMIT
98 #endif
99 
100 #ifdef NEED_FIND_LIMIT
101 #   include <setjmp.h>
102 #endif
103 
104 #ifdef AMIGA
105 # define GC_AMIGA_DEF
106 # include "AmigaOS.c"
107 # undef GC_AMIGA_DEF
108 #endif
109 
110 #if defined(MSWIN32) || defined(MSWINCE)
111 # define WIN32_LEAN_AND_MEAN
112 # define NOSERVICE
113 # include <windows.h>
114 #endif
115 
116 #ifdef MACOS
117 # include <Processes.h>
118 #endif
119 
120 #ifdef IRIX5
121 # include <sys/uio.h>
122 # include <malloc.h>   /* for locking */
123 #endif
124 #if defined(USE_MUNMAP)
125 # ifndef USE_MMAP
126     --> USE_MUNMAP requires USE_MMAP
127 # endif
128 #endif
129 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
130 # include <sys/types.h>
131 # include <sys/mman.h>
132 # include <sys/stat.h>
133 # include <errno.h>
134 #endif
135 
136 #if defined( UNIX_LIKE ) || defined(NACL)
137 # include <fcntl.h>
138 #endif
139 
140 #if (defined(SUNOS5SIGS) || defined (HURD) || defined(LINUX) || defined(NETBSD)) && !defined(FREEBSD)
141 # ifdef SUNOS5SIGS
142 #  include <sys/siginfo.h>
143 # endif
144   /* Define SETJMP and friends to be the version that restores	*/
145   /* the signal mask.						*/
146 # define SETJMP(env) sigsetjmp(env, 1)
147 # define LONGJMP(env, val) siglongjmp(env, val)
148 # define JMP_BUF sigjmp_buf
149 #else
150 # define SETJMP(env) setjmp(env)
151 # define LONGJMP(env, val) longjmp(env, val)
152 # define JMP_BUF jmp_buf
153 #endif
154 
155 #ifdef DARWIN
156 /* for get_etext and friends */
157 #include <mach-o/getsect.h>
158 #endif
159 
160 #ifdef DJGPP
161   /* Apparently necessary for djgpp 2.01.  May cause problems with	*/
162   /* other versions.							*/
163   typedef long unsigned int caddr_t;
164 #endif
165 
166 #ifdef PCR
167 # include "il/PCR_IL.h"
168 # include "th/PCR_ThCtl.h"
169 # include "mm/PCR_MM.h"
170 #endif
171 
172 #if !defined(NO_EXECUTE_PERMISSION)
173 # define OPT_PROT_EXEC PROT_EXEC
174 #else
175 # define OPT_PROT_EXEC 0
176 #endif
177 
178 #if defined(LINUX) && \
179     (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64) || !defined(SMALL_CONFIG))
180 
181 /* We need to parse /proc/self/maps, either to find dynamic libraries,	*/
182 /* and/or to find the register backing store base (IA64).  Do it once	*/
183 /* here.								*/
184 
185 #define READ read
186 
187 /* Repeatedly perform a read call until the buffer is filled or	*/
188 /* we encounter EOF.						*/
GC_repeat_read(int fd,char * buf,size_t count)189 ssize_t GC_repeat_read(int fd, char *buf, size_t count)
190 {
191     ssize_t num_read = 0;
192     ssize_t result;
193 
194     while (num_read < count) {
195 	result = READ(fd, buf + num_read, count - num_read);
196 	if (result < 0) return result;
197 	if (result == 0) break;
198 	num_read += result;
199     }
200     return num_read;
201 }
202 
203 /*
204  * Apply fn to a buffer containing the contents of /proc/self/maps.
205  * Return the result of fn or, if we failed, 0.
206  * We currently do nothing to /proc/self/maps other than simply read
207  * it.  This code could be simplified if we could determine its size
208  * ahead of time.
209  */
210 
GC_apply_to_maps(word (* fn)(char *))211 word GC_apply_to_maps(word (*fn)(char *))
212 {
213     int f;
214     int result;
215     size_t maps_size = 4000;  /* Initial guess. 	*/
216     static char init_buf[1];
217     static char *maps_buf = init_buf;
218     static size_t maps_buf_sz = 1;
219 
220     /* Read /proc/self/maps, growing maps_buf as necessary.	*/
221         /* Note that we may not allocate conventionally, and	*/
222         /* thus can't use stdio.				*/
223 	do {
224 	    if (maps_size >= maps_buf_sz) {
225 	      /* Grow only by powers of 2, since we leak "too small" buffers. */
226 	      while (maps_size >= maps_buf_sz) maps_buf_sz *= 2;
227 	      maps_buf = GC_scratch_alloc(maps_buf_sz);
228 	      if (maps_buf == 0) return 0;
229 	    }
230 	    f = open("/proc/self/maps", O_RDONLY);
231 	    if (-1 == f) return 0;
232 	    maps_size = 0;
233 	    do {
234 	        result = GC_repeat_read(f, maps_buf, maps_buf_sz-1);
235 	        if (result <= 0) return 0;
236 	        maps_size += result;
237 	    } while (result == maps_buf_sz-1);
238 	    close(f);
239 	} while (maps_size >= maps_buf_sz);
240         maps_buf[maps_size] = '\0';
241 
242     /* Apply fn to result. */
243 	return fn(maps_buf);
244 }
245 
246 #endif /* Need GC_apply_to_maps */
247 
248 #if defined(LINUX) && (defined(USE_PROC_FOR_LIBRARIES) || defined(IA64))
249 //
250 //  GC_parse_map_entry parses an entry from /proc/self/maps so we can
251 //  locate all writable data segments that belong to shared libraries.
252 //  The format of one of these entries and the fields we care about
253 //  is as follows:
254 //  XXXXXXXX-XXXXXXXX r-xp 00000000 30:05 260537     name of mapping...\n
255 //  ^^^^^^^^ ^^^^^^^^ ^^^^          ^^
256 //  start    end      prot          maj_dev
257 //
258 //  Note that since about auguat 2003 kernels, the columns no longer have
259 //  fixed offsets on 64-bit kernels.  Hence we no longer rely on fixed offsets
260 //  anywhere, which is safer anyway.
261 //
262 
263 /*
264  * Assign various fields of the first line in buf_ptr to *start, *end,
265  * *prot_buf and *maj_dev.  Only *prot_buf may be set for unwritable maps.
266  */
GC_parse_map_entry(char * buf_ptr,word * start,word * end,char * prot_buf,unsigned int * maj_dev)267 char *GC_parse_map_entry(char *buf_ptr, word *start, word *end,
268                                 char *prot_buf, unsigned int *maj_dev)
269 {
270     char *start_start, *end_start, *prot_start, *maj_dev_start;
271     char *p;
272     char *endp;
273 
274     if (buf_ptr == NULL || *buf_ptr == '\0') {
275         return NULL;
276     }
277 
278     p = buf_ptr;
279     while (isspace(*p)) ++p;
280     start_start = p;
281     GC_ASSERT(isxdigit(*start_start));
282     *start = strtoul(start_start, &endp, 16); p = endp;
283     GC_ASSERT(*p=='-');
284 
285     ++p;
286     end_start = p;
287     GC_ASSERT(isxdigit(*end_start));
288     *end = strtoul(end_start, &endp, 16); p = endp;
289     GC_ASSERT(isspace(*p));
290 
291     while (isspace(*p)) ++p;
292     prot_start = p;
293     GC_ASSERT(*prot_start == 'r' || *prot_start == '-');
294     memcpy(prot_buf, prot_start, 4);
295     prot_buf[4] = '\0';
296     if (prot_buf[1] == 'w') {/* we can skip the rest if it's not writable. */
297 	/* Skip past protection field to offset field */
298           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
299           GC_ASSERT(isxdigit(*p));
300 	/* Skip past offset field, which we ignore */
301           while (!isspace(*p)) ++p; while (isspace(*p)) ++p;
302 	maj_dev_start = p;
303         GC_ASSERT(isxdigit(*maj_dev_start));
304         *maj_dev = strtoul(maj_dev_start, NULL, 16);
305     }
306 
307     while (*p && *p++ != '\n');
308 
309     return p;
310 }
311 
312 #endif /* Need to parse /proc/self/maps. */
313 
314 #if defined(SEARCH_FOR_DATA_START)
315   /* The I386 case can be handled without a search.  The Alpha case	*/
316   /* used to be handled differently as well, but the rules changed	*/
317   /* for recent Linux versions.  This seems to be the easiest way to	*/
318   /* cover all versions.						*/
319 
320 # ifdef LINUX
321     /* Some Linux distributions arrange to define __data_start.  Some	*/
322     /* define data_start as a weak symbol.  The latter is technically	*/
323     /* broken, since the user program may define data_start, in which	*/
324     /* case we lose.  Nonetheless, we try both, prefering __data_start.	*/
325     /* We assume gcc-compatible pragmas.	*/
326 #   pragma weak __data_start
327     extern int __data_start[];
328 #   pragma weak data_start
329     extern int data_start[];
330 # endif /* LINUX */
331   extern int _end[];
332 
333   ptr_t GC_data_start;
334 
GC_init_linux_data_start()335   void GC_init_linux_data_start()
336   {
337     extern ptr_t GC_find_limit();
338 
339 	if (GC_no_dls)
340 		/*
341 		 * Not needed, avoids the SIGSEGV caused by GC_find_limit which
342 		 * complicates debugging.
343 		 */
344 		return;
345 
346 #   ifdef LINUX
347       /* Try the easy approaches first:	*/
348       if ((ptr_t)__data_start != 0) {
349 	  GC_data_start = (ptr_t)(__data_start);
350 	  return;
351       }
352       if ((ptr_t)data_start != 0) {
353 	  GC_data_start = (ptr_t)(data_start);
354 	  return;
355       }
356 #   endif /* LINUX */
357     GC_data_start = GC_find_limit((ptr_t)(_end), FALSE);
358   }
359 #endif
360 
361 # ifdef ECOS
362 
363 # ifndef ECOS_GC_MEMORY_SIZE
364 # define ECOS_GC_MEMORY_SIZE (448 * 1024)
365 # endif /* ECOS_GC_MEMORY_SIZE */
366 
367 // setjmp() function, as described in ANSI para 7.6.1.1
368 #undef SETJMP
369 #define SETJMP( __env__ )  hal_setjmp( __env__ )
370 
371 // FIXME: This is a simple way of allocating memory which is
372 // compatible with ECOS early releases.  Later releases use a more
373 // sophisticated means of allocating memory than this simple static
374 // allocator, but this method is at least bound to work.
375 static char memory[ECOS_GC_MEMORY_SIZE];
376 static char *brk = memory;
377 
tiny_sbrk(ptrdiff_t increment)378 static void *tiny_sbrk(ptrdiff_t increment)
379 {
380   void *p = brk;
381 
382   brk += increment;
383 
384   if (brk >  memory + sizeof memory)
385     {
386       brk -= increment;
387       return NULL;
388     }
389 
390   return p;
391 }
392 #define sbrk tiny_sbrk
393 # endif /* ECOS */
394 
395 #if defined(NETBSD) && defined(__ELF__)
396   ptr_t GC_data_start;
397 
GC_init_netbsd_elf()398   void GC_init_netbsd_elf()
399   {
400     extern ptr_t GC_find_limit();
401     extern char **environ;
402 	/* This may need to be environ, without the underscore, for	*/
403 	/* some versions.						*/
404     GC_data_start = GC_find_limit((ptr_t)&environ, FALSE);
405   }
406 #endif
407 
408 #if defined(OPENBSD)
409   static struct sigaction old_segv_act;
410   sigjmp_buf GC_jmp_buf_openbsd;
411 
412 # if defined(GC_OPENBSD_THREADS)
413 #   include <sys/syscall.h>
414     sigset_t __syscall(quad_t, ...);
415 # endif
416 
417   /*
418    * Dont use GC_find_limit() because siglongjmp out of the
419    * signal handler by-passes our userland pthreads lib, leaving
420    * SIGSEGV and SIGPROF masked. Instead use this custom one
421    * that works-around the issues.
422    */
423 
424     /*ARGSUSED*/
GC_fault_handler_openbsd(int sig)425     void GC_fault_handler_openbsd(int sig)
426     {
427        siglongjmp(GC_jmp_buf_openbsd, 1);
428     }
429 
430     /* Return the first nonaddressible location > p or bound   */
431     /* Requires allocation lock.                               */
GC_find_limit_openbsd(ptr_t p,ptr_t bound)432     ptr_t GC_find_limit_openbsd(ptr_t p, ptr_t bound)
433     {
434         static volatile ptr_t result;
435                /* Safer if static, since otherwise it may not be       */
436                /* preserved across the longjmp.  Can safely be         */
437                /* static since it's only called with the               */
438                /* allocation lock held.                                */
439         struct sigaction act;
440        size_t pgsz = (size_t)sysconf(_SC_PAGESIZE);
441 
442        GC_ASSERT(I_HOLD_LOCK());
443 
444         act.sa_handler = GC_fault_handler_openbsd;
445         sigemptyset(&act.sa_mask);
446         act.sa_flags = SA_NODEFER | SA_RESTART;
447         sigaction(SIGSEGV, &act, &old_segv_act);
448 
449        if (sigsetjmp(GC_jmp_buf_openbsd, 1) == 0) {
450            result = (ptr_t)(((word)(p)) & ~(pgsz-1));
451            for (;;) {
452                result += pgsz;
453                if (result >= bound) {
454                    result = bound;
455                    break;
456                }
457                GC_noop1((word)(*result));
458            }
459        }
460 
461 # if defined(GC_OPENBSD_THREADS)
462        /* due to the siglongjump we need to manually unmask SIGPROF */
463        __syscall(SYS_sigprocmask, SIG_UNBLOCK, sigmask(SIGPROF));
464 # endif
465 
466        sigaction(SIGSEGV, &old_segv_act, 0);
467 
468        return(result);
469     }
470 
471     /* Return first addressable location > p or bound */
472     /* Requires allocation lock. */
GC_skip_hole_openbsd(ptr_t p,ptr_t bound)473     ptr_t GC_skip_hole_openbsd(ptr_t p, ptr_t bound)
474     {
475         static volatile ptr_t result;
476         struct sigaction act;
477        size_t pgsz = (size_t)sysconf(_SC_PAGESIZE);
478        static volatile int firstpass;
479 
480        GC_ASSERT(I_HOLD_LOCK());
481 
482         act.sa_handler = GC_fault_handler_openbsd;
483         sigemptyset(&act.sa_mask);
484         act.sa_flags = SA_NODEFER | SA_RESTART;
485         sigaction(SIGSEGV, &act, &old_segv_act);
486 
487        firstpass = 1;
488        result = (ptr_t)(((word)(p)) & ~(pgsz-1));
489        if (sigsetjmp(GC_jmp_buf_openbsd, 1) != 0 || firstpass) {
490            firstpass = 0;
491            result += pgsz;
492            if (result >= bound) {
493                result = bound;
494            } else
495                GC_noop1((word)(*result));
496         }
497 
498        sigaction(SIGSEGV, &old_segv_act, 0);
499 
500        return(result);
501     }
502 #endif
503 
504 # ifdef OS2
505 
506 # include <stddef.h>
507 
508 # if !defined(__IBMC__) && !defined(__WATCOMC__) /* e.g. EMX */
509 
510 struct exe_hdr {
511     unsigned short      magic_number;
512     unsigned short      padding[29];
513     long                new_exe_offset;
514 };
515 
516 #define E_MAGIC(x)      (x).magic_number
517 #define EMAGIC          0x5A4D
518 #define E_LFANEW(x)     (x).new_exe_offset
519 
520 struct e32_exe {
521     unsigned char       magic_number[2];
522     unsigned char       byte_order;
523     unsigned char       word_order;
524     unsigned long       exe_format_level;
525     unsigned short      cpu;
526     unsigned short      os;
527     unsigned long       padding1[13];
528     unsigned long       object_table_offset;
529     unsigned long       object_count;
530     unsigned long       padding2[31];
531 };
532 
533 #define E32_MAGIC1(x)   (x).magic_number[0]
534 #define E32MAGIC1       'L'
535 #define E32_MAGIC2(x)   (x).magic_number[1]
536 #define E32MAGIC2       'X'
537 #define E32_BORDER(x)   (x).byte_order
538 #define E32LEBO         0
539 #define E32_WORDER(x)   (x).word_order
540 #define E32LEWO         0
541 #define E32_CPU(x)      (x).cpu
542 #define E32CPU286       1
543 #define E32_OBJTAB(x)   (x).object_table_offset
544 #define E32_OBJCNT(x)   (x).object_count
545 
546 struct o32_obj {
547     unsigned long       size;
548     unsigned long       base;
549     unsigned long       flags;
550     unsigned long       pagemap;
551     unsigned long       mapsize;
552     unsigned long       reserved;
553 };
554 
555 #define O32_FLAGS(x)    (x).flags
556 #define OBJREAD         0x0001L
557 #define OBJWRITE        0x0002L
558 #define OBJINVALID      0x0080L
559 #define O32_SIZE(x)     (x).size
560 #define O32_BASE(x)     (x).base
561 
562 # else  /* IBM's compiler */
563 
564 /* A kludge to get around what appears to be a header file bug */
565 # ifndef WORD
566 #   define WORD unsigned short
567 # endif
568 # ifndef DWORD
569 #   define DWORD unsigned long
570 # endif
571 
572 # define EXE386 1
573 # include <newexe.h>
574 # include <exe386.h>
575 
576 # endif  /* __IBMC__ */
577 
578 # define INCL_DOSEXCEPTIONS
579 # define INCL_DOSPROCESS
580 # define INCL_DOSERRORS
581 # define INCL_DOSMODULEMGR
582 # define INCL_DOSMEMMGR
583 # include <os2.h>
584 
585 
586 /* Disable and enable signals during nontrivial allocations	*/
587 
GC_disable_signals(void)588 void GC_disable_signals(void)
589 {
590     ULONG nest;
591 
592     DosEnterMustComplete(&nest);
593     if (nest != 1) ABORT("nested GC_disable_signals");
594 }
595 
GC_enable_signals(void)596 void GC_enable_signals(void)
597 {
598     ULONG nest;
599 
600     DosExitMustComplete(&nest);
601     if (nest != 0) ABORT("GC_enable_signals");
602 }
603 
604 
605 # else
606 
607 #  if !defined(PCR) && !defined(AMIGA) && !defined(MSWIN32) \
608       && !defined(MSWINCE) \
609       && !defined(MACOS) && !defined(DJGPP) && !defined(DOS4GW) \
610       && !defined(NOSYS) && !defined(ECOS) && !defined(SN_TARGET_PS3)
611 
612 #   if defined(sigmask) && !defined(UTS4) && !defined(HURD)
613 	/* Use the traditional BSD interface */
614 #	define SIGSET_T int
615 #	define SIG_DEL(set, signal) (set) &= ~(sigmask(signal))
616 #	define SIG_FILL(set)  (set) = 0x7fffffff
617     	  /* Setting the leading bit appears to provoke a bug in some	*/
618     	  /* longjmp implementations.  Most systems appear not to have	*/
619     	  /* a signal 32.						*/
620 #	define SIGSETMASK(old, new) (old) = sigsetmask(new)
621 #   elif defined(NACL)
622 	/* We don't use signals in NaCl. */
623 #	define SIGSET_T int
624 #	define SIG_DEL(set, signal)
625 #	define SIG_FILL(set)
626 #	define SIGSETMASK(old, new)
627 #   else
628 	/* Use POSIX/SYSV interface	*/
629 #	define SIGSET_T sigset_t
630 #	define SIG_DEL(set, signal) sigdelset(&(set), (signal))
631 #	define SIG_FILL(set) sigfillset(&set)
632 #	define SIGSETMASK(old, new) sigprocmask(SIG_SETMASK, &(new), &(old))
633 #   endif
634 
635 static GC_bool mask_initialized = FALSE;
636 
637 static SIGSET_T new_mask;
638 
639 static SIGSET_T old_mask;
640 
641 static SIGSET_T dummy;
642 
643 #if defined(PRINTSTATS) && !defined(THREADS)
644 # define CHECK_SIGNALS
645   int GC_sig_disabled = 0;
646 #endif
647 
GC_disable_signals()648 void GC_disable_signals()
649 {
650     if (!mask_initialized) {
651     	SIG_FILL(new_mask);
652 
653 	SIG_DEL(new_mask, SIGSEGV);
654 	SIG_DEL(new_mask, SIGILL);
655 	SIG_DEL(new_mask, SIGQUIT);
656 #	ifdef SIGBUS
657 	    SIG_DEL(new_mask, SIGBUS);
658 #	endif
659 #	ifdef SIGIOT
660 	    SIG_DEL(new_mask, SIGIOT);
661 #	endif
662 #	ifdef SIGEMT
663 	    SIG_DEL(new_mask, SIGEMT);
664 #	endif
665 #	ifdef SIGTRAP
666 	    SIG_DEL(new_mask, SIGTRAP);
667 #	endif
668 	mask_initialized = TRUE;
669     }
670 #   ifdef CHECK_SIGNALS
671 	if (GC_sig_disabled != 0) ABORT("Nested disables");
672 	GC_sig_disabled++;
673 #   endif
674     SIGSETMASK(old_mask,new_mask);
675 }
676 
GC_enable_signals()677 void GC_enable_signals()
678 {
679 #   ifdef CHECK_SIGNALS
680 	if (GC_sig_disabled != 1) ABORT("Unmatched enable");
681 	GC_sig_disabled--;
682 #   endif
683     SIGSETMASK(dummy,old_mask);
684 }
685 
686 #  endif  /* !PCR */
687 
688 # endif /*!OS/2 */
689 
690 /* Ivan Demakov: simplest way (to me) */
691 #if defined (DOS4GW)
GC_disable_signals()692   void GC_disable_signals() { }
GC_enable_signals()693   void GC_enable_signals() { }
694 #endif
695 
696 /* Find the page size */
697 word GC_page_size;
698 
699 # if defined(MSWIN32) || defined(MSWINCE)
GC_setpagesize()700   void GC_setpagesize()
701   {
702     GetSystemInfo(&GC_sysinfo);
703     GC_page_size = GC_sysinfo.dwPageSize;
704   }
705 
706 # else
707 #   if defined(MPROTECT_VDB) || defined(PROC_VDB) || defined(USE_MMAP) \
708        || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
GC_setpagesize()709 	void GC_setpagesize()
710 	{
711 	    GC_page_size = GETPAGESIZE();
712 	}
713 #   else
714 	/* It's acceptable to fake it. */
GC_setpagesize()715 	void GC_setpagesize()
716 	{
717 	    GC_page_size = HBLKSIZE;
718 	}
719 #   endif
720 # endif
721 
722 /*
723  * Find the base of the stack.
724  * Used only in single-threaded environment.
725  * With threads, GC_mark_roots needs to know how to do this.
726  * Called with allocator lock held.
727  */
728 # if defined(MSWIN32) || defined(MSWINCE)
729 # define is_writable(prot) ((prot) == PAGE_READWRITE \
730 			    || (prot) == PAGE_WRITECOPY \
731 			    || (prot) == PAGE_EXECUTE_READWRITE \
732 			    || (prot) == PAGE_EXECUTE_WRITECOPY)
733 /* Return the number of bytes that are writable starting at p.	*/
734 /* The pointer p is assumed to be page aligned.			*/
735 /* If base is not 0, *base becomes the beginning of the 	*/
736 /* allocation region containing p.				*/
GC_get_writable_length(ptr_t p,ptr_t * base)737 word GC_get_writable_length(ptr_t p, ptr_t *base)
738 {
739     MEMORY_BASIC_INFORMATION buf;
740     word result;
741     word protect;
742 
743     result = VirtualQuery(p, &buf, sizeof(buf));
744     if (result != sizeof(buf)) ABORT("Weird VirtualQuery result");
745     if (base != 0) *base = (ptr_t)(buf.AllocationBase);
746     protect = (buf.Protect & ~(PAGE_GUARD | PAGE_NOCACHE));
747     if (!is_writable(protect)) {
748         return(0);
749     }
750     if (buf.State != MEM_COMMIT) return(0);
751     return(buf.RegionSize);
752 }
753 
GC_get_stack_base()754 ptr_t GC_get_stack_base()
755 {
756     int dummy;
757     ptr_t sp = (ptr_t)(&dummy);
758     ptr_t trunc_sp = (ptr_t)((word)sp & ~(GC_page_size - 1));
759     word size = GC_get_writable_length(trunc_sp, 0);
760 
761     return(trunc_sp + size);
762 }
763 
764 
765 # endif /* MS Windows */
766 
767 # ifdef BEOS
768 # include <kernel/OS.h>
GC_get_stack_base()769 ptr_t GC_get_stack_base(){
770 	thread_info th;
771 	get_thread_info(find_thread(NULL),&th);
772 	return th.stack_end;
773 }
774 # endif /* BEOS */
775 
776 
777 # ifdef OS2
778 
GC_get_stack_base()779 ptr_t GC_get_stack_base()
780 {
781     PTIB ptib;
782     PPIB ppib;
783 
784     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
785     	GC_err_printf0("DosGetInfoBlocks failed\n");
786     	ABORT("DosGetInfoBlocks failed\n");
787     }
788     return((ptr_t)(ptib -> tib_pstacklimit));
789 }
790 
791 # endif /* OS2 */
792 
793 # ifdef AMIGA
794 #   define GC_AMIGA_SB
795 #   include "AmigaOS.c"
796 #   undef GC_AMIGA_SB
797 # endif /* AMIGA */
798 
799 # if defined(NEED_FIND_LIMIT) || defined(UNIX_LIKE)
800 
801 #   ifdef __STDC__
802 	typedef void (*handler)(int);
803 #   else
804 	typedef void (*handler)();
805 #   endif
806 
807 #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(OSF1) \
808     || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
809 	static struct sigaction old_segv_act;
810 #	if defined(IRIX5) || defined(HPUX) \
811 	|| defined(HURD) || defined(NETBSD)
812 	    static struct sigaction old_bus_act;
813 #	endif
814 #   else
815         static handler old_segv_handler, old_bus_handler;
816 #   endif
817 
818 #   ifdef __STDC__
GC_set_and_save_fault_handler(handler h)819       void GC_set_and_save_fault_handler(handler h)
820 #   else
821       void GC_set_and_save_fault_handler(h)
822       handler h;
823 #   endif
824     {
825 #	if defined(SUNOS5SIGS) || defined(IRIX5)  \
826         || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
827 	  struct sigaction	act;
828 
829 	  act.sa_handler	= h;
830 #	  if 0 /* Was necessary for Solaris 2.3 and very temporary 	*/
831 	       /* NetBSD bugs.						*/
832             act.sa_flags          = SA_RESTART | SA_NODEFER;
833 #         else
834             act.sa_flags          = SA_RESTART;
835 #	  endif
836 
837 	  (void) sigemptyset(&act.sa_mask);
838 #	  ifdef GC_IRIX_THREADS
839 		/* Older versions have a bug related to retrieving and	*/
840 		/* and setting a handler at the same time.		*/
841 	        (void) sigaction(SIGSEGV, 0, &old_segv_act);
842 	        (void) sigaction(SIGSEGV, &act, 0);
843 	        (void) sigaction(SIGBUS, 0, &old_bus_act);
844 	        (void) sigaction(SIGBUS, &act, 0);
845 #	  else
846 	        (void) sigaction(SIGSEGV, &act, &old_segv_act);
847 #		if defined(IRIX5) \
848 		   || defined(HPUX) || defined(HURD) || defined(NETBSD)
849 		    /* Under Irix 5.x or HP/UX, we may get SIGBUS.	*/
850 		    /* Pthreads doesn't exist under Irix 5.x, so we	*/
851 		    /* don't have to worry in the threads case.		*/
852 		    (void) sigaction(SIGBUS, &act, &old_bus_act);
853 #		endif
854 #	  endif	/* GC_IRIX_THREADS */
855 #	else
856     	  old_segv_handler = signal(SIGSEGV, h);
857 #	  ifdef SIGBUS
858 	    old_bus_handler = signal(SIGBUS, h);
859 #	  endif
860 #	endif
861     }
862 # endif /* NEED_FIND_LIMIT || UNIX_LIKE */
863 
864 # ifdef NEED_FIND_LIMIT
865   /* Some tools to implement HEURISTIC2	*/
866 #   define MIN_PAGE_SIZE 256	/* Smallest conceivable page size, bytes */
867     /* static */ JMP_BUF GC_jmp_buf;
868 
869     /*ARGSUSED*/
GC_fault_handler(sig)870     void GC_fault_handler(sig)
871     int sig;
872     {
873         LONGJMP(GC_jmp_buf, 1);
874     }
875 
GC_setup_temporary_fault_handler()876     void GC_setup_temporary_fault_handler()
877     {
878 	GC_set_and_save_fault_handler(GC_fault_handler);
879     }
880 
GC_reset_fault_handler()881     void GC_reset_fault_handler()
882     {
883 #       if defined(SUNOS5SIGS) || defined(IRIX5) \
884 	   || defined(OSF1) || defined(HURD) || defined(NETBSD) || defined(FREEBSD)
885 	  (void) sigaction(SIGSEGV, &old_segv_act, 0);
886 #	  if defined(IRIX5) \
887 	     || defined(HPUX) || defined(HURD) || defined(NETBSD)
888 	      (void) sigaction(SIGBUS, &old_bus_act, 0);
889 #	  endif
890 #       else
891   	  (void) signal(SIGSEGV, old_segv_handler);
892 #	  ifdef SIGBUS
893 	    (void) signal(SIGBUS, old_bus_handler);
894 #	  endif
895 #       endif
896     }
897 
898     /* Return the first nonaddressible location > p (up) or 	*/
899     /* the smallest location q s.t. [q,p) is addressable (!up).	*/
900     /* We assume that p (up) or p-1 (!up) is addressable.	*/
GC_find_limit(p,up)901     ptr_t GC_find_limit(p, up)
902     ptr_t p;
903     GC_bool up;
904     {
905         static VOLATILE ptr_t result;
906     		/* Needs to be static, since otherwise it may not be	*/
907     		/* preserved across the longjmp.  Can safely be 	*/
908     		/* static since it's only called once, with the		*/
909     		/* allocation lock held.				*/
910 
911 
912 	GC_setup_temporary_fault_handler();
913 	if (SETJMP(GC_jmp_buf) == 0) {
914 	    result = (ptr_t)(((word)(p))
915 			      & ~(MIN_PAGE_SIZE-1));
916 	    for (;;) {
917  	        if (up) {
918 		    result += MIN_PAGE_SIZE;
919  	        } else {
920 		    result -= MIN_PAGE_SIZE;
921  	        }
922 		GC_noop1((word)(*result));
923 	    }
924 	}
925 	GC_reset_fault_handler();
926  	if (!up) {
927 	    result += MIN_PAGE_SIZE;
928  	}
929 	return(result);
930     }
931 # endif
932 
933 #if defined(ECOS) || defined(NOSYS)
GC_get_stack_base()934   ptr_t GC_get_stack_base()
935   {
936     return STACKBOTTOM;
937   }
938 #endif
939 
940 #ifdef HPUX_STACKBOTTOM
941 
942 #include <sys/param.h>
943 #include <sys/pstat.h>
944 
GC_get_register_stack_base(void)945   ptr_t GC_get_register_stack_base(void)
946   {
947     struct pst_vm_status vm_status;
948 
949     int i = 0;
950     while (pstat_getprocvm(&vm_status, sizeof(vm_status), 0, i++) == 1) {
951       if (vm_status.pst_type == PS_RSESTACK) {
952         return (ptr_t) vm_status.pst_vaddr;
953       }
954     }
955 
956     /* old way to get the register stackbottom */
957     return (ptr_t)(((word)GC_stackbottom - BACKING_STORE_DISPLACEMENT - 1)
958                    & ~(BACKING_STORE_ALIGNMENT - 1));
959   }
960 
961 #endif /* HPUX_STACK_BOTTOM */
962 
963 #ifdef LINUX_STACKBOTTOM
964 
965 #include <sys/types.h>
966 #include <sys/stat.h>
967 
968 # define STAT_SKIP 27   /* Number of fields preceding startstack	*/
969 			/* field in /proc/self/stat			*/
970 
971 #ifdef USE_LIBC_PRIVATES
972 # pragma weak __libc_stack_end
973   extern ptr_t __libc_stack_end;
974 #endif
975 
976 # ifdef IA64
977     /* Try to read the backing store base from /proc/self/maps.	*/
978     /* We look for the writable mapping with a 0 major device,  */
979     /* which is	as close to our frame as possible, but below it.*/
backing_store_base_from_maps(char * maps)980     static word backing_store_base_from_maps(char *maps)
981     {
982       char prot_buf[5];
983       char *buf_ptr = maps;
984       word start, end;
985       unsigned int maj_dev;
986       word current_best = 0;
987       word dummy;
988 
989       for (;;) {
990         buf_ptr = GC_parse_map_entry(buf_ptr, &start, &end, prot_buf, &maj_dev);
991 	if (buf_ptr == NULL) return current_best;
992 	if (prot_buf[1] == 'w' && maj_dev == 0) {
993 	    if (end < (word)(&dummy) && start > current_best) current_best = start;
994 	}
995       }
996       return current_best;
997     }
998 
backing_store_base_from_proc(void)999     static word backing_store_base_from_proc(void)
1000     {
1001         return GC_apply_to_maps(backing_store_base_from_maps);
1002     }
1003 
1004 #   ifdef USE_LIBC_PRIVATES
1005 #     pragma weak __libc_ia64_register_backing_store_base
1006       extern ptr_t __libc_ia64_register_backing_store_base;
1007 #   endif
1008 
GC_get_register_stack_base(void)1009     ptr_t GC_get_register_stack_base(void)
1010     {
1011 #     ifdef USE_LIBC_PRIVATES
1012         if (0 != &__libc_ia64_register_backing_store_base
1013 	    && 0 != __libc_ia64_register_backing_store_base) {
1014 	  /* Glibc 2.2.4 has a bug such that for dynamically linked	*/
1015 	  /* executables __libc_ia64_register_backing_store_base is 	*/
1016 	  /* defined but uninitialized during constructor calls.  	*/
1017 	  /* Hence we check for both nonzero address and value.		*/
1018 	  return __libc_ia64_register_backing_store_base;
1019         }
1020 #     endif
1021       word result = backing_store_base_from_proc();
1022       if (0 == result) {
1023 	  /* Use dumb heuristics.  Works only for default configuration. */
1024 	  result = (word)GC_stackbottom - BACKING_STORE_DISPLACEMENT;
1025 	  result += BACKING_STORE_ALIGNMENT - 1;
1026 	  result &= ~(BACKING_STORE_ALIGNMENT - 1);
1027 	  /* Verify that it's at least readable.  If not, we goofed. */
1028 	  GC_noop1(*(word *)result);
1029       }
1030       return (ptr_t)result;
1031     }
1032 # endif
1033 
1034 void *GC_set_stackbottom = NULL;
1035 
GC_linux_stack_base(void)1036   ptr_t GC_linux_stack_base(void)
1037   {
1038     /* We read the stack base value from /proc/self/stat.  We do this	*/
1039     /* using direct I/O system calls in order to avoid calling malloc   */
1040     /* in case REDIRECT_MALLOC is defined.				*/
1041 #   define STAT_BUF_SIZE 4096
1042 #   define STAT_READ read
1043 	  /* Should probably call the real read, if read is wrapped.	*/
1044     char stat_buf[STAT_BUF_SIZE];
1045     int f;
1046     char c;
1047     word result = 0;
1048     size_t i, buf_offset = 0;
1049 
1050     /* First try the easy way.  This should work for glibc 2.2	*/
1051     /* This fails in a prelinked ("prelink" command) executable */
1052     /* since the correct value of __libc_stack_end never	*/
1053     /* becomes visible to us.  The second test works around 	*/
1054     /* this.							*/
1055 #   ifdef USE_LIBC_PRIVATES
1056       if (0 != &__libc_stack_end && 0 != __libc_stack_end ) {
1057 #       ifdef IA64
1058 	  /* Some versions of glibc set the address 16 bytes too	*/
1059 	  /* low while the initialization code is running.		*/
1060 	  if (((word)__libc_stack_end & 0xfff) + 0x10 < 0x1000) {
1061 	    return __libc_stack_end + 0x10;
1062 	  } /* Otherwise it's not safe to add 16 bytes and we fall	*/
1063 	    /* back to using /proc.					*/
1064 #	else
1065 #	ifdef SPARC
1066 	  /* Older versions of glibc for 64-bit Sparc do not set
1067 	   * this variable correctly, it gets set to either zero
1068 	   * or one.
1069 	   */
1070 	  if (__libc_stack_end != (ptr_t) (unsigned long)0x1)
1071 	    return __libc_stack_end;
1072 #	else
1073 	  return __libc_stack_end;
1074 #	endif
1075 #	endif
1076       }
1077 #   endif
1078     f = open("/proc/self/stat", O_RDONLY);
1079     if (f < 0 || STAT_READ(f, stat_buf, STAT_BUF_SIZE) < 2 * STAT_SKIP) {
1080 	ABORT("Couldn't read /proc/self/stat");
1081     }
1082     c = stat_buf[buf_offset++];
1083     /* Skip the required number of fields.  This number is hopefully	*/
1084     /* constant across all Linux implementations.			*/
1085       for (i = 0; i < STAT_SKIP; ++i) {
1086 	while (isspace(c)) c = stat_buf[buf_offset++];
1087 	while (!isspace(c)) c = stat_buf[buf_offset++];
1088       }
1089     while (isspace(c)) c = stat_buf[buf_offset++];
1090     while (isdigit(c)) {
1091       result *= 10;
1092       result += c - '0';
1093       c = stat_buf[buf_offset++];
1094     }
1095     close(f);
1096     if (result < 0x10000000) ABORT("Absurd stack bottom value");
1097     return (ptr_t)result;
1098   }
1099 
1100 #endif /* LINUX_STACKBOTTOM */
1101 
1102 #ifdef FREEBSD_STACKBOTTOM
1103 
1104 /* This uses an undocumented sysctl call, but at least one expert 	*/
1105 /* believes it will stay.						*/
1106 
1107 #include <unistd.h>
1108 #include <sys/types.h>
1109 #include <sys/sysctl.h>
1110 
GC_freebsd_stack_base(void)1111   ptr_t GC_freebsd_stack_base(void)
1112   {
1113     int nm[2] = {CTL_KERN, KERN_USRSTACK};
1114     ptr_t base;
1115     size_t len = sizeof(ptr_t);
1116     int r = sysctl(nm, 2, &base, &len, NULL, 0);
1117 
1118     if (r) ABORT("Error getting stack base");
1119 
1120     return base;
1121   }
1122 
1123 #endif /* FREEBSD_STACKBOTTOM */
1124 
1125 #if !defined(BEOS) && !defined(AMIGA) && !defined(MSWIN32) \
1126     && !defined(MSWINCE) && !defined(OS2) && !defined(NOSYS) && !defined(ECOS) \
1127     && !defined(GC_OPENBSD_THREADS)
1128 
GC_get_stack_base()1129 ptr_t GC_get_stack_base()
1130 {
1131 #   if defined(HEURISTIC1) || defined(HEURISTIC2) || \
1132        defined(LINUX_STACKBOTTOM) || defined(FREEBSD_STACKBOTTOM)
1133     word dummy;
1134     ptr_t result;
1135 #   endif
1136 
1137 #   define STACKBOTTOM_ALIGNMENT_M1 ((word)STACK_GRAN - 1)
1138 
1139 #   ifdef STACKBOTTOM
1140 	return(STACKBOTTOM);
1141 #   else
1142 #	ifdef HEURISTIC1
1143 #	   ifdef STACK_GROWS_DOWN
1144 	     result = (ptr_t)((((word)(&dummy))
1145 	     		       + STACKBOTTOM_ALIGNMENT_M1)
1146 			      & ~STACKBOTTOM_ALIGNMENT_M1);
1147 #	   else
1148 	     result = (ptr_t)(((word)(&dummy))
1149 			      & ~STACKBOTTOM_ALIGNMENT_M1);
1150 #	   endif
1151 #	endif /* HEURISTIC1 */
1152 #	ifdef LINUX_STACKBOTTOM
1153 	   result = GC_linux_stack_base();
1154 #	endif
1155 #	ifdef FREEBSD_STACKBOTTOM
1156 	   result = GC_freebsd_stack_base();
1157 #	endif
1158 #	ifdef HEURISTIC2
1159 #	    ifdef STACK_GROWS_DOWN
1160 		result = GC_find_limit((ptr_t)(&dummy), TRUE);
1161 #           	ifdef HEURISTIC2_LIMIT
1162 		    if (result > HEURISTIC2_LIMIT
1163 		        && (ptr_t)(&dummy) < HEURISTIC2_LIMIT) {
1164 		            result = HEURISTIC2_LIMIT;
1165 		    }
1166 #	        endif
1167 #	    else
1168 		result = GC_find_limit((ptr_t)(&dummy), FALSE);
1169 #           	ifdef HEURISTIC2_LIMIT
1170 		    if (result < HEURISTIC2_LIMIT
1171 		        && (ptr_t)(&dummy) > HEURISTIC2_LIMIT) {
1172 		            result = HEURISTIC2_LIMIT;
1173 		    }
1174 #	        endif
1175 #	    endif
1176 
1177 #	endif /* HEURISTIC2 */
1178 #	ifdef STACK_GROWS_DOWN
1179 	    if (result == 0) result = (ptr_t)(signed_word)(-sizeof(ptr_t));
1180 #	endif
1181     	return(result);
1182 #   endif /* STACKBOTTOM */
1183 }
1184 
1185 # endif /* ! AMIGA, !OS 2, ! MS Windows, !BEOS, !NOSYS, !ECOS */
1186 
1187 #if defined(GC_OPENBSD_THREADS)
1188 
1189 /* Find the stack using pthread_stackseg_np() */
1190 
1191 # include <sys/signal.h>
1192 # include <pthread.h>
1193 # include <pthread_np.h>
1194 
1195 #define HAVE_GET_STACK_BASE
1196 
GC_get_stack_base()1197 ptr_t GC_get_stack_base()
1198 {
1199     stack_t stack;
1200     pthread_stackseg_np(pthread_self(), &stack);
1201     return stack.ss_sp;
1202 }
1203 
1204 #endif /* GC_OPENBSD_THREADS */
1205 
1206 /*
1207  * Register static data segment(s) as roots.
1208  * If more data segments are added later then they need to be registered
1209  * add that point (as we do with SunOS dynamic loading),
1210  * or GC_mark_roots needs to check for them (as we do with PCR).
1211  * Called with allocator lock held.
1212  */
1213 
1214 # ifdef OS2
1215 
GC_register_data_segments()1216 void GC_register_data_segments()
1217 {
1218     PTIB ptib;
1219     PPIB ppib;
1220     HMODULE module_handle;
1221 #   define PBUFSIZ 512
1222     UCHAR path[PBUFSIZ];
1223     FILE * myexefile;
1224     struct exe_hdr hdrdos;	/* MSDOS header.	*/
1225     struct e32_exe hdr386;	/* Real header for my executable */
1226     struct o32_obj seg;	/* Currrent segment */
1227     int nsegs;
1228 
1229 
1230     if (DosGetInfoBlocks(&ptib, &ppib) != NO_ERROR) {
1231     	GC_err_printf0("DosGetInfoBlocks failed\n");
1232     	ABORT("DosGetInfoBlocks failed\n");
1233     }
1234     module_handle = ppib -> pib_hmte;
1235     if (DosQueryModuleName(module_handle, PBUFSIZ, path) != NO_ERROR) {
1236     	GC_err_printf0("DosQueryModuleName failed\n");
1237     	ABORT("DosGetInfoBlocks failed\n");
1238     }
1239     myexefile = fopen(path, "rb");
1240     if (myexefile == 0) {
1241         GC_err_puts("Couldn't open executable ");
1242         GC_err_puts(path); GC_err_puts("\n");
1243         ABORT("Failed to open executable\n");
1244     }
1245     if (fread((char *)(&hdrdos), 1, sizeof hdrdos, myexefile) < sizeof hdrdos) {
1246         GC_err_puts("Couldn't read MSDOS header from ");
1247         GC_err_puts(path); GC_err_puts("\n");
1248         ABORT("Couldn't read MSDOS header");
1249     }
1250     if (E_MAGIC(hdrdos) != EMAGIC) {
1251         GC_err_puts("Executable has wrong DOS magic number: ");
1252         GC_err_puts(path); GC_err_puts("\n");
1253         ABORT("Bad DOS magic number");
1254     }
1255     if (fseek(myexefile, E_LFANEW(hdrdos), SEEK_SET) != 0) {
1256         GC_err_puts("Seek to new header failed in ");
1257         GC_err_puts(path); GC_err_puts("\n");
1258         ABORT("Bad DOS magic number");
1259     }
1260     if (fread((char *)(&hdr386), 1, sizeof hdr386, myexefile) < sizeof hdr386) {
1261         GC_err_puts("Couldn't read MSDOS header from ");
1262         GC_err_puts(path); GC_err_puts("\n");
1263         ABORT("Couldn't read OS/2 header");
1264     }
1265     if (E32_MAGIC1(hdr386) != E32MAGIC1 || E32_MAGIC2(hdr386) != E32MAGIC2) {
1266         GC_err_puts("Executable has wrong OS/2 magic number:");
1267         GC_err_puts(path); GC_err_puts("\n");
1268         ABORT("Bad OS/2 magic number");
1269     }
1270     if ( E32_BORDER(hdr386) != E32LEBO || E32_WORDER(hdr386) != E32LEWO) {
1271         GC_err_puts("Executable %s has wrong byte order: ");
1272         GC_err_puts(path); GC_err_puts("\n");
1273         ABORT("Bad byte order");
1274     }
1275     if ( E32_CPU(hdr386) == E32CPU286) {
1276         GC_err_puts("GC can't handle 80286 executables: ");
1277         GC_err_puts(path); GC_err_puts("\n");
1278         EXIT();
1279     }
1280     if (fseek(myexefile, E_LFANEW(hdrdos) + E32_OBJTAB(hdr386),
1281     	      SEEK_SET) != 0) {
1282         GC_err_puts("Seek to object table failed: ");
1283         GC_err_puts(path); GC_err_puts("\n");
1284         ABORT("Seek to object table failed");
1285     }
1286     for (nsegs = E32_OBJCNT(hdr386); nsegs > 0; nsegs--) {
1287       int flags;
1288       if (fread((char *)(&seg), 1, sizeof seg, myexefile) < sizeof seg) {
1289         GC_err_puts("Couldn't read obj table entry from ");
1290         GC_err_puts(path); GC_err_puts("\n");
1291         ABORT("Couldn't read obj table entry");
1292       }
1293       flags = O32_FLAGS(seg);
1294       if (!(flags & OBJWRITE)) continue;
1295       if (!(flags & OBJREAD)) continue;
1296       if (flags & OBJINVALID) {
1297           GC_err_printf0("Object with invalid pages?\n");
1298           continue;
1299       }
1300       GC_add_roots_inner(O32_BASE(seg), O32_BASE(seg)+O32_SIZE(seg), FALSE);
1301     }
1302 }
1303 
1304 # else /* !OS2 */
1305 
1306 # if defined(MSWIN32) || defined(MSWINCE)
1307 
1308 # ifdef MSWIN32
1309   /* Unfortunately, we have to handle win32s very differently from NT, 	*/
1310   /* Since VirtualQuery has very different semantics.  In particular,	*/
1311   /* under win32s a VirtualQuery call on an unmapped page returns an	*/
1312   /* invalid result.  Under NT, GC_register_data_segments is a noop and	*/
1313   /* all real work is done by GC_register_dynamic_libraries.  Under	*/
1314   /* win32s, we cannot find the data segments associated with dll's.	*/
1315   /* We register the main data segment here.				*/
1316   GC_bool GC_no_win32_dlls = FALSE;
1317   	/* This used to be set for gcc, to avoid dealing with		*/
1318   	/* the structured exception handling issues.  But we now have	*/
1319   	/* assembly code to do that right.				*/
1320 
GC_init_win32()1321   void GC_init_win32()
1322   {
1323     /* if we're running under win32s, assume that no DLLs will be loaded */
1324     DWORD v = GetVersion();
1325     GC_no_win32_dlls |= ((v & 0x80000000) && (v & 0xff) <= 3);
1326   }
1327 
1328   /* Return the smallest address a such that VirtualQuery		*/
1329   /* returns correct results for all addresses between a and start.	*/
1330   /* Assumes VirtualQuery returns correct information for start.	*/
GC_least_described_address(ptr_t start)1331   ptr_t GC_least_described_address(ptr_t start)
1332   {
1333     MEMORY_BASIC_INFORMATION buf;
1334     DWORD result;
1335     LPVOID limit;
1336     ptr_t p;
1337     LPVOID q;
1338 
1339     limit = GC_sysinfo.lpMinimumApplicationAddress;
1340     p = (ptr_t)((word)start & ~(GC_page_size - 1));
1341     for (;;) {
1342     	q = (LPVOID)(p - GC_page_size);
1343     	if ((ptr_t)q > (ptr_t)p /* underflow */ || q < limit) break;
1344     	result = VirtualQuery(q, &buf, sizeof(buf));
1345     	if (result != sizeof(buf) || buf.AllocationBase == 0) break;
1346     	p = (ptr_t)(buf.AllocationBase);
1347     }
1348     return(p);
1349   }
1350 # endif
1351 
1352 # ifndef REDIRECT_MALLOC
1353   /* We maintain a linked list of AllocationBase values that we know	*/
1354   /* correspond to malloc heap sections.  Currently this is only called */
1355   /* during a GC.  But there is some hope that for long running		*/
1356   /* programs we will eventually see most heap sections.		*/
1357 
1358   /* In the long run, it would be more reliable to occasionally walk 	*/
1359   /* the malloc heap with HeapWalk on the default heap.  But that	*/
1360   /* apparently works only for NT-based Windows. 			*/
1361 
1362   /* In the long run, a better data structure would also be nice ...	*/
1363   struct GC_malloc_heap_list {
1364     void * allocation_base;
1365     struct GC_malloc_heap_list *next;
1366   } *GC_malloc_heap_l = 0;
1367 
1368   /* Is p the base of one of the malloc heap sections we already know	*/
1369   /* about?								*/
GC_is_malloc_heap_base(ptr_t p)1370   GC_bool GC_is_malloc_heap_base(ptr_t p)
1371   {
1372     struct GC_malloc_heap_list *q = GC_malloc_heap_l;
1373 
1374     while (0 != q) {
1375       if (q -> allocation_base == p) return TRUE;
1376       q = q -> next;
1377     }
1378     return FALSE;
1379   }
1380 
GC_get_allocation_base(void * p)1381   void *GC_get_allocation_base(void *p)
1382   {
1383     MEMORY_BASIC_INFORMATION buf;
1384     DWORD result = VirtualQuery(p, &buf, sizeof(buf));
1385     if (result != sizeof(buf)) {
1386       ABORT("Weird VirtualQuery result");
1387     }
1388     return buf.AllocationBase;
1389   }
1390 
1391   size_t GC_max_root_size = 100000;	/* Appr. largest root size.	*/
1392 
GC_add_current_malloc_heap()1393   void GC_add_current_malloc_heap()
1394   {
1395     struct GC_malloc_heap_list *new_l =
1396                  malloc(sizeof(struct GC_malloc_heap_list));
1397     void * candidate = GC_get_allocation_base(new_l);
1398 
1399     if (new_l == 0) return;
1400     if (GC_is_malloc_heap_base(candidate)) {
1401       /* Try a little harder to find malloc heap.			*/
1402 	size_t req_size = 10000;
1403 	do {
1404 	  void *p = malloc(req_size);
1405 	  if (0 == p) { free(new_l); return; }
1406  	  candidate = GC_get_allocation_base(p);
1407 	  free(p);
1408 	  req_size *= 2;
1409 	} while (GC_is_malloc_heap_base(candidate)
1410 	         && req_size < GC_max_root_size/10 && req_size < 500000);
1411 	if (GC_is_malloc_heap_base(candidate)) {
1412 	  free(new_l); return;
1413 	}
1414     }
1415 #   ifdef CONDPRINT
1416       if (GC_print_stats)
1417 	  GC_printf1("Found new system malloc AllocationBase at 0x%lx\n",
1418                      candidate);
1419 #   endif
1420     new_l -> allocation_base = candidate;
1421     new_l -> next = GC_malloc_heap_l;
1422     GC_malloc_heap_l = new_l;
1423   }
1424 # endif /* REDIRECT_MALLOC */
1425 
1426   /* Is p the start of either the malloc heap, or of one of our */
1427   /* heap sections?						*/
GC_is_heap_base(ptr_t p)1428   GC_bool GC_is_heap_base (ptr_t p)
1429   {
1430 
1431      unsigned i;
1432 
1433 #    ifndef REDIRECT_MALLOC
1434        static word last_gc_no = -1;
1435 
1436        if (last_gc_no != GC_gc_no) {
1437 	 GC_add_current_malloc_heap();
1438 	 last_gc_no = GC_gc_no;
1439        }
1440        if (GC_root_size > GC_max_root_size) GC_max_root_size = GC_root_size;
1441        if (GC_is_malloc_heap_base(p)) return TRUE;
1442 #    endif
1443      for (i = 0; i < GC_n_heap_bases; i++) {
1444          if (GC_heap_bases[i] == p) return TRUE;
1445      }
1446      return FALSE ;
1447   }
1448 
1449 # ifdef MSWIN32
GC_register_root_section(ptr_t static_root)1450   void GC_register_root_section(ptr_t static_root)
1451   {
1452       MEMORY_BASIC_INFORMATION buf;
1453       DWORD result;
1454       DWORD protect;
1455       LPVOID p;
1456       char * base;
1457       char * limit, * new_limit;
1458 
1459       if (!GC_no_win32_dlls) return;
1460       p = base = limit = GC_least_described_address(static_root);
1461       while (p < GC_sysinfo.lpMaximumApplicationAddress) {
1462         result = VirtualQuery(p, &buf, sizeof(buf));
1463         if (result != sizeof(buf) || buf.AllocationBase == 0
1464             || GC_is_heap_base(buf.AllocationBase)) break;
1465         new_limit = (char *)p + buf.RegionSize;
1466         protect = buf.Protect;
1467         if (buf.State == MEM_COMMIT
1468             && is_writable(protect)) {
1469             if ((char *)p == limit) {
1470                 limit = new_limit;
1471             } else {
1472                 if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1473                 base = p;
1474                 limit = new_limit;
1475             }
1476         }
1477         if (p > (LPVOID)new_limit /* overflow */) break;
1478         p = (LPVOID)new_limit;
1479       }
1480       if (base != limit) GC_add_roots_inner(base, limit, FALSE);
1481   }
1482 #endif
1483 
GC_register_data_segments()1484   void GC_register_data_segments()
1485   {
1486 #     ifdef MSWIN32
1487       static char dummy;
1488       GC_register_root_section((ptr_t)(&dummy));
1489 #     endif
1490   }
1491 
1492 # else /* !OS2 && !Windows */
1493 
1494 # if (defined(SVR4) || defined(AUX) || defined(DGUX) \
1495       || (defined(LINUX) && defined(SPARC))) && !defined(PCR)
GC_SysVGetDataStart(max_page_size,etext_addr)1496 ptr_t GC_SysVGetDataStart(max_page_size, etext_addr)
1497 int max_page_size;
1498 int * etext_addr;
1499 {
1500     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1501     		    & ~(sizeof(word) - 1);
1502     	/* etext rounded to word boundary	*/
1503     word next_page = ((text_end + (word)max_page_size - 1)
1504     		      & ~((word)max_page_size - 1));
1505     word page_offset = (text_end & ((word)max_page_size - 1));
1506     VOLATILE char * result = (char *)(next_page + page_offset);
1507     /* Note that this isnt equivalent to just adding		*/
1508     /* max_page_size to &etext if &etext is at a page boundary	*/
1509 
1510     GC_setup_temporary_fault_handler();
1511     if (SETJMP(GC_jmp_buf) == 0) {
1512     	/* Try writing to the address.	*/
1513     	*result = *result;
1514         GC_reset_fault_handler();
1515     } else {
1516         GC_reset_fault_handler();
1517     	/* We got here via a longjmp.  The address is not readable.	*/
1518     	/* This is known to happen under Solaris 2.4 + gcc, which place	*/
1519     	/* string constants in the text segment, but after etext.	*/
1520     	/* Use plan B.  Note that we now know there is a gap between	*/
1521     	/* text and data segments, so plan A bought us something.	*/
1522     	result = (char *)GC_find_limit((ptr_t)(DATAEND), FALSE);
1523     }
1524     return((ptr_t)result);
1525 }
1526 # endif
1527 
1528 # if defined(FREEBSD) && (defined(I386) || defined(powerpc) || defined(__powerpc__) ||  defined(__x86_64__)) && !defined(PCR)
1529 /* Its unclear whether this should be identical to the above, or 	*/
1530 /* whether it should apply to non-X86 architectures.			*/
1531 /* For now we don't assume that there is always an empty page after	*/
1532 /* etext.  But in some cases there actually seems to be slightly more.  */
1533 /* This also deals with holes between read-only data and writable data.	*/
GC_FreeBSDGetDataStart(max_page_size,etext_addr)1534 ptr_t GC_FreeBSDGetDataStart(max_page_size, etext_addr)
1535 int max_page_size;
1536 int * etext_addr;
1537 {
1538     word text_end = ((word)(etext_addr) + sizeof(word) - 1)
1539 		     & ~(sizeof(word) - 1);
1540 	/* etext rounded to word boundary	*/
1541     VOLATILE word next_page = (text_end + (word)max_page_size - 1)
1542 			      & ~((word)max_page_size - 1);
1543     VOLATILE ptr_t result = (ptr_t)text_end;
1544     GC_setup_temporary_fault_handler();
1545     if (SETJMP(GC_jmp_buf) == 0) {
1546 	/* Try reading at the address.				*/
1547 	/* This should happen before there is another thread.	*/
1548 	for (; next_page < (word)(DATAEND); next_page += (word)max_page_size)
1549 	    *(VOLATILE char *)next_page;
1550 	GC_reset_fault_handler();
1551     } else {
1552 	GC_reset_fault_handler();
1553 	/* As above, we go to plan B	*/
1554 	result = GC_find_limit((ptr_t)(DATAEND), FALSE);
1555     }
1556     return(result);
1557 }
1558 
1559 # endif
1560 
1561 
1562 #ifdef AMIGA
1563 
1564 #  define GC_AMIGA_DS
1565 #  include "AmigaOS.c"
1566 #  undef GC_AMIGA_DS
1567 
1568 #else /* !OS2 && !Windows && !AMIGA */
1569 
1570 #if defined(OPENBSD)
1571 
1572 /*
1573  * Depending on arch alignment there can be multiple holes
1574  * between DATASTART & DATAEND. Scan from DATASTART - DATAEND
1575  * and register each region.
1576  */
GC_register_data_segments(void)1577 void GC_register_data_segments(void)
1578 {
1579   ptr_t region_start, region_end;
1580 
1581   region_start = DATASTART;
1582 
1583   for(;;) {
1584     region_end = GC_find_limit_openbsd(region_start, DATAEND);
1585     GC_add_roots_inner(region_start, region_end, FALSE);
1586     if (region_end < DATAEND)
1587        region_start = GC_skip_hole_openbsd(region_end, DATAEND);
1588     else
1589        break;
1590   }
1591 }
1592 
1593 # else /* !OS2 && !Windows && !AMIGA && !OPENBSD */
1594 
GC_register_data_segments()1595 void GC_register_data_segments()
1596 {
1597 #   if !defined(PCR) && !defined(SRC_M3) && !defined(MACOS)
1598 #     if defined(REDIRECT_MALLOC) && defined(GC_SOLARIS_THREADS)
1599 	/* As of Solaris 2.3, the Solaris threads implementation	*/
1600 	/* allocates the data structure for the initial thread with	*/
1601 	/* sbrk at process startup.  It needs to be scanned, so that	*/
1602 	/* we don't lose some malloc allocated data structures		*/
1603 	/* hanging from it.  We're on thin ice here ...			*/
1604         extern caddr_t sbrk();
1605 
1606 	GC_ASSERT(DATASTART);
1607 	GC_add_roots_inner(DATASTART, (char *)sbrk(0), FALSE);
1608 #     else
1609 	GC_ASSERT(DATASTART);
1610 	GC_add_roots_inner(DATASTART, (char *)(DATAEND), FALSE);
1611 #       if defined(DATASTART2)
1612          GC_add_roots_inner(DATASTART2, (char *)(DATAEND2), FALSE);
1613 #       endif
1614 #     endif
1615 #   endif
1616 #   if defined(MACOS)
1617     {
1618 #   if defined(THINK_C)
1619 	extern void* GC_MacGetDataStart(void);
1620 	/* globals begin above stack and end at a5. */
1621 	GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1622 			   (ptr_t)LMGetCurrentA5(), FALSE);
1623 #   else
1624 #     if defined(__MWERKS__)
1625 #       if !__POWERPC__
1626 	  extern void* GC_MacGetDataStart(void);
1627 	  /* MATTHEW: Function to handle Far Globals (CW Pro 3) */
1628 #         if __option(far_data)
1629 	  extern void* GC_MacGetDataEnd(void);
1630 #         endif
1631 	  /* globals begin above stack and end at a5. */
1632 	  GC_add_roots_inner((ptr_t)GC_MacGetDataStart(),
1633           		     (ptr_t)LMGetCurrentA5(), FALSE);
1634 	  /* MATTHEW: Handle Far Globals */
1635 #         if __option(far_data)
1636       /* Far globals follow he QD globals: */
1637 	  GC_add_roots_inner((ptr_t)LMGetCurrentA5(),
1638           		     (ptr_t)GC_MacGetDataEnd(), FALSE);
1639 #         endif
1640 #       else
1641 	  extern char __data_start__[], __data_end__[];
1642 	  GC_add_roots_inner((ptr_t)&__data_start__,
1643 	  		     (ptr_t)&__data_end__, FALSE);
1644 #       endif /* __POWERPC__ */
1645 #     endif /* __MWERKS__ */
1646 #   endif /* !THINK_C */
1647     }
1648 #   endif /* MACOS */
1649 
1650     /* Dynamic libraries are added at every collection, since they may  */
1651     /* change.								*/
1652 }
1653 
1654 # endif  /* ! OPENBSD */
1655 # endif  /* ! AMIGA */
1656 # endif  /* ! MSWIN32 && ! MSWINCE*/
1657 # endif  /* ! OS2 */
1658 
1659 /*
1660  * Auxiliary routines for obtaining memory from OS.
1661  */
1662 
1663 # if !defined(OS2) && !defined(PCR) && !defined(AMIGA) \
1664 	&& !defined(MSWIN32) && !defined(MSWINCE) \
1665 	&& !defined(MACOS) && !defined(DOS4GW) && !defined(SN_TARGET_PS3)
1666 
1667 # ifdef SUNOS4
1668     extern caddr_t sbrk();
1669 # endif
1670 # ifdef __STDC__
1671 #   define SBRK_ARG_T ptrdiff_t
1672 # else
1673 #   define SBRK_ARG_T int
1674 # endif
1675 
1676 
1677 # if 0 && defined(RS6000)  /* We now use mmap */
1678 /* The compiler seems to generate speculative reads one past the end of	*/
1679 /* an allocated object.  Hence we need to make sure that the page 	*/
1680 /* following the last heap page is also mapped.				*/
1681 ptr_t GC_unix_get_mem(bytes)
1682 word bytes;
1683 {
1684     caddr_t cur_brk = (caddr_t)sbrk(0);
1685     caddr_t result;
1686     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1687     static caddr_t my_brk_val = 0;
1688 
1689     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1690     if (lsbs != 0) {
1691         if((caddr_t)(sbrk(GC_page_size - lsbs)) == (caddr_t)(-1)) return(0);
1692     }
1693     if (cur_brk == my_brk_val) {
1694     	/* Use the extra block we allocated last time. */
1695         result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1696         if (result == (caddr_t)(-1)) return(0);
1697         result -= GC_page_size;
1698     } else {
1699         result = (ptr_t)sbrk(GC_page_size + (SBRK_ARG_T)bytes);
1700         if (result == (caddr_t)(-1)) return(0);
1701     }
1702     my_brk_val = result + bytes + GC_page_size;	/* Always page aligned */
1703     return((ptr_t)result);
1704 }
1705 
1706 #else  /* Not RS6000 */
1707 
1708 #if defined(USE_MMAP) || defined(USE_MUNMAP) || defined(FALLBACK_TO_MMAP)
1709 
1710 #ifdef USE_MMAP_FIXED
1711 #   define GC_MMAP_FLAGS MAP_FIXED | MAP_PRIVATE
1712 	/* Seems to yield better performance on Solaris 2, but can	*/
1713 	/* be unreliable if something is already mapped at the address.	*/
1714 #else
1715 #   define GC_MMAP_FLAGS MAP_PRIVATE
1716 #endif
1717 
1718 #ifdef USE_MMAP_ANON
1719 # define zero_fd -1
1720 # if defined(MAP_ANONYMOUS)
1721 #   define OPT_MAP_ANON MAP_ANONYMOUS
1722 # else
1723 #   define OPT_MAP_ANON MAP_ANON
1724 # endif
1725 #else
1726   static int zero_fd;
1727 # define OPT_MAP_ANON 0
1728 #endif
1729 
1730 #endif /* defined(USE_MMAP) || defined(USE_MUNMAP) */
1731 
1732 #if defined(USE_MMAP) || defined(FALLBACK_TO_MMAP)
1733 /* Tested only under Linux, IRIX5 and Solaris 2 */
1734 
1735 #ifndef HEAP_START
1736 #   define HEAP_START 0
1737 #endif
1738 
1739 #ifdef FALLBACK_TO_MMAP
GC_unix_get_mem_mmap(bytes)1740 static ptr_t GC_unix_get_mem_mmap(bytes)
1741 #else
1742 ptr_t GC_unix_get_mem(bytes)
1743 #endif
1744 word bytes;
1745 {
1746     void *result;
1747     static ptr_t last_addr = HEAP_START;
1748 
1749 #   ifndef USE_MMAP_ANON
1750       static GC_bool initialized = FALSE;
1751 
1752       if (!initialized) {
1753 	  zero_fd = open("/dev/zero", O_RDONLY);
1754 	  fcntl(zero_fd, F_SETFD, FD_CLOEXEC);
1755 	  initialized = TRUE;
1756       }
1757 #   endif
1758 
1759     if (bytes & (GC_page_size -1)) ABORT("Bad GET_MEM arg");
1760     result = mmap(last_addr, bytes, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
1761 		  GC_MMAP_FLAGS | OPT_MAP_ANON, zero_fd, 0/* offset */);
1762     if (result == MAP_FAILED) return(0);
1763     last_addr = (ptr_t)result + bytes + GC_page_size - 1;
1764     last_addr = (ptr_t)((word)last_addr & ~(GC_page_size - 1));
1765 #   if !defined(LINUX)
1766       if (last_addr == 0) {
1767         /* Oops.  We got the end of the address space.  This isn't	*/
1768 	/* usable by arbitrary C code, since one-past-end pointers	*/
1769 	/* don't work, so we discard it and try again.			*/
1770 	munmap(result, (size_t)(-GC_page_size) - (size_t)result);
1771 			/* Leave last page mapped, so we can't repeat. */
1772 	return GC_unix_get_mem(bytes);
1773       }
1774 #   else
1775       GC_ASSERT(last_addr != 0);
1776 #   endif
1777 	  if (((word)result % HBLKSIZE) != 0)
1778 		  ABORT ("GC_unix_get_mem: Memory returned by mmap is not aligned to HBLKSIZE.");
1779     return((ptr_t)result);
1780 }
1781 
1782 #endif
1783 
1784 #ifndef USE_MMAP
1785 
GC_unix_get_mem(bytes)1786 ptr_t GC_unix_get_mem(bytes)
1787 word bytes;
1788 {
1789   ptr_t result;
1790 # ifdef IRIX5
1791     /* Bare sbrk isn't thread safe.  Play by malloc rules.	*/
1792     /* The equivalent may be needed on other systems as well. 	*/
1793     __LOCK_MALLOC();
1794 # endif
1795   {
1796     ptr_t cur_brk = (ptr_t)sbrk(0);
1797     SBRK_ARG_T lsbs = (word)cur_brk & (GC_page_size-1);
1798 
1799     if ((SBRK_ARG_T)bytes < 0) return(0); /* too big */
1800     if (lsbs != 0) {
1801         if((ptr_t)sbrk(GC_page_size - lsbs) == (ptr_t)(-1)) return(0);
1802     }
1803     result = (ptr_t)sbrk((SBRK_ARG_T)bytes);
1804     if (result == (ptr_t)(-1)) {
1805 #ifdef FALLBACK_TO_MMAP
1806 		result = GC_unix_get_mem_mmap (bytes);
1807 #else
1808 		result = 0;
1809 #endif
1810 	}
1811   }
1812 # ifdef IRIX5
1813     __UNLOCK_MALLOC();
1814 # endif
1815   return(result);
1816 }
1817 
1818 #endif /* Not USE_MMAP */
1819 #endif /* Not RS6000 */
1820 
1821 # endif /* UN*X */
1822 
1823 # ifdef OS2
1824 
os2_alloc(size_t bytes)1825 void * os2_alloc(size_t bytes)
1826 {
1827     void * result;
1828 
1829     if (DosAllocMem(&result, bytes, PAG_EXECUTE | PAG_READ |
1830     				    PAG_WRITE | PAG_COMMIT)
1831 		    != NO_ERROR) {
1832 	return(0);
1833     }
1834     if (result == 0) return(os2_alloc(bytes));
1835     return(result);
1836 }
1837 
1838 # endif /* OS2 */
1839 
1840 
1841 # if defined(MSWIN32) || defined(MSWINCE)
1842 SYSTEM_INFO GC_sysinfo;
1843 # endif
1844 
1845 # ifdef MSWIN32
1846 
1847 # ifdef USE_GLOBAL_ALLOC
1848 #   define GLOBAL_ALLOC_TEST 1
1849 # else
1850 #   define GLOBAL_ALLOC_TEST GC_no_win32_dlls
1851 # endif
1852 
1853 word GC_n_heap_bases = 0;
1854 
GC_win32_get_mem(bytes)1855 ptr_t GC_win32_get_mem(bytes)
1856 word bytes;
1857 {
1858     ptr_t result;
1859 
1860     if (GLOBAL_ALLOC_TEST) {
1861     	/* VirtualAlloc doesn't like PAGE_EXECUTE_READWRITE.	*/
1862     	/* There are also unconfirmed rumors of other		*/
1863     	/* problems, so we dodge the issue.			*/
1864         result = (ptr_t) GlobalAlloc(0, bytes + HBLKSIZE);
1865         result = (ptr_t)(((word)result + HBLKSIZE) & ~(HBLKSIZE-1));
1866     } else {
1867 	/* VirtualProtect only works on regions returned by a	*/
1868 	/* single VirtualAlloc call.  Thus we allocate one 	*/
1869 	/* extra page, which will prevent merging of blocks	*/
1870 	/* in separate regions, and eliminate any temptation	*/
1871 	/* to call VirtualProtect on a range spanning regions.	*/
1872 	/* This wastes a small amount of memory, and risks	*/
1873 	/* increased fragmentation.  But better alternatives	*/
1874 	/* would require effort.				*/
1875         result = (ptr_t) VirtualAlloc(NULL, bytes + 1,
1876     				      MEM_COMMIT | MEM_RESERVE,
1877     				      PAGE_EXECUTE_READWRITE);
1878     }
1879     if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1880     	/* If I read the documentation correctly, this can	*/
1881     	/* only happen if HBLKSIZE > 64k or not a power of 2.	*/
1882     if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1883     GC_heap_bases[GC_n_heap_bases++] = result;
1884     return(result);
1885 }
1886 
GC_win32_free_heap()1887 void GC_win32_free_heap ()
1888 {
1889     if (GC_no_win32_dlls) {
1890  	while (GC_n_heap_bases > 0) {
1891  	    GlobalFree (GC_heap_bases[--GC_n_heap_bases]);
1892  	    GC_heap_bases[GC_n_heap_bases] = 0;
1893  	}
1894     }
1895 }
1896 # endif
1897 
1898 #ifdef AMIGA
1899 # define GC_AMIGA_AM
1900 # include "AmigaOS.c"
1901 # undef GC_AMIGA_AM
1902 #endif
1903 
1904 
1905 # ifdef MSWINCE
1906 word GC_n_heap_bases = 0;
1907 
GC_wince_get_mem(bytes)1908 ptr_t GC_wince_get_mem(bytes)
1909 word bytes;
1910 {
1911     ptr_t result;
1912     word i;
1913 
1914     /* Round up allocation size to multiple of page size */
1915     bytes = (bytes + GC_page_size-1) & ~(GC_page_size-1);
1916 
1917     /* Try to find reserved, uncommitted pages */
1918     for (i = 0; i < GC_n_heap_bases; i++) {
1919 	if (((word)(-(signed_word)GC_heap_lengths[i])
1920 	     & (GC_sysinfo.dwAllocationGranularity-1))
1921 	    >= bytes) {
1922 	    result = GC_heap_bases[i] + GC_heap_lengths[i];
1923 	    break;
1924 	}
1925     }
1926 
1927     if (i == GC_n_heap_bases) {
1928 	/* Reserve more pages */
1929 	word res_bytes = (bytes + GC_sysinfo.dwAllocationGranularity-1)
1930 			 & ~(GC_sysinfo.dwAllocationGranularity-1);
1931 	/* If we ever support MPROTECT_VDB here, we will probably need to	*/
1932 	/* ensure that res_bytes is strictly > bytes, so that VirtualProtect	*/
1933 	/* never spans regions.  It seems to be OK for a VirtualFree argument	*/
1934 	/* to span regions, so we should be OK for now.				*/
1935 	result = (ptr_t) VirtualAlloc(NULL, res_bytes,
1936     				      MEM_RESERVE | MEM_TOP_DOWN,
1937     				      PAGE_EXECUTE_READWRITE);
1938 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1939     	    /* If I read the documentation correctly, this can	*/
1940     	    /* only happen if HBLKSIZE > 64k or not a power of 2.	*/
1941 	if (GC_n_heap_bases >= MAX_HEAP_SECTS) ABORT("Too many heap sections");
1942 	GC_heap_bases[GC_n_heap_bases] = result;
1943 	GC_heap_lengths[GC_n_heap_bases] = 0;
1944 	GC_n_heap_bases++;
1945     }
1946 
1947     /* Commit pages */
1948     result = (ptr_t) VirtualAlloc(result, bytes,
1949 				  MEM_COMMIT,
1950     				  PAGE_EXECUTE_READWRITE);
1951     if (result != NULL) {
1952 	if (HBLKDISPL(result) != 0) ABORT("Bad VirtualAlloc result");
1953 	GC_heap_lengths[i] += bytes;
1954     }
1955 
1956     return(result);
1957 }
1958 # endif
1959 
1960 #ifdef USE_MUNMAP
1961 
1962 /* For now, this only works on Win32/WinCE and some Unix-like	*/
1963 /* systems.  If you have something else, don't define		*/
1964 /* USE_MUNMAP.							*/
1965 /* We assume ANSI C to support this feature.			*/
1966 
1967 #if !defined(MSWIN32) && !defined(MSWINCE)
1968 
1969 #include <unistd.h>
1970 #include <sys/mman.h>
1971 #include <sys/stat.h>
1972 #include <sys/types.h>
1973 
1974 #endif
1975 
1976 /* Compute a page aligned starting address for the unmap 	*/
1977 /* operation on a block of size bytes starting at start.	*/
1978 /* Return 0 if the block is too small to make this feasible.	*/
GC_unmap_start(ptr_t start,word bytes)1979 ptr_t GC_unmap_start(ptr_t start, word bytes)
1980 {
1981     ptr_t result = start;
1982     /* Round start to next page boundary.       */
1983         result += GC_page_size - 1;
1984         result = (ptr_t)((word)result & ~(GC_page_size - 1));
1985     if (result + GC_page_size > start + bytes) return 0;
1986     return result;
1987 }
1988 
1989 /* Compute end address for an unmap operation on the indicated	*/
1990 /* block.							*/
GC_unmap_end(ptr_t start,word bytes)1991 ptr_t GC_unmap_end(ptr_t start, word bytes)
1992 {
1993     ptr_t end_addr = start + bytes;
1994     end_addr = (ptr_t)((word)end_addr & ~(GC_page_size - 1));
1995     return end_addr;
1996 }
1997 
1998 /* Under Win32/WinCE we commit (map) and decommit (unmap)	*/
1999 /* memory using	VirtualAlloc and VirtualFree.  These functions	*/
2000 /* work on individual allocations of virtual memory, made	*/
2001 /* previously using VirtualAlloc with the MEM_RESERVE flag.	*/
2002 /* The ranges we need to (de)commit may span several of these	*/
2003 /* allocations; therefore we use VirtualQuery to check		*/
2004 /* allocation lengths, and split up the range as necessary.	*/
2005 
2006 /* We assume that GC_remap is called on exactly the same range	*/
2007 /* as a previous call to GC_unmap.  It is safe to consistently	*/
2008 /* round the endpoints in both places.				*/
GC_unmap(ptr_t start,word bytes)2009 void GC_unmap(ptr_t start, word bytes)
2010 {
2011     ptr_t start_addr = GC_unmap_start(start, bytes);
2012     ptr_t end_addr = GC_unmap_end(start, bytes);
2013     word len = end_addr - start_addr;
2014     if (0 == start_addr) return;
2015 #   if defined(MSWIN32) || defined(MSWINCE)
2016       while (len != 0) {
2017           MEMORY_BASIC_INFORMATION mem_info;
2018 	  GC_word free_len;
2019 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
2020 	      != sizeof(mem_info))
2021 	      ABORT("Weird VirtualQuery result");
2022 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
2023 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
2024 	      ABORT("VirtualFree failed");
2025 	  GC_unmapped_bytes += free_len;
2026 	  start_addr += free_len;
2027 	  len -= free_len;
2028       }
2029 #   else
2030       /* We immediately remap it to prevent an intervening mmap from	*/
2031       /* accidentally grabbing the same address space.			*/
2032       {
2033 	void * result;
2034         result = mmap(start_addr, len, PROT_NONE,
2035 		      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
2036 		      zero_fd, 0/* offset */);
2037         if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
2038       }
2039       GC_unmapped_bytes += len;
2040 #   endif
2041 }
2042 
2043 
GC_remap(ptr_t start,word bytes)2044 void GC_remap(ptr_t start, word bytes)
2045 {
2046     ptr_t start_addr = GC_unmap_start(start, bytes);
2047     ptr_t end_addr = GC_unmap_end(start, bytes);
2048     word len = end_addr - start_addr;
2049 
2050 #   if defined(MSWIN32) || defined(MSWINCE)
2051       ptr_t result;
2052 
2053       if (0 == start_addr) return;
2054       while (len != 0) {
2055           MEMORY_BASIC_INFORMATION mem_info;
2056 	  GC_word alloc_len;
2057 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
2058 	      != sizeof(mem_info))
2059 	      ABORT("Weird VirtualQuery result");
2060 	  alloc_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
2061 	  result = VirtualAlloc(start_addr, alloc_len,
2062 				MEM_COMMIT,
2063 				PAGE_EXECUTE_READWRITE);
2064 	  if (result != start_addr) {
2065 	      ABORT("VirtualAlloc remapping failed");
2066 	  }
2067 	  GC_unmapped_bytes -= alloc_len;
2068 	  start_addr += alloc_len;
2069 	  len -= alloc_len;
2070       }
2071 #   else
2072       /* It was already remapped with PROT_NONE. */
2073       int result;
2074 
2075       if (0 == start_addr) return;
2076 #ifdef NACL
2077       {
2078 	/* NaCl doesn't expose mprotect, but mmap should work fine */
2079 	void * mmap_result;
2080         mmap_result = mmap(start_addr, len, PROT_READ | PROT_WRITE | OPT_PROT_EXEC,
2081 		      MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
2082 		      zero_fd, 0/* offset */);
2083         if (mmap_result != (void *)start_addr) ABORT("mmap as mprotect failed");
2084         /* Fake the return value as if mprotect succeeded. */
2085         result = 0;
2086       }
2087 #else /* NACL */
2088       result = mprotect(start_addr, len,
2089 		        PROT_READ | PROT_WRITE | OPT_PROT_EXEC);
2090 #endif /* NACL */
2091       if (result != 0) {
2092 	  GC_err_printf3(
2093 		"Mprotect failed at 0x%lx (length %ld) with errno %ld\n",
2094 	        start_addr, len, errno);
2095 	  ABORT("Mprotect remapping failed");
2096       }
2097       GC_unmapped_bytes -= len;
2098 #   endif
2099 }
2100 
2101 /* Two adjacent blocks have already been unmapped and are about to	*/
2102 /* be merged.  Unmap the whole block.  This typically requires		*/
2103 /* that we unmap a small section in the middle that was not previously	*/
2104 /* unmapped due to alignment constraints.				*/
GC_unmap_gap(ptr_t start1,word bytes1,ptr_t start2,word bytes2)2105 void GC_unmap_gap(ptr_t start1, word bytes1, ptr_t start2, word bytes2)
2106 {
2107     ptr_t start1_addr = GC_unmap_start(start1, bytes1);
2108     ptr_t end1_addr = GC_unmap_end(start1, bytes1);
2109     ptr_t start2_addr = GC_unmap_start(start2, bytes2);
2110     ptr_t end2_addr = GC_unmap_end(start2, bytes2);
2111     ptr_t start_addr = end1_addr;
2112     ptr_t end_addr = start2_addr;
2113     word len;
2114     GC_ASSERT(start1 + bytes1 == start2);
2115     if (0 == start1_addr) start_addr = GC_unmap_start(start1, bytes1 + bytes2);
2116     if (0 == start2_addr) end_addr = GC_unmap_end(start1, bytes1 + bytes2);
2117     if (0 == start_addr) return;
2118     len = end_addr - start_addr;
2119 #   if defined(MSWIN32) || defined(MSWINCE)
2120       while (len != 0) {
2121           MEMORY_BASIC_INFORMATION mem_info;
2122 	  GC_word free_len;
2123 	  if (VirtualQuery(start_addr, &mem_info, sizeof(mem_info))
2124 	      != sizeof(mem_info))
2125 	      ABORT("Weird VirtualQuery result");
2126 	  free_len = (len < mem_info.RegionSize) ? len : mem_info.RegionSize;
2127 	  if (!VirtualFree(start_addr, free_len, MEM_DECOMMIT))
2128 	      ABORT("VirtualFree failed");
2129 	  GC_unmapped_bytes += free_len;
2130 	  start_addr += free_len;
2131 	  len -= free_len;
2132       }
2133 #   else
2134       if (len != 0) {
2135         /* Immediately remap as above. */
2136         void * result;
2137         result = mmap(start_addr, len, PROT_NONE,
2138                       MAP_PRIVATE | MAP_FIXED | OPT_MAP_ANON,
2139                       zero_fd, 0/* offset */);
2140         if (result != (void *)start_addr) ABORT("mmap(...PROT_NONE...) failed");
2141       }
2142       GC_unmapped_bytes += len;
2143 #   endif
2144 }
2145 
2146 #endif /* USE_MUNMAP */
2147 
2148 /* Routine for pushing any additional roots.  In THREADS 	*/
2149 /* environment, this is also responsible for marking from 	*/
2150 /* thread stacks. 						*/
2151 #ifndef THREADS
2152 void (*GC_push_other_roots)() = 0;
2153 #else /* THREADS */
2154 
2155 # ifdef PCR
GC_push_thread_stack(PCR_Th_T * t,PCR_Any dummy)2156 PCR_ERes GC_push_thread_stack(PCR_Th_T *t, PCR_Any dummy)
2157 {
2158     struct PCR_ThCtl_TInfoRep info;
2159     PCR_ERes result;
2160 
2161     info.ti_stkLow = info.ti_stkHi = 0;
2162     result = PCR_ThCtl_GetInfo(t, &info);
2163     GC_push_all_stack((ptr_t)(info.ti_stkLow), (ptr_t)(info.ti_stkHi));
2164     return(result);
2165 }
2166 
2167 /* Push the contents of an old object. We treat this as stack	*/
2168 /* data only becasue that makes it robust against mark stack	*/
2169 /* overflow.							*/
GC_push_old_obj(void * p,size_t size,PCR_Any data)2170 PCR_ERes GC_push_old_obj(void *p, size_t size, PCR_Any data)
2171 {
2172     GC_push_all_stack((ptr_t)p, (ptr_t)p + size);
2173     return(PCR_ERes_okay);
2174 }
2175 
2176 
GC_default_push_other_roots(void)2177 void GC_default_push_other_roots GC_PROTO((void))
2178 {
2179     /* Traverse data allocated by previous memory managers.		*/
2180 	{
2181 	  extern struct PCR_MM_ProcsRep * GC_old_allocator;
2182 
2183 	  if ((*(GC_old_allocator->mmp_enumerate))(PCR_Bool_false,
2184 	  					   GC_push_old_obj, 0)
2185 	      != PCR_ERes_okay) {
2186 	      ABORT("Old object enumeration failed");
2187 	  }
2188 	}
2189     /* Traverse all thread stacks. */
2190 	if (PCR_ERes_IsErr(
2191                 PCR_ThCtl_ApplyToAllOtherThreads(GC_push_thread_stack,0))
2192               || PCR_ERes_IsErr(GC_push_thread_stack(PCR_Th_CurrThread(), 0))) {
2193               ABORT("Thread stack marking failed\n");
2194 	}
2195 }
2196 
2197 # endif /* PCR */
2198 
2199 # ifdef SRC_M3
2200 
2201 # ifdef ALL_INTERIOR_POINTERS
2202     --> misconfigured
2203 # endif
2204 
2205 void GC_push_thread_structures GC_PROTO((void))
2206 {
2207     /* Not our responsibibility. */
2208 }
2209 
2210 extern void ThreadF__ProcessStacks();
2211 
GC_push_thread_stack(start,stop)2212 void GC_push_thread_stack(start, stop)
2213 word start, stop;
2214 {
2215    GC_push_all_stack((ptr_t)start, (ptr_t)stop + sizeof(word));
2216 }
2217 
2218 /* Push routine with M3 specific calling convention. */
GC_m3_push_root(dummy1,p,dummy2,dummy3)2219 GC_m3_push_root(dummy1, p, dummy2, dummy3)
2220 word *p;
2221 ptr_t dummy1, dummy2;
2222 int dummy3;
2223 {
2224     word q = *p;
2225 
2226     GC_PUSH_ONE_STACK(q, p);
2227 }
2228 
2229 /* M3 set equivalent to RTHeap.TracedRefTypes */
2230 typedef struct { int elts[1]; }  RefTypeSet;
2231 RefTypeSet GC_TracedRefTypes = {{0x1}};
2232 
GC_default_push_other_roots(void)2233 void GC_default_push_other_roots GC_PROTO((void))
2234 {
2235     /* Use the M3 provided routine for finding static roots.	 */
2236     /* This is a bit dubious, since it presumes no C roots.	 */
2237     /* We handle the collector roots explicitly in GC_push_roots */
2238       	RTMain__GlobalMapProc(GC_m3_push_root, 0, GC_TracedRefTypes);
2239 	if (GC_words_allocd > 0) {
2240 	    ThreadF__ProcessStacks(GC_push_thread_stack);
2241 	}
2242 	/* Otherwise this isn't absolutely necessary, and we have	*/
2243 	/* startup ordering problems.					*/
2244 }
2245 
2246 # endif /* SRC_M3 */
2247 
2248 # if defined(GC_SOLARIS_THREADS) || defined(GC_PTHREADS) || \
2249      defined(GC_WIN32_THREADS)
2250 
2251 extern void GC_push_all_stacks();
2252 
GC_default_push_other_roots(void)2253 void GC_default_push_other_roots GC_PROTO((void))
2254 {
2255     GC_push_all_stacks();
2256 }
2257 
2258 # endif /* GC_SOLARIS_THREADS || GC_PTHREADS */
2259 #ifdef SN_TARGET_PS3
GC_default_push_other_roots(void)2260 void GC_default_push_other_roots GC_PROTO((void))
2261 {
2262 	printf ("WARNING WARNING WARNING\nGC_default_push_other_roots is not implemented\n");
2263 }
GC_push_thread_structures(void)2264 void GC_push_thread_structures GC_PROTO((void))
2265 {
2266 	printf ("WARNING WARNING WARNING\nGC_default_push_thread_structures is not implemented\n");
2267 }
2268 #endif
2269 
2270 void (*GC_push_other_roots) GC_PROTO((void)) = GC_default_push_other_roots;
2271 
2272 #endif /* THREADS */
2273 
2274 /*
2275  * Routines for accessing dirty  bits on virtual pages.
2276  * We plan to eventually implement four strategies for doing so:
2277  * DEFAULT_VDB:	A simple dummy implementation that treats every page
2278  *		as possibly dirty.  This makes incremental collection
2279  *		useless, but the implementation is still correct.
2280  * PCR_VDB:	Use PPCRs virtual dirty bit facility.
2281  * PROC_VDB:	Use the /proc facility for reading dirty bits.  Only
2282  *		works under some SVR4 variants.  Even then, it may be
2283  *		too slow to be entirely satisfactory.  Requires reading
2284  *		dirty bits for entire address space.  Implementations tend
2285  *		to assume that the client is a (slow) debugger.
2286  * MPROTECT_VDB:Protect pages and then catch the faults to keep track of
2287  *		dirtied pages.  The implementation (and implementability)
2288  *		is highly system dependent.  This usually fails when system
2289  *		calls write to a protected page.  We prevent the read system
2290  *		call from doing so.  It is the clients responsibility to
2291  *		make sure that other system calls are similarly protected
2292  *		or write only to the stack.
2293  */
2294 GC_bool GC_dirty_maintained = FALSE;
2295 
2296 # ifdef DEFAULT_VDB
2297 
2298 /* All of the following assume the allocation lock is held, and	*/
2299 /* signals are disabled.					*/
2300 
2301 /* The client asserts that unallocated pages in the heap are never	*/
2302 /* written.								*/
2303 
2304 /* Initialize virtual dirty bit implementation.			*/
GC_dirty_init()2305 void GC_dirty_init()
2306 {
2307 #   ifdef PRINTSTATS
2308       GC_printf0("Initializing DEFAULT_VDB...\n");
2309 #   endif
2310     GC_dirty_maintained = TRUE;
2311 }
2312 
2313 /* Retrieve system dirty bits for heap to a local buffer.	*/
2314 /* Restore the systems notion of which pages are dirty.		*/
GC_read_dirty()2315 void GC_read_dirty()
2316 {}
2317 
2318 /* Is the HBLKSIZE sized page at h marked dirty in the local buffer?	*/
2319 /* If the actual page size is different, this returns TRUE if any	*/
2320 /* of the pages overlapping h are dirty.  This routine may err on the	*/
2321 /* side of labelling pages as dirty (and this implementation does).	*/
2322 /*ARGSUSED*/
GC_page_was_dirty(h)2323 GC_bool GC_page_was_dirty(h)
2324 struct hblk *h;
2325 {
2326     return(TRUE);
2327 }
2328 
2329 /*
2330  * The following two routines are typically less crucial.  They matter
2331  * most with large dynamic libraries, or if we can't accurately identify
2332  * stacks, e.g. under Solaris 2.X.  Otherwise the following default
2333  * versions are adequate.
2334  */
2335 
2336 /* Could any valid GC heap pointer ever have been written to this page?	*/
2337 /*ARGSUSED*/
GC_page_was_ever_dirty(h)2338 GC_bool GC_page_was_ever_dirty(h)
2339 struct hblk *h;
2340 {
2341     return(TRUE);
2342 }
2343 
2344 /* Reset the n pages starting at h to "was never dirty" status.	*/
GC_is_fresh(h,n)2345 void GC_is_fresh(h, n)
2346 struct hblk *h;
2347 word n;
2348 {
2349 }
2350 
2351 /* A call that:						*/
2352 /* I) hints that [h, h+nblocks) is about to be written.	*/
2353 /* II) guarantees that protection is removed.		*/
2354 /* (I) may speed up some dirty bit implementations.	*/
2355 /* (II) may be essential if we need to ensure that	*/
2356 /* pointer-free system call buffers in the heap are 	*/
2357 /* not protected.					*/
2358 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)2359 void GC_remove_protection(h, nblocks, is_ptrfree)
2360 struct hblk *h;
2361 word nblocks;
2362 GC_bool is_ptrfree;
2363 {
2364 }
2365 
2366 # endif /* DEFAULT_VDB */
2367 
2368 
2369 # ifdef MPROTECT_VDB
2370 
2371 /*
2372  * See DEFAULT_VDB for interface descriptions.
2373  */
2374 
2375 /*
2376  * This implementation maintains dirty bits itself by catching write
2377  * faults and keeping track of them.  We assume nobody else catches
2378  * SIGBUS or SIGSEGV.  We assume no write faults occur in system calls.
2379  * This means that clients must ensure that system calls don't write
2380  * to the write-protected heap.  Probably the best way to do this is to
2381  * ensure that system calls write at most to POINTERFREE objects in the
2382  * heap, and do even that only if we are on a platform on which those
2383  * are not protected.  Another alternative is to wrap system calls
2384  * (see example for read below), but the current implementation holds
2385  * a lock across blocking calls, making it problematic for multithreaded
2386  * applications.
2387  * We assume the page size is a multiple of HBLKSIZE.
2388  * We prefer them to be the same.  We avoid protecting POINTERFREE
2389  * objects only if they are the same.
2390  */
2391 
2392 # if !defined(MSWIN32) && !defined(MSWINCE) && !defined(DARWIN)
2393 
2394 #   include <sys/mman.h>
2395 #   include <signal.h>
2396 #   include <sys/syscall.h>
2397 
2398 #   define PROTECT(addr, len) \
2399     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
2400     	      	       PROT_READ | OPT_PROT_EXEC) < 0) { \
2401     	    ABORT("mprotect failed"); \
2402     	  }
2403 #   define UNPROTECT(addr, len) \
2404     	  if (mprotect((caddr_t)(addr), (size_t)(len), \
2405     	  	       PROT_WRITE | PROT_READ | OPT_PROT_EXEC ) < 0) { \
2406     	    ABORT("un-mprotect failed"); \
2407     	  }
2408 
2409 # else
2410 
2411 # ifdef DARWIN
2412     /* Using vm_protect (mach syscall) over mprotect (BSD syscall) seems to
2413        decrease the likelihood of some of the problems described below. */
2414     #include <mach/vm_map.h>
2415     static mach_port_t GC_task_self;
2416     #define PROTECT(addr,len) \
2417         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2418                 FALSE,VM_PROT_READ) != KERN_SUCCESS) { \
2419             ABORT("vm_portect failed"); \
2420         }
2421     #define UNPROTECT(addr,len) \
2422         if(vm_protect(GC_task_self,(vm_address_t)(addr),(vm_size_t)(len), \
2423                 FALSE,VM_PROT_READ|VM_PROT_WRITE) != KERN_SUCCESS) { \
2424             ABORT("vm_portect failed"); \
2425         }
2426 # else
2427 
2428 #   ifndef MSWINCE
2429 #     include <signal.h>
2430 #   endif
2431 
2432     static DWORD protect_junk;
2433 #   define PROTECT(addr, len) \
2434 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READ, \
2435 	  		      &protect_junk)) { \
2436 	    DWORD last_error = GetLastError(); \
2437 	    GC_printf1("Last error code: %lx\n", last_error); \
2438 	    ABORT("VirtualProtect failed"); \
2439 	  }
2440 #   define UNPROTECT(addr, len) \
2441 	  if (!VirtualProtect((addr), (len), PAGE_EXECUTE_READWRITE, \
2442 	  		      &protect_junk)) { \
2443 	    ABORT("un-VirtualProtect failed"); \
2444 	  }
2445 # endif /* !DARWIN */
2446 # endif /* MSWIN32 || MSWINCE || DARWIN */
2447 
2448 #if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2449     typedef void (* SIG_PF)();
2450 #endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2451 
2452 #if defined(SUNOS5SIGS) || defined(OSF1) || defined(LINUX) \
2453     || defined(HURD)
2454 # ifdef __STDC__
2455     typedef void (* SIG_PF)(int);
2456 # else
2457     typedef void (* SIG_PF)();
2458 # endif
2459 #endif /* SUNOS5SIGS || OSF1 || LINUX || HURD */
2460 
2461 #if defined(MSWIN32)
2462     typedef LPTOP_LEVEL_EXCEPTION_FILTER SIG_PF;
2463 #   undef SIG_DFL
2464 #   define SIG_DFL (LPTOP_LEVEL_EXCEPTION_FILTER) (-1)
2465 #endif
2466 #if defined(MSWINCE)
2467     typedef LONG (WINAPI *SIG_PF)(struct _EXCEPTION_POINTERS *);
2468 #   undef SIG_DFL
2469 #   define SIG_DFL (SIG_PF) (-1)
2470 #endif
2471 
2472 #if defined(IRIX5) || defined(OSF1) || defined(HURD)
2473     typedef void (* REAL_SIG_PF)(int, int, struct sigcontext *);
2474 #endif /* IRIX5 || OSF1 || HURD */
2475 
2476 #if defined(SUNOS5SIGS)
2477 # if defined(HPUX) || defined(FREEBSD)
2478 #   define SIGINFO_T siginfo_t
2479 # else
2480 #   define SIGINFO_T struct siginfo
2481 # endif
2482 # ifdef __STDC__
2483     typedef void (* REAL_SIG_PF)(int, SIGINFO_T *, void *);
2484 # else
2485     typedef void (* REAL_SIG_PF)();
2486 # endif
2487 #endif /* SUNOS5SIGS */
2488 
2489 #if defined(LINUX)
2490 #   if __GLIBC__ > 2 || __GLIBC__ == 2 && __GLIBC_MINOR__ >= 2
2491       typedef struct sigcontext s_c;
2492 #   else  /* glibc < 2.2 */
2493 #     include <linux/version.h>
2494 #     if (LINUX_VERSION_CODE >= 0x20100) && !defined(M68K) || defined(ALPHA) || defined(ARM32)
2495         typedef struct sigcontext s_c;
2496 #     else
2497         typedef struct sigcontext_struct s_c;
2498 #     endif
2499 #   endif  /* glibc < 2.2 */
2500 #   if defined(ALPHA) || defined(M68K)
2501       typedef void (* REAL_SIG_PF)(int, int, s_c *);
2502 #   else
2503 #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2504         typedef void (* REAL_SIG_PF)(int, siginfo_t *, s_c *);
2505 	/* FIXME:						  */
2506 	/* According to SUSV3, the last argument should have type */
2507 	/* void * or ucontext_t *				  */
2508 #     else
2509         typedef void (* REAL_SIG_PF)(int, s_c);
2510 #     endif
2511 #   endif
2512 #   ifdef ALPHA
2513     /* Retrieve fault address from sigcontext structure by decoding	*/
2514     /* instruction.							*/
get_fault_addr(s_c * sc)2515     char * get_fault_addr(s_c *sc) {
2516         unsigned instr;
2517 	word faultaddr;
2518 
2519 	instr = *((unsigned *)(sc->sc_pc));
2520 	faultaddr = sc->sc_regs[(instr >> 16) & 0x1f];
2521 	faultaddr += (word) (((int)instr << 16) >> 16);
2522 	return (char *)faultaddr;
2523     }
2524 #   endif /* !ALPHA */
2525 # endif /* LINUX */
2526 
2527 #ifndef DARWIN
2528 SIG_PF GC_old_bus_handler;
2529 SIG_PF GC_old_segv_handler;	/* Also old MSWIN32 ACCESS_VIOLATION filter */
2530 #endif /* !DARWIN */
2531 
2532 #if defined(THREADS)
2533 /* We need to lock around the bitmap update in the write fault handler	*/
2534 /* in order to avoid the risk of losing a bit.  We do this with a 	*/
2535 /* test-and-set spin lock if we know how to do that.  Otherwise we	*/
2536 /* check whether we are already in the handler and use the dumb but	*/
2537 /* safe fallback algorithm of setting all bits in the word.		*/
2538 /* Contention should be very rare, so we do the minimum to handle it	*/
2539 /* correctly.								*/
2540 #ifdef GC_TEST_AND_SET_DEFINED
2541   static VOLATILE unsigned int fault_handler_lock = 0;
async_set_pht_entry_from_index(VOLATILE page_hash_table db,int index)2542   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2543     while (GC_test_and_set(&fault_handler_lock)) {}
2544     /* Could also revert to set_pht_entry_from_index_safe if initial	*/
2545     /* GC_test_and_set fails.						*/
2546     set_pht_entry_from_index(db, index);
2547     GC_clear(&fault_handler_lock);
2548   }
2549 #else /* !GC_TEST_AND_SET_DEFINED */
2550   /* THIS IS INCORRECT! The dirty bit vector may be temporarily wrong,	*/
2551   /* just before we notice the conflict and correct it. We may end up   */
2552   /* looking at it while it's wrong.  But this requires contention	*/
2553   /* exactly when a GC is triggered, which seems far less likely to	*/
2554   /* fail than the old code, which had no reported failures.  Thus we	*/
2555   /* leave it this way while we think of something better, or support	*/
2556   /* GC_test_and_set on the remaining platforms.			*/
2557   static VOLATILE word currently_updating = 0;
async_set_pht_entry_from_index(VOLATILE page_hash_table db,int index)2558   void async_set_pht_entry_from_index(VOLATILE page_hash_table db, int index) {
2559     unsigned int update_dummy;
2560     currently_updating = (word)(&update_dummy);
2561     set_pht_entry_from_index(db, index);
2562     /* If we get contention in the 10 or so instruction window here,	*/
2563     /* and we get stopped by a GC between the two updates, we lose!	*/
2564     if (currently_updating != (word)(&update_dummy)) {
2565 	set_pht_entry_from_index_safe(db, index);
2566 	/* We claim that if two threads concurrently try to update the	*/
2567 	/* dirty bit vector, the first one to execute UPDATE_START 	*/
2568 	/* will see it changed when UPDATE_END is executed.  (Note that	*/
2569 	/* &update_dummy must differ in two distinct threads.)  It	*/
2570 	/* will then execute set_pht_entry_from_index_safe, thus 	*/
2571 	/* returning us to a safe state, though not soon enough.	*/
2572     }
2573   }
2574 #endif /* !GC_TEST_AND_SET_DEFINED */
2575 #else /* !THREADS */
2576 # define async_set_pht_entry_from_index(db, index) \
2577 	set_pht_entry_from_index(db, index)
2578 #endif /* !THREADS */
2579 
2580 /*ARGSUSED*/
2581 #if !defined(DARWIN)
2582 # if defined (SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
GC_write_fault_handler(sig,code,scp,addr)2583     void GC_write_fault_handler(sig, code, scp, addr)
2584     int sig, code;
2585     struct sigcontext *scp;
2586     char * addr;
2587 #   ifdef SUNOS4
2588 #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2589 #     define CODE_OK (FC_CODE(code) == FC_PROT \
2590               	    || (FC_CODE(code) == FC_OBJERR \
2591               	       && FC_ERRNO(code) == FC_PROT))
2592 #   endif
2593 #   ifdef FREEBSD
2594 #     define SIG_OK (sig == SIGBUS)
2595 #     define CODE_OK TRUE
2596 #   endif
2597 # endif /* SUNOS4 || (FREEBSD && !SUNOS5SIGS) */
2598 
2599 # if defined(IRIX5) || defined(OSF1) || defined(HURD)
2600 #   include <errno.h>
2601     void GC_write_fault_handler(int sig, int code, struct sigcontext *scp)
2602 #   ifdef OSF1
2603 #     define SIG_OK (sig == SIGSEGV)
2604 #     define CODE_OK (code == 2 /* experimentally determined */)
2605 #   endif
2606 #   ifdef IRIX5
2607 #     define SIG_OK (sig == SIGSEGV)
2608 #     define CODE_OK (code == EACCES)
2609 #   endif
2610 #   ifdef HURD
2611 #     define SIG_OK (sig == SIGBUS || sig == SIGSEGV)
2612 #     define CODE_OK  TRUE
2613 #   endif
2614 # endif /* IRIX5 || OSF1 || HURD */
2615 
2616 # if defined(LINUX)
2617 #   if defined(ALPHA) || defined(M68K)
2618       void GC_write_fault_handler(int sig, int code, s_c * sc)
2619 #   else
2620 #     if defined(IA64) || defined(HP_PA) || defined(X86_64)
2621         void GC_write_fault_handler(int sig, siginfo_t * si, s_c * scp)
2622 #     else
2623 #       if defined(ARM32)
2624           void GC_write_fault_handler(int sig, int a2, int a3, int a4, s_c sc)
2625 #       else
2626           void GC_write_fault_handler(int sig, s_c sc)
2627 #       endif
2628 #     endif
2629 #   endif
2630 #   define SIG_OK (sig == SIGSEGV)
2631 #   define CODE_OK TRUE
2632 	/* Empirically c.trapno == 14, on IA32, but is that useful?     */
2633 	/* Should probably consider alignment issues on other 		*/
2634 	/* architectures.						*/
2635 # endif /* LINUX */
2636 
2637 # if defined(SUNOS5SIGS)
2638 #  ifdef __STDC__
2639     void GC_write_fault_handler(int sig, SIGINFO_T *scp, void * context)
2640 #  else
2641     void GC_write_fault_handler(sig, scp, context)
2642     int sig;
2643     SIGINFO_T *scp;
2644     void * context;
2645 #  endif
2646 #   ifdef HPUX
2647 #     define SIG_OK (sig == SIGSEGV || sig == SIGBUS)
2648 #     define CODE_OK (scp -> si_code == SEGV_ACCERR) \
2649 		     || (scp -> si_code == BUS_ADRERR) \
2650 		     || (scp -> si_code == BUS_UNKNOWN) \
2651 		     || (scp -> si_code == SEGV_UNKNOWN) \
2652 		     || (scp -> si_code == BUS_OBJERR)
2653 #   else
2654 #     ifdef FREEBSD
2655 #       define SIG_OK (sig == SIGBUS)
2656 #       define CODE_OK (scp -> si_code == BUS_PAGE_FAULT)
2657 #     else
2658 #       define SIG_OK (sig == SIGSEGV)
2659 #       define CODE_OK (scp -> si_code == SEGV_ACCERR)
2660 #     endif
2661 #   endif
2662 # endif /* SUNOS5SIGS */
2663 
2664 # if defined(MSWIN32) || defined(MSWINCE)
2665     LONG WINAPI GC_write_fault_handler(struct _EXCEPTION_POINTERS *exc_info)
2666 #   define SIG_OK (exc_info -> ExceptionRecord -> ExceptionCode == \
2667 			STATUS_ACCESS_VIOLATION)
2668 #   define CODE_OK (exc_info -> ExceptionRecord -> ExceptionInformation[0] == 1)
2669 			/* Write fault */
2670 # endif /* MSWIN32 || MSWINCE */
2671 {
2672     register unsigned i;
2673 #   if defined(HURD)
2674 	char *addr = (char *) code;
2675 #   endif
2676 #   ifdef IRIX5
2677 	char * addr = (char *) (size_t) (scp -> sc_badvaddr);
2678 #   endif
2679 #   if defined(OSF1) && defined(ALPHA)
2680 	char * addr = (char *) (scp -> sc_traparg_a0);
2681 #   endif
2682 #   ifdef SUNOS5SIGS
2683 	char * addr = (char *) (scp -> si_addr);
2684 #   endif
2685 #   ifdef LINUX
2686 #     if defined(I386)
2687 	char * addr = (char *) (sc.cr2);
2688 #     else
2689 #	if defined(M68K)
2690           char * addr = NULL;
2691 
2692 	  struct sigcontext *scp = (struct sigcontext *)(sc);
2693 
2694 	  int format = (scp->sc_formatvec >> 12) & 0xf;
2695 	  unsigned long *framedata = (unsigned long *)(scp + 1);
2696 	  unsigned long ea;
2697 
2698 	  if (format == 0xa || format == 0xb) {
2699 	  	/* 68020/030 */
2700 	  	ea = framedata[2];
2701 	  } else if (format == 7) {
2702 	  	/* 68040 */
2703 	  	ea = framedata[3];
2704 	  	if (framedata[1] & 0x08000000) {
2705 	  		/* correct addr on misaligned access */
2706 	  		ea = (ea+4095)&(~4095);
2707 		}
2708 	  } else if (format == 4) {
2709 	  	/* 68060 */
2710 	  	ea = framedata[0];
2711 	  	if (framedata[1] & 0x08000000) {
2712 	  		/* correct addr on misaligned access */
2713 	  		ea = (ea+4095)&(~4095);
2714 	  	}
2715 	  }
2716 	  addr = (char *)ea;
2717 #	else
2718 #	  ifdef ALPHA
2719             char * addr = get_fault_addr(sc);
2720 #	  else
2721 #	    if defined(IA64) || defined(HP_PA) || defined(X86_64)
2722 	      char * addr = si -> si_addr;
2723 	      /* I believe this is claimed to work on all platforms for	*/
2724 	      /* Linux 2.3.47 and later.  Hopefully we don't have to	*/
2725 	      /* worry about earlier kernels on IA64.			*/
2726 #	    else
2727 #             if defined(POWERPC)
2728                 char * addr = (char *) (sc.regs->dar);
2729 #	      else
2730 #               if defined(ARM32)
2731                   char * addr = (char *)sc.fault_address;
2732 #               else
2733 #		  if defined(CRIS)
2734 		    char * addr = (char *)sc.regs.csraddr;
2735 #		  else
2736 		    --> architecture not supported
2737 #		  endif
2738 #               endif
2739 #	      endif
2740 #	    endif
2741 #	  endif
2742 #	endif
2743 #     endif
2744 #   endif
2745 #   if defined(MSWIN32) || defined(MSWINCE)
2746 	char * addr = (char *) (exc_info -> ExceptionRecord
2747 				-> ExceptionInformation[1]);
2748 #	define sig SIGSEGV
2749 #   endif
2750 
2751     if (SIG_OK && CODE_OK) {
2752         register struct hblk * h =
2753         		(struct hblk *)((word)addr & ~(GC_page_size-1));
2754         GC_bool in_allocd_block;
2755 
2756 #	ifdef SUNOS5SIGS
2757 	    /* Address is only within the correct physical page.	*/
2758 	    in_allocd_block = FALSE;
2759             for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2760               if (HDR(h+i) != 0) {
2761                 in_allocd_block = TRUE;
2762               }
2763             }
2764 #	else
2765 	    in_allocd_block = (HDR(addr) != 0);
2766 #	endif
2767         if (!in_allocd_block) {
2768 	    /* FIXME - We should make sure that we invoke the	*/
2769 	    /* old handler with the appropriate calling 	*/
2770 	    /* sequence, which often depends on SA_SIGINFO.	*/
2771 
2772 	    /* Heap blocks now begin and end on page boundaries */
2773             SIG_PF old_handler;
2774 
2775             if (sig == SIGSEGV) {
2776             	old_handler = GC_old_segv_handler;
2777             } else {
2778                 old_handler = GC_old_bus_handler;
2779             }
2780             if (old_handler == SIG_DFL) {
2781 #		if !defined(MSWIN32) && !defined(MSWINCE)
2782 		    GC_err_printf1("Segfault at 0x%lx\n", addr);
2783                     ABORT("Unexpected bus error or segmentation fault");
2784 #		else
2785 		    return(EXCEPTION_CONTINUE_SEARCH);
2786 #		endif
2787             } else {
2788 #		if defined (SUNOS4) \
2789                     || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2790 		    (*old_handler) (sig, code, scp, addr);
2791 		    return;
2792 #		endif
2793 #		if defined (SUNOS5SIGS)
2794                     /*
2795                      * FIXME: For FreeBSD, this code should check if the
2796                      * old signal handler used the traditional BSD style and
2797                      * if so call it using that style.
2798                      */
2799 		    (*(REAL_SIG_PF)old_handler) (sig, scp, context);
2800 		    return;
2801 #		endif
2802 #		if defined (LINUX)
2803 #		    if defined(ALPHA) || defined(M68K)
2804 		        (*(REAL_SIG_PF)old_handler) (sig, code, sc);
2805 #		    else
2806 #		      if defined(IA64) || defined(HP_PA) || defined(X86_64)
2807 		        (*(REAL_SIG_PF)old_handler) (sig, si, scp);
2808 #		      else
2809 		        (*(REAL_SIG_PF)old_handler) (sig, sc);
2810 #		      endif
2811 #		    endif
2812 		    return;
2813 #		endif
2814 #		if defined (IRIX5) || defined(OSF1) || defined(HURD)
2815 		    (*(REAL_SIG_PF)old_handler) (sig, code, scp);
2816 		    return;
2817 #		endif
2818 #		ifdef MSWIN32
2819 		    return((*old_handler)(exc_info));
2820 #		endif
2821             }
2822         }
2823         UNPROTECT(h, GC_page_size);
2824 	/* We need to make sure that no collection occurs between	*/
2825 	/* the UNPROTECT and the setting of the dirty bit.  Otherwise	*/
2826 	/* a write by a third thread might go unnoticed.  Reversing	*/
2827 	/* the order is just as bad, since we would end up unprotecting	*/
2828 	/* a page in a GC cycle during which it's not marked.		*/
2829 	/* Currently we do this by disabling the thread stopping	*/
2830 	/* signals while this handler is running.  An alternative might	*/
2831 	/* be to record the fact that we're about to unprotect, or	*/
2832 	/* have just unprotected a page in the GC's thread structure,	*/
2833 	/* and then to have the thread stopping code set the dirty	*/
2834 	/* flag, if necessary.						*/
2835         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
2836             register int index = PHT_HASH(h+i);
2837 
2838             async_set_pht_entry_from_index(GC_dirty_pages, index);
2839         }
2840 #	if defined(OSF1)
2841 	    /* These reset the signal handler each time by default. */
2842 	    signal(SIGSEGV, (SIG_PF) GC_write_fault_handler);
2843 #	endif
2844     	/* The write may not take place before dirty bits are read.	*/
2845     	/* But then we'll fault again ...				*/
2846 #	if defined(MSWIN32) || defined(MSWINCE)
2847 	    return(EXCEPTION_CONTINUE_EXECUTION);
2848 #	else
2849 	    return;
2850 #	endif
2851     }
2852 #if defined(MSWIN32) || defined(MSWINCE)
2853     return EXCEPTION_CONTINUE_SEARCH;
2854 #else
2855     GC_err_printf1("Segfault at 0x%lx\n", addr);
2856     ABORT("Unexpected bus error or segmentation fault");
2857 #endif
2858 }
2859 #endif /* !DARWIN */
2860 
2861 /*
2862  * We hold the allocation lock.  We expect block h to be written
2863  * shortly.  Ensure that all pages containing any part of the n hblks
2864  * starting at h are no longer protected.  If is_ptrfree is false,
2865  * also ensure that they will subsequently appear to be dirty.
2866  */
GC_remove_protection(h,nblocks,is_ptrfree)2867 void GC_remove_protection(h, nblocks, is_ptrfree)
2868 struct hblk *h;
2869 word nblocks;
2870 GC_bool is_ptrfree;
2871 {
2872     struct hblk * h_trunc;  /* Truncated to page boundary */
2873     struct hblk * h_end;    /* Page boundary following block end */
2874     struct hblk * current;
2875     GC_bool found_clean;
2876 
2877     if (!GC_dirty_maintained) return;
2878     h_trunc = (struct hblk *)((word)h & ~(GC_page_size-1));
2879     h_end = (struct hblk *)(((word)(h + nblocks) + GC_page_size-1)
2880 	                    & ~(GC_page_size-1));
2881     found_clean = FALSE;
2882     for (current = h_trunc; current < h_end; ++current) {
2883         int index = PHT_HASH(current);
2884 
2885         if (!is_ptrfree || current < h || current >= h + nblocks) {
2886             async_set_pht_entry_from_index(GC_dirty_pages, index);
2887         }
2888     }
2889     UNPROTECT(h_trunc, (ptr_t)h_end - (ptr_t)h_trunc);
2890 }
2891 
2892 #if !defined(DARWIN)
GC_dirty_init()2893 void GC_dirty_init()
2894 {
2895 #   if defined(SUNOS5SIGS) || defined(IRIX5) || defined(LINUX) || \
2896        defined(OSF1) || defined(HURD)
2897       struct sigaction	act, oldact;
2898       /* We should probably specify SA_SIGINFO for Linux, and handle 	*/
2899       /* the different architectures more uniformly.			*/
2900 #     if defined(IRIX5) || defined(LINUX) && !defined(X86_64) \
2901 	 || defined(OSF1) || defined(HURD)
2902     	act.sa_flags	= SA_RESTART;
2903         act.sa_handler  = (SIG_PF)GC_write_fault_handler;
2904 #     else
2905     	act.sa_flags	= SA_RESTART | SA_SIGINFO;
2906         act.sa_sigaction = GC_write_fault_handler;
2907 #     endif
2908       (void)sigemptyset(&act.sa_mask);
2909 #     ifdef SIG_SUSPEND
2910         /* Arrange to postpone SIG_SUSPEND while we're in a write fault	*/
2911         /* handler.  This effectively makes the handler atomic w.r.t.	*/
2912         /* stopping the world for GC.					*/
2913         (void)sigaddset(&act.sa_mask, SIG_SUSPEND);
2914 #     endif /* SIG_SUSPEND */
2915 #    endif
2916 #   ifdef PRINTSTATS
2917 	GC_printf0("Inititalizing mprotect virtual dirty bit implementation\n");
2918 #   endif
2919     GC_dirty_maintained = TRUE;
2920     if (GC_page_size % HBLKSIZE != 0) {
2921         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
2922         ABORT("Page size not multiple of HBLKSIZE");
2923     }
2924 #   if defined(SUNOS4) || (defined(FREEBSD) && !defined(SUNOS5SIGS))
2925       GC_old_bus_handler = signal(SIGBUS, GC_write_fault_handler);
2926       if (GC_old_bus_handler == SIG_IGN) {
2927         GC_err_printf0("Previously ignored bus error!?");
2928         GC_old_bus_handler = SIG_DFL;
2929       }
2930       if (GC_old_bus_handler != SIG_DFL) {
2931 #	ifdef PRINTSTATS
2932           GC_err_printf0("Replaced other SIGBUS handler\n");
2933 #	endif
2934       }
2935 #   endif
2936 #   if defined(SUNOS4)
2937       GC_old_segv_handler = signal(SIGSEGV, (SIG_PF)GC_write_fault_handler);
2938       if (GC_old_segv_handler == SIG_IGN) {
2939         GC_err_printf0("Previously ignored segmentation violation!?");
2940         GC_old_segv_handler = SIG_DFL;
2941       }
2942       if (GC_old_segv_handler != SIG_DFL) {
2943 #	ifdef PRINTSTATS
2944           GC_err_printf0("Replaced other SIGSEGV handler\n");
2945 #	endif
2946       }
2947 #   endif
2948 #   if (defined(SUNOS5SIGS) && !defined(FREEBSD)) || defined(IRIX5) \
2949        || defined(LINUX) || defined(OSF1) || defined(HURD)
2950       /* SUNOS5SIGS includes HPUX */
2951 #     if defined(GC_IRIX_THREADS)
2952       	sigaction(SIGSEGV, 0, &oldact);
2953       	sigaction(SIGSEGV, &act, 0);
2954 #     else
2955 	{
2956 	  int res = sigaction(SIGSEGV, &act, &oldact);
2957 	  if (res != 0) ABORT("Sigaction failed");
2958  	}
2959 #     endif
2960 #     if defined(_sigargs) || defined(HURD) || !defined(SA_SIGINFO)
2961 	/* This is Irix 5.x, not 6.x.  Irix 5.x does not have	*/
2962 	/* sa_sigaction.					*/
2963 	GC_old_segv_handler = oldact.sa_handler;
2964 #     else /* Irix 6.x or SUNOS5SIGS or LINUX */
2965         if (oldact.sa_flags & SA_SIGINFO) {
2966           GC_old_segv_handler = (SIG_PF)(oldact.sa_sigaction);
2967         } else {
2968           GC_old_segv_handler = oldact.sa_handler;
2969         }
2970 #     endif
2971       if (GC_old_segv_handler == SIG_IGN) {
2972 	     GC_err_printf0("Previously ignored segmentation violation!?");
2973 	     GC_old_segv_handler = SIG_DFL;
2974       }
2975       if (GC_old_segv_handler != SIG_DFL) {
2976 #       ifdef PRINTSTATS
2977 	  GC_err_printf0("Replaced other SIGSEGV handler\n");
2978 #       endif
2979       }
2980 #   endif /* (SUNOS5SIGS && !FREEBSD) || IRIX5 || LINUX || OSF1 || HURD */
2981 #   if defined(HPUX) || defined(LINUX) || defined(HURD) \
2982       || (defined(FREEBSD) && defined(SUNOS5SIGS))
2983       sigaction(SIGBUS, &act, &oldact);
2984       GC_old_bus_handler = oldact.sa_handler;
2985       if (GC_old_bus_handler == SIG_IGN) {
2986 	     GC_err_printf0("Previously ignored bus error!?");
2987 	     GC_old_bus_handler = SIG_DFL;
2988       }
2989       if (GC_old_bus_handler != SIG_DFL) {
2990 #       ifdef PRINTSTATS
2991 	  GC_err_printf0("Replaced other SIGBUS handler\n");
2992 #       endif
2993       }
2994 #   endif /* HPUX || LINUX || HURD || (FREEBSD && SUNOS5SIGS) */
2995 #   if defined(MSWIN32)
2996       GC_old_segv_handler = SetUnhandledExceptionFilter(GC_write_fault_handler);
2997       if (GC_old_segv_handler != NULL) {
2998 #	ifdef PRINTSTATS
2999           GC_err_printf0("Replaced other UnhandledExceptionFilter\n");
3000 #	endif
3001       } else {
3002           GC_old_segv_handler = SIG_DFL;
3003       }
3004 #   endif
3005 }
3006 #endif /* !DARWIN */
3007 
GC_incremental_protection_needs()3008 int GC_incremental_protection_needs()
3009 {
3010     if (GC_page_size == HBLKSIZE) {
3011 	return GC_PROTECTS_POINTER_HEAP;
3012     } else {
3013 	return GC_PROTECTS_POINTER_HEAP | GC_PROTECTS_PTRFREE_HEAP;
3014     }
3015 }
3016 
3017 #define HAVE_INCREMENTAL_PROTECTION_NEEDS
3018 
3019 #define IS_PTRFREE(hhdr) ((hhdr)->hb_descr == 0)
3020 
3021 #define PAGE_ALIGNED(x) !((word)(x) & (GC_page_size - 1))
GC_protect_heap()3022 void GC_protect_heap()
3023 {
3024     ptr_t start;
3025     word len;
3026     struct hblk * current;
3027     struct hblk * current_start;  /* Start of block to be protected. */
3028     struct hblk * limit;
3029     unsigned i;
3030     GC_bool protect_all =
3031 	  (0 != (GC_incremental_protection_needs() & GC_PROTECTS_PTRFREE_HEAP));
3032     for (i = 0; i < GC_n_heap_sects; i++) {
3033         start = GC_heap_sects[i].hs_start;
3034         len = GC_heap_sects[i].hs_bytes;
3035 	if (protect_all) {
3036           PROTECT(start, len);
3037 	} else {
3038 	  GC_ASSERT(PAGE_ALIGNED(len))
3039 	  GC_ASSERT(PAGE_ALIGNED(start))
3040 	  current_start = current = (struct hblk *)start;
3041 	  limit = (struct hblk *)(start + len);
3042 	  while (current < limit) {
3043             hdr * hhdr;
3044 	    word nhblks;
3045 	    GC_bool is_ptrfree;
3046 
3047 	    GC_ASSERT(PAGE_ALIGNED(current));
3048 	    GET_HDR(current, hhdr);
3049 	    if (IS_FORWARDING_ADDR_OR_NIL(hhdr)) {
3050 	      /* This can happen only if we're at the beginning of a 	*/
3051 	      /* heap segment, and a block spans heap segments.		*/
3052 	      /* We will handle that block as part of the preceding	*/
3053 	      /* segment.						*/
3054 	      GC_ASSERT(current_start == current);
3055 	      current_start = ++current;
3056 	      continue;
3057 	    }
3058 	    if (HBLK_IS_FREE(hhdr)) {
3059 	      GC_ASSERT(PAGE_ALIGNED(hhdr -> hb_sz));
3060 	      nhblks = divHBLKSZ(hhdr -> hb_sz);
3061 	      is_ptrfree = TRUE;	/* dirty on alloc */
3062 	    } else {
3063 	      nhblks = OBJ_SZ_TO_BLOCKS(hhdr -> hb_sz);
3064 	      is_ptrfree = IS_PTRFREE(hhdr);
3065 	    }
3066 	    if (is_ptrfree) {
3067 	      if (current_start < current) {
3068 		PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
3069 	      }
3070 	      current_start = (current += nhblks);
3071 	    } else {
3072 	      current += nhblks;
3073 	    }
3074 	  }
3075 	  if (current_start < current) {
3076 	    PROTECT(current_start, (ptr_t)current - (ptr_t)current_start);
3077 	  }
3078 	}
3079     }
3080 }
3081 
3082 /* We assume that either the world is stopped or its OK to lose dirty	*/
3083 /* bits while this is happenning (as in GC_enable_incremental).		*/
GC_read_dirty()3084 void GC_read_dirty()
3085 {
3086     BCOPY((word *)GC_dirty_pages, GC_grungy_pages,
3087           (sizeof GC_dirty_pages));
3088     BZERO((word *)GC_dirty_pages, (sizeof GC_dirty_pages));
3089     GC_protect_heap();
3090 }
3091 
GC_page_was_dirty(h)3092 GC_bool GC_page_was_dirty(h)
3093 struct hblk * h;
3094 {
3095     register word index = PHT_HASH(h);
3096 
3097     return(HDR(h) == 0 || get_pht_entry_from_index(GC_grungy_pages, index));
3098 }
3099 
3100 /*
3101  * Acquiring the allocation lock here is dangerous, since this
3102  * can be called from within GC_call_with_alloc_lock, and the cord
3103  * package does so.  On systems that allow nested lock acquisition, this
3104  * happens to work.
3105  * On other systems, SET_LOCK_HOLDER and friends must be suitably defined.
3106  */
3107 
3108 static GC_bool syscall_acquired_lock = FALSE;	/* Protected by GC lock. */
3109 
GC_begin_syscall()3110 void GC_begin_syscall()
3111 {
3112     if (!I_HOLD_LOCK()) {
3113 	LOCK();
3114 	syscall_acquired_lock = TRUE;
3115     }
3116 }
3117 
GC_end_syscall()3118 void GC_end_syscall()
3119 {
3120     if (syscall_acquired_lock) {
3121 	syscall_acquired_lock = FALSE;
3122 	UNLOCK();
3123     }
3124 }
3125 
GC_unprotect_range(addr,len)3126 void GC_unprotect_range(addr, len)
3127 ptr_t addr;
3128 word len;
3129 {
3130     struct hblk * start_block;
3131     struct hblk * end_block;
3132     register struct hblk *h;
3133     ptr_t obj_start;
3134 
3135     if (!GC_dirty_maintained) return;
3136     obj_start = GC_base(addr);
3137     if (obj_start == 0) return;
3138     if (GC_base(addr + len - 1) != obj_start) {
3139         ABORT("GC_unprotect_range(range bigger than object)");
3140     }
3141     start_block = (struct hblk *)((word)addr & ~(GC_page_size - 1));
3142     end_block = (struct hblk *)((word)(addr + len - 1) & ~(GC_page_size - 1));
3143     end_block += GC_page_size/HBLKSIZE - 1;
3144     for (h = start_block; h <= end_block; h++) {
3145         register word index = PHT_HASH(h);
3146 
3147         async_set_pht_entry_from_index(GC_dirty_pages, index);
3148     }
3149     UNPROTECT(start_block,
3150     	      ((ptr_t)end_block - (ptr_t)start_block) + HBLKSIZE);
3151 }
3152 
3153 #if 0
3154 
3155 /* We no longer wrap read by default, since that was causing too many	*/
3156 /* problems.  It is preferred that the client instead avoids writing	*/
3157 /* to the write-protected heap with a system call.			*/
3158 /* This still serves as sample code if you do want to wrap system calls.*/
3159 
3160 #if !defined(MSWIN32) && !defined(MSWINCE) && !defined(GC_USE_LD_WRAP)
3161 /* Replacement for UNIX system call.					  */
3162 /* Other calls that write to the heap should be handled similarly.	  */
3163 /* Note that this doesn't work well for blocking reads:  It will hold	  */
3164 /* the allocation lock for the entire duration of the call. Multithreaded */
3165 /* clients should really ensure that it won't block, either by setting 	  */
3166 /* the descriptor nonblocking, or by calling select or poll first, to	  */
3167 /* make sure that input is available.					  */
3168 /* Another, preferred alternative is to ensure that system calls never 	  */
3169 /* write to the protected heap (see above).				  */
3170 # if defined(__STDC__) && !defined(SUNOS4)
3171 #   include <unistd.h>
3172 #   include <sys/uio.h>
3173     ssize_t read(int fd, void *buf, size_t nbyte)
3174 # else
3175 #   ifndef LINT
3176       int read(fd, buf, nbyte)
3177 #   else
3178       int GC_read(fd, buf, nbyte)
3179 #   endif
3180     int fd;
3181     char *buf;
3182     int nbyte;
3183 # endif
3184 {
3185     int result;
3186 
3187     GC_begin_syscall();
3188     GC_unprotect_range(buf, (word)nbyte);
3189 #   if defined(IRIX5) || defined(GC_LINUX_THREADS)
3190 	/* Indirect system call may not always be easily available.	*/
3191 	/* We could call _read, but that would interfere with the	*/
3192 	/* libpthread interception of read.				*/
3193 	/* On Linux, we have to be careful with the linuxthreads	*/
3194 	/* read interception.						*/
3195 	{
3196 	    struct iovec iov;
3197 
3198 	    iov.iov_base = buf;
3199 	    iov.iov_len = nbyte;
3200 	    result = readv(fd, &iov, 1);
3201 	}
3202 #   else
3203 #     if defined(HURD)
3204 	result = __read(fd, buf, nbyte);
3205 #     else
3206  	/* The two zero args at the end of this list are because one
3207  	   IA-64 syscall() implementation actually requires six args
3208  	   to be passed, even though they aren't always used. */
3209      	result = syscall(SYS_read, fd, buf, nbyte, 0, 0);
3210 #     endif /* !HURD */
3211 #   endif
3212     GC_end_syscall();
3213     return(result);
3214 }
3215 #endif /* !MSWIN32 && !MSWINCE && !GC_LINUX_THREADS */
3216 
3217 #if defined(GC_USE_LD_WRAP) && !defined(THREADS)
3218     /* We use the GNU ld call wrapping facility.			*/
3219     /* This requires that the linker be invoked with "--wrap read".	*/
3220     /* This can be done by passing -Wl,"--wrap read" to gcc.		*/
3221     /* I'm not sure that this actually wraps whatever version of read	*/
3222     /* is called by stdio.  That code also mentions __read.		*/
3223 #   include <unistd.h>
3224     ssize_t __wrap_read(int fd, void *buf, size_t nbyte)
3225     {
3226  	int result;
3227 
3228 	GC_begin_syscall();
3229     	GC_unprotect_range(buf, (word)nbyte);
3230 	result = __real_read(fd, buf, nbyte);
3231 	GC_end_syscall();
3232 	return(result);
3233     }
3234 
3235     /* We should probably also do this for __read, or whatever stdio	*/
3236     /* actually calls.							*/
3237 #endif
3238 
3239 #endif /* 0 */
3240 
3241 /*ARGSUSED*/
GC_page_was_ever_dirty(h)3242 GC_bool GC_page_was_ever_dirty(h)
3243 struct hblk *h;
3244 {
3245     return(TRUE);
3246 }
3247 
3248 /* Reset the n pages starting at h to "was never dirty" status.	*/
3249 /*ARGSUSED*/
GC_is_fresh(h,n)3250 void GC_is_fresh(h, n)
3251 struct hblk *h;
3252 word n;
3253 {
3254 }
3255 
3256 # endif /* MPROTECT_VDB */
3257 
3258 # ifdef PROC_VDB
3259 
3260 /*
3261  * See DEFAULT_VDB for interface descriptions.
3262  */
3263 
3264 /*
3265  * This implementaion assumes a Solaris 2.X like /proc pseudo-file-system
3266  * from which we can read page modified bits.  This facility is far from
3267  * optimal (e.g. we would like to get the info for only some of the
3268  * address space), but it avoids intercepting system calls.
3269  */
3270 
3271 #include <errno.h>
3272 #include <sys/types.h>
3273 #include <sys/signal.h>
3274 #include <sys/fault.h>
3275 #include <sys/syscall.h>
3276 #include <sys/procfs.h>
3277 #include <sys/stat.h>
3278 
3279 #define INITIAL_BUF_SZ 16384
3280 word GC_proc_buf_size = INITIAL_BUF_SZ;
3281 char *GC_proc_buf;
3282 
3283 #ifdef GC_SOLARIS_THREADS
3284 /* We don't have exact sp values for threads.  So we count on	*/
3285 /* occasionally declaring stack pages to be fresh.  Thus we 	*/
3286 /* need a real implementation of GC_is_fresh.  We can't clear	*/
3287 /* entries in GC_written_pages, since that would declare all	*/
3288 /* pages with the given hash address to be fresh.		*/
3289 #   define MAX_FRESH_PAGES 8*1024	/* Must be power of 2 */
3290     struct hblk ** GC_fresh_pages;	/* A direct mapped cache.	*/
3291     					/* Collisions are dropped.	*/
3292 
3293 #   define FRESH_PAGE_SLOT(h) (divHBLKSZ((word)(h)) & (MAX_FRESH_PAGES-1))
3294 #   define ADD_FRESH_PAGE(h) \
3295 	GC_fresh_pages[FRESH_PAGE_SLOT(h)] = (h)
3296 #   define PAGE_IS_FRESH(h) \
3297 	(GC_fresh_pages[FRESH_PAGE_SLOT(h)] == (h) && (h) != 0)
3298 #endif
3299 
3300 /* Add all pages in pht2 to pht1 */
GC_or_pages(pht1,pht2)3301 void GC_or_pages(pht1, pht2)
3302 page_hash_table pht1, pht2;
3303 {
3304     register int i;
3305 
3306     for (i = 0; i < PHT_SIZE; i++) pht1[i] |= pht2[i];
3307 }
3308 
3309 int GC_proc_fd;
3310 
GC_dirty_init()3311 void GC_dirty_init()
3312 {
3313     int fd;
3314     char buf[30];
3315 
3316     GC_dirty_maintained = TRUE;
3317     if (GC_words_allocd != 0 || GC_words_allocd_before_gc != 0) {
3318     	register int i;
3319 
3320         for (i = 0; i < PHT_SIZE; i++) GC_written_pages[i] = (word)(-1);
3321 #       ifdef PRINTSTATS
3322 	    GC_printf1("Allocated words:%lu:all pages may have been written\n",
3323 	    	       (unsigned long)
3324 	    	      		(GC_words_allocd + GC_words_allocd_before_gc));
3325 #	endif
3326     }
3327     sprintf(buf, "/proc/%d", getpid());
3328     fd = open(buf, O_RDONLY);
3329     if (fd < 0) {
3330     	ABORT("/proc open failed");
3331     }
3332     GC_proc_fd = syscall(SYS_ioctl, fd, PIOCOPENPD, 0);
3333     close(fd);
3334     syscall(SYS_fcntl, GC_proc_fd, F_SETFD, FD_CLOEXEC);
3335     if (GC_proc_fd < 0) {
3336     	ABORT("/proc ioctl failed");
3337     }
3338     GC_proc_buf = GC_scratch_alloc(GC_proc_buf_size);
3339 #   ifdef GC_SOLARIS_THREADS
3340 	GC_fresh_pages = (struct hblk **)
3341 	  GC_scratch_alloc(MAX_FRESH_PAGES * sizeof (struct hblk *));
3342 	if (GC_fresh_pages == 0) {
3343 	    GC_err_printf0("No space for fresh pages\n");
3344 	    EXIT();
3345 	}
3346 	BZERO(GC_fresh_pages, MAX_FRESH_PAGES * sizeof (struct hblk *));
3347 #   endif
3348 }
3349 
3350 /* Ignore write hints. They don't help us here.	*/
3351 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)3352 void GC_remove_protection(h, nblocks, is_ptrfree)
3353 struct hblk *h;
3354 word nblocks;
3355 GC_bool is_ptrfree;
3356 {
3357 }
3358 
3359 #ifdef GC_SOLARIS_THREADS
3360 #   define READ(fd,buf,nbytes) syscall(SYS_read, fd, buf, nbytes)
3361 #else
3362 #   define READ(fd,buf,nbytes) read(fd, buf, nbytes)
3363 #endif
3364 
GC_read_dirty()3365 void GC_read_dirty()
3366 {
3367     unsigned long ps, np;
3368     int nmaps;
3369     ptr_t vaddr;
3370     struct prasmap * map;
3371     char * bufp;
3372     ptr_t current_addr, limit;
3373     int i;
3374 int dummy;
3375 
3376     BZERO(GC_grungy_pages, (sizeof GC_grungy_pages));
3377 
3378     bufp = GC_proc_buf;
3379     if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3380 #	ifdef PRINTSTATS
3381             GC_printf1("/proc read failed: GC_proc_buf_size = %lu\n",
3382             	       GC_proc_buf_size);
3383 #	endif
3384         {
3385             /* Retry with larger buffer. */
3386             word new_size = 2 * GC_proc_buf_size;
3387             char * new_buf = GC_scratch_alloc(new_size);
3388 
3389             if (new_buf != 0) {
3390                 GC_proc_buf = bufp = new_buf;
3391                 GC_proc_buf_size = new_size;
3392             }
3393             if (READ(GC_proc_fd, bufp, GC_proc_buf_size) <= 0) {
3394                 WARN("Insufficient space for /proc read\n", 0);
3395                 /* Punt:	*/
3396         	memset(GC_grungy_pages, 0xff, sizeof (page_hash_table));
3397 		memset(GC_written_pages, 0xff, sizeof(page_hash_table));
3398 #		ifdef GC_SOLARIS_THREADS
3399 		    BZERO(GC_fresh_pages,
3400 		    	  MAX_FRESH_PAGES * sizeof (struct hblk *));
3401 #		endif
3402 		return;
3403             }
3404         }
3405     }
3406     /* Copy dirty bits into GC_grungy_pages */
3407     	nmaps = ((struct prpageheader *)bufp) -> pr_nmap;
3408 	/* printf( "nmaps = %d, PG_REFERENCED = %d, PG_MODIFIED = %d\n",
3409 		     nmaps, PG_REFERENCED, PG_MODIFIED); */
3410 	bufp = bufp + sizeof(struct prpageheader);
3411 	for (i = 0; i < nmaps; i++) {
3412 	    map = (struct prasmap *)bufp;
3413 	    vaddr = (ptr_t)(map -> pr_vaddr);
3414 	    ps = map -> pr_pagesize;
3415 	    np = map -> pr_npage;
3416 	    /* printf("vaddr = 0x%X, ps = 0x%X, np = 0x%X\n", vaddr, ps, np); */
3417 	    limit = vaddr + ps * np;
3418 	    bufp += sizeof (struct prasmap);
3419 	    for (current_addr = vaddr;
3420 	         current_addr < limit; current_addr += ps){
3421 	        if ((*bufp++) & PG_MODIFIED) {
3422 	            register struct hblk * h = (struct hblk *) current_addr;
3423 
3424 	            while ((ptr_t)h < current_addr + ps) {
3425 	                register word index = PHT_HASH(h);
3426 
3427 	                set_pht_entry_from_index(GC_grungy_pages, index);
3428 #			ifdef GC_SOLARIS_THREADS
3429 			  {
3430 			    register int slot = FRESH_PAGE_SLOT(h);
3431 
3432 			    if (GC_fresh_pages[slot] == h) {
3433 			        GC_fresh_pages[slot] = 0;
3434 			    }
3435 			  }
3436 #			endif
3437 	                h++;
3438 	            }
3439 	        }
3440 	    }
3441 	    bufp += sizeof(long) - 1;
3442 	    bufp = (char *)((unsigned long)bufp & ~(sizeof(long)-1));
3443 	}
3444     /* Update GC_written_pages. */
3445         GC_or_pages(GC_written_pages, GC_grungy_pages);
3446 #   ifdef GC_SOLARIS_THREADS
3447       /* Make sure that old stacks are considered completely clean	*/
3448       /* unless written again.						*/
3449 	GC_old_stacks_are_fresh();
3450 #   endif
3451 }
3452 
3453 #undef READ
3454 
GC_page_was_dirty(h)3455 GC_bool GC_page_was_dirty(h)
3456 struct hblk *h;
3457 {
3458     register word index = PHT_HASH(h);
3459     register GC_bool result;
3460 
3461     result = get_pht_entry_from_index(GC_grungy_pages, index);
3462 #   ifdef GC_SOLARIS_THREADS
3463 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
3464 	/* This happens only if page was declared fresh since	*/
3465 	/* the read_dirty call, e.g. because it's in an unused  */
3466 	/* thread stack.  It's OK to treat it as clean, in	*/
3467 	/* that case.  And it's consistent with 		*/
3468 	/* GC_page_was_ever_dirty.				*/
3469 #   endif
3470     return(result);
3471 }
3472 
GC_page_was_ever_dirty(h)3473 GC_bool GC_page_was_ever_dirty(h)
3474 struct hblk *h;
3475 {
3476     register word index = PHT_HASH(h);
3477     register GC_bool result;
3478 
3479     result = get_pht_entry_from_index(GC_written_pages, index);
3480 #   ifdef GC_SOLARIS_THREADS
3481 	if (result && PAGE_IS_FRESH(h)) result = FALSE;
3482 #   endif
3483     return(result);
3484 }
3485 
3486 /* Caller holds allocation lock.	*/
GC_is_fresh(h,n)3487 void GC_is_fresh(h, n)
3488 struct hblk *h;
3489 word n;
3490 {
3491 
3492     register word index;
3493 
3494 #   ifdef GC_SOLARIS_THREADS
3495       register word i;
3496 
3497       if (GC_fresh_pages != 0) {
3498         for (i = 0; i < n; i++) {
3499           ADD_FRESH_PAGE(h + i);
3500         }
3501       }
3502 #   endif
3503 }
3504 
3505 # endif /* PROC_VDB */
3506 
3507 
3508 # ifdef PCR_VDB
3509 
3510 # include "vd/PCR_VD.h"
3511 
3512 # define NPAGES (32*1024)	/* 128 MB */
3513 
3514 PCR_VD_DB  GC_grungy_bits[NPAGES];
3515 
3516 ptr_t GC_vd_base;	/* Address corresponding to GC_grungy_bits[0]	*/
3517 			/* HBLKSIZE aligned.				*/
3518 
GC_dirty_init()3519 void GC_dirty_init()
3520 {
3521     GC_dirty_maintained = TRUE;
3522     /* For the time being, we assume the heap generally grows up */
3523     GC_vd_base = GC_heap_sects[0].hs_start;
3524     if (GC_vd_base == 0) {
3525    	ABORT("Bad initial heap segment");
3526     }
3527     if (PCR_VD_Start(HBLKSIZE, GC_vd_base, NPAGES*HBLKSIZE)
3528 	!= PCR_ERes_okay) {
3529 	ABORT("dirty bit initialization failed");
3530     }
3531 }
3532 
GC_read_dirty()3533 void GC_read_dirty()
3534 {
3535     /* lazily enable dirty bits on newly added heap sects */
3536     {
3537         static int onhs = 0;
3538         int nhs = GC_n_heap_sects;
3539         for( ; onhs < nhs; onhs++ ) {
3540             PCR_VD_WriteProtectEnable(
3541                     GC_heap_sects[onhs].hs_start,
3542                     GC_heap_sects[onhs].hs_bytes );
3543         }
3544     }
3545 
3546 
3547     if (PCR_VD_Clear(GC_vd_base, NPAGES*HBLKSIZE, GC_grungy_bits)
3548         != PCR_ERes_okay) {
3549 	ABORT("dirty bit read failed");
3550     }
3551 }
3552 
GC_page_was_dirty(h)3553 GC_bool GC_page_was_dirty(h)
3554 struct hblk *h;
3555 {
3556     if((ptr_t)h < GC_vd_base || (ptr_t)h >= GC_vd_base + NPAGES*HBLKSIZE) {
3557 	return(TRUE);
3558     }
3559     return(GC_grungy_bits[h - (struct hblk *)GC_vd_base] & PCR_VD_DB_dirtyBit);
3560 }
3561 
3562 /*ARGSUSED*/
GC_remove_protection(h,nblocks,is_ptrfree)3563 void GC_remove_protection(h, nblocks, is_ptrfree)
3564 struct hblk *h;
3565 word nblocks;
3566 GC_bool is_ptrfree;
3567 {
3568     PCR_VD_WriteProtectDisable(h, nblocks*HBLKSIZE);
3569     PCR_VD_WriteProtectEnable(h, nblocks*HBLKSIZE);
3570 }
3571 
3572 # endif /* PCR_VDB */
3573 
3574 #if defined(MPROTECT_VDB) && defined(DARWIN)
3575 /* The following sources were used as a *reference* for this exception handling
3576    code:
3577       1. Apple's mach/xnu documentation
3578       2. Timothy J. Wood's "Mach Exception Handlers 101" post to the
3579          omnigroup's macosx-dev list.
3580          www.omnigroup.com/mailman/archive/macosx-dev/2000-June/002030.html
3581       3. macosx-nat.c from Apple's GDB source code.
3582 */
3583 
3584 /* The bug that caused all this trouble should now be fixed. This should
3585    eventually be removed if all goes well. */
3586 /* define BROKEN_EXCEPTION_HANDLING */
3587 
3588 #include <mach/mach.h>
3589 #include <mach/mach_error.h>
3590 #include <mach/thread_status.h>
3591 #include <mach/exception.h>
3592 #include <mach/task.h>
3593 #include <pthread.h>
3594 
3595 /* These are not defined in any header, although they are documented */
3596 extern boolean_t exc_server(mach_msg_header_t *,mach_msg_header_t *);
3597 extern kern_return_t exception_raise(
3598     mach_port_t,mach_port_t,mach_port_t,
3599     exception_type_t,exception_data_t,mach_msg_type_number_t);
3600 extern kern_return_t exception_raise_state(
3601     mach_port_t,mach_port_t,mach_port_t,
3602     exception_type_t,exception_data_t,mach_msg_type_number_t,
3603     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3604     thread_state_t,mach_msg_type_number_t*);
3605 extern kern_return_t exception_raise_state_identity(
3606     mach_port_t,mach_port_t,mach_port_t,
3607     exception_type_t,exception_data_t,mach_msg_type_number_t,
3608     thread_state_flavor_t*,thread_state_t,mach_msg_type_number_t,
3609     thread_state_t,mach_msg_type_number_t*);
3610 
3611 
3612 #define MAX_EXCEPTION_PORTS 16
3613 
3614 static struct {
3615     mach_msg_type_number_t count;
3616     exception_mask_t      masks[MAX_EXCEPTION_PORTS];
3617     exception_handler_t   ports[MAX_EXCEPTION_PORTS];
3618     exception_behavior_t  behaviors[MAX_EXCEPTION_PORTS];
3619     thread_state_flavor_t flavors[MAX_EXCEPTION_PORTS];
3620 } GC_old_exc_ports;
3621 
3622 static struct {
3623     mach_port_t exception;
3624 #if defined(THREADS)
3625     mach_port_t reply;
3626 #endif
3627 } GC_ports;
3628 
3629 typedef struct {
3630     mach_msg_header_t head;
3631 } GC_msg_t;
3632 
3633 typedef enum {
3634     GC_MP_NORMAL, GC_MP_DISCARDING, GC_MP_STOPPED
3635 } GC_mprotect_state_t;
3636 
3637 /* FIXME: 1 and 2 seem to be safe to use in the msgh_id field,
3638    but it isn't  documented. Use the source and see if they
3639    should be ok. */
3640 #define ID_STOP 1
3641 #define ID_RESUME 2
3642 
3643 /* These values are only used on the reply port */
3644 #define ID_ACK 3
3645 
3646 #if defined(THREADS)
3647 
3648 GC_mprotect_state_t GC_mprotect_state;
3649 
3650 /* The following should ONLY be called when the world is stopped  */
GC_mprotect_thread_notify(mach_msg_id_t id)3651 static void GC_mprotect_thread_notify(mach_msg_id_t id) {
3652     struct {
3653         GC_msg_t msg;
3654         mach_msg_trailer_t trailer;
3655     } buf;
3656     mach_msg_return_t r;
3657     /* remote, local */
3658     buf.msg.head.msgh_bits =
3659         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3660     buf.msg.head.msgh_size = sizeof(buf.msg);
3661     buf.msg.head.msgh_remote_port = GC_ports.exception;
3662     buf.msg.head.msgh_local_port = MACH_PORT_NULL;
3663     buf.msg.head.msgh_id = id;
3664 
3665     r = mach_msg(
3666         &buf.msg.head,
3667         MACH_SEND_MSG|MACH_RCV_MSG|MACH_RCV_LARGE,
3668         sizeof(buf.msg),
3669         sizeof(buf),
3670         GC_ports.reply,
3671         MACH_MSG_TIMEOUT_NONE,
3672         MACH_PORT_NULL);
3673     if(r != MACH_MSG_SUCCESS)
3674 	ABORT("mach_msg failed in GC_mprotect_thread_notify");
3675     if(buf.msg.head.msgh_id != ID_ACK)
3676         ABORT("invalid ack in GC_mprotect_thread_notify");
3677 }
3678 
3679 /* Should only be called by the mprotect thread */
GC_mprotect_thread_reply()3680 static void GC_mprotect_thread_reply() {
3681     GC_msg_t msg;
3682     mach_msg_return_t r;
3683     /* remote, local */
3684     msg.head.msgh_bits =
3685         MACH_MSGH_BITS(MACH_MSG_TYPE_MAKE_SEND,0);
3686     msg.head.msgh_size = sizeof(msg);
3687     msg.head.msgh_remote_port = GC_ports.reply;
3688     msg.head.msgh_local_port = MACH_PORT_NULL;
3689     msg.head.msgh_id = ID_ACK;
3690 
3691     r = mach_msg(
3692         &msg.head,
3693         MACH_SEND_MSG,
3694         sizeof(msg),
3695         0,
3696         MACH_PORT_NULL,
3697         MACH_MSG_TIMEOUT_NONE,
3698         MACH_PORT_NULL);
3699     if(r != MACH_MSG_SUCCESS)
3700 	ABORT("mach_msg failed in GC_mprotect_thread_reply");
3701 }
3702 
GC_mprotect_stop()3703 void GC_mprotect_stop() {
3704     GC_mprotect_thread_notify(ID_STOP);
3705 }
GC_mprotect_resume()3706 void GC_mprotect_resume() {
3707     GC_mprotect_thread_notify(ID_RESUME);
3708 }
3709 
3710 #else /* !THREADS */
3711 /* The compiler should optimize away any GC_mprotect_state computations */
3712 #define GC_mprotect_state GC_MP_NORMAL
3713 #endif
3714 
GC_mprotect_thread(void * arg)3715 static void *GC_mprotect_thread(void *arg) {
3716     mach_msg_return_t r;
3717     /* These two structures contain some private kernel data. We don't need to
3718        access any of it so we don't bother defining a proper struct. The
3719        correct definitions are in the xnu source code. */
3720     struct {
3721         mach_msg_header_t head;
3722         char data[256];
3723     } reply;
3724     struct {
3725         mach_msg_header_t head;
3726         mach_msg_body_t msgh_body;
3727         char data[1024];
3728     } msg;
3729 
3730     mach_msg_id_t id;
3731 
3732     GC_darwin_register_mach_handler_thread(mach_thread_self());
3733 
3734     for(;;) {
3735         r = mach_msg(
3736             &msg.head,
3737             MACH_RCV_MSG|MACH_RCV_LARGE|
3738                 (GC_mprotect_state == GC_MP_DISCARDING ? MACH_RCV_TIMEOUT : 0),
3739             0,
3740             sizeof(msg),
3741             GC_ports.exception,
3742             GC_mprotect_state == GC_MP_DISCARDING ? 0 : MACH_MSG_TIMEOUT_NONE,
3743             MACH_PORT_NULL);
3744 
3745         id = r == MACH_MSG_SUCCESS ? msg.head.msgh_id : -1;
3746 
3747 #if defined(THREADS)
3748         if(GC_mprotect_state == GC_MP_DISCARDING) {
3749             if(r == MACH_RCV_TIMED_OUT) {
3750                 GC_mprotect_state = GC_MP_STOPPED;
3751                 GC_mprotect_thread_reply();
3752                 continue;
3753             }
3754             if(r == MACH_MSG_SUCCESS && (id == ID_STOP || id == ID_RESUME))
3755                 ABORT("out of order mprotect thread request");
3756         }
3757 #endif
3758 
3759         if(r != MACH_MSG_SUCCESS) {
3760             GC_err_printf2("mach_msg failed with %d %s\n",
3761                 (int)r,mach_error_string(r));
3762             ABORT("mach_msg failed");
3763         }
3764 
3765         switch(id) {
3766 #if defined(THREADS)
3767             case ID_STOP:
3768                 if(GC_mprotect_state != GC_MP_NORMAL)
3769                     ABORT("Called mprotect_stop when state wasn't normal");
3770                 GC_mprotect_state = GC_MP_DISCARDING;
3771                 break;
3772             case ID_RESUME:
3773                 if(GC_mprotect_state != GC_MP_STOPPED)
3774                     ABORT("Called mprotect_resume when state wasn't stopped");
3775                 GC_mprotect_state = GC_MP_NORMAL;
3776                 GC_mprotect_thread_reply();
3777                 break;
3778 #endif /* THREADS */
3779             default:
3780 	            /* Handle the message (calls catch_exception_raise) */
3781     	        if(!exc_server(&msg.head,&reply.head))
3782                     ABORT("exc_server failed");
3783                 /* Send the reply */
3784                 r = mach_msg(
3785                     &reply.head,
3786                     MACH_SEND_MSG,
3787                     reply.head.msgh_size,
3788                     0,
3789                     MACH_PORT_NULL,
3790                     MACH_MSG_TIMEOUT_NONE,
3791                     MACH_PORT_NULL);
3792 	        if(r != MACH_MSG_SUCCESS) {
3793 	        	/* This will fail if the thread dies, but the thread shouldn't
3794 	        	   die... */
3795 	        	#ifdef BROKEN_EXCEPTION_HANDLING
3796     	        	GC_err_printf2(
3797                         "mach_msg failed with %d %s while sending exc reply\n",
3798                         (int)r,mach_error_string(r));
3799     	        #else
3800     	        	ABORT("mach_msg failed while sending exception reply");
3801     	        #endif
3802         	}
3803         } /* switch */
3804     } /* for(;;) */
3805     /* NOT REACHED */
3806     return NULL;
3807 }
3808 
3809 /* All this SIGBUS code shouldn't be necessary. All protection faults should
3810    be going throught the mach exception handler. However, it seems a SIGBUS is
3811    occasionally sent for some unknown reason. Even more odd, it seems to be
3812    meaningless and safe to ignore. */
3813 #ifdef BROKEN_EXCEPTION_HANDLING
3814 
3815 typedef void (* SIG_PF)();
3816 static SIG_PF GC_old_bus_handler;
3817 
3818 /* Updates to this aren't atomic, but the SIGBUSs seem pretty rare.
3819    Even if this doesn't get updated property, it isn't really a problem */
3820 static int GC_sigbus_count;
3821 
GC_darwin_sigbus(int num,siginfo_t * sip,void * context)3822 static void GC_darwin_sigbus(int num,siginfo_t *sip,void *context) {
3823     if(num != SIGBUS) ABORT("Got a non-sigbus signal in the sigbus handler");
3824 
3825     /* Ugh... some seem safe to ignore, but too many in a row probably means
3826        trouble. GC_sigbus_count is reset for each mach exception that is
3827        handled */
3828     if(GC_sigbus_count >= 8) {
3829         ABORT("Got more than 8 SIGBUSs in a row!");
3830     } else {
3831         GC_sigbus_count++;
3832         GC_err_printf0("GC: WARNING: Ignoring SIGBUS.\n");
3833     }
3834 }
3835 #endif /* BROKEN_EXCEPTION_HANDLING */
3836 
GC_dirty_init()3837 void GC_dirty_init() {
3838     kern_return_t r;
3839     mach_port_t me;
3840     pthread_t thread;
3841     pthread_attr_t attr;
3842     exception_mask_t mask;
3843 
3844 #   ifdef PRINTSTATS
3845         GC_printf0("Inititalizing mach/darwin mprotect virtual dirty bit "
3846             "implementation\n");
3847 #   endif
3848 #	ifdef BROKEN_EXCEPTION_HANDLING
3849         GC_err_printf0("GC: WARNING: Enabling workarounds for various darwin "
3850             "exception handling bugs.\n");
3851 #	endif
3852     GC_dirty_maintained = TRUE;
3853     if (GC_page_size % HBLKSIZE != 0) {
3854         GC_err_printf0("Page size not multiple of HBLKSIZE\n");
3855         ABORT("Page size not multiple of HBLKSIZE");
3856     }
3857 
3858     GC_task_self = me = mach_task_self();
3859 
3860     r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.exception);
3861     if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (exception port)");
3862 
3863     r = mach_port_insert_right(me,GC_ports.exception,GC_ports.exception,
3864     	MACH_MSG_TYPE_MAKE_SEND);
3865     if(r != KERN_SUCCESS)
3866     	ABORT("mach_port_insert_right failed (exception port)");
3867 
3868     #if defined(THREADS)
3869         r = mach_port_allocate(me,MACH_PORT_RIGHT_RECEIVE,&GC_ports.reply);
3870         if(r != KERN_SUCCESS) ABORT("mach_port_allocate failed (reply port)");
3871     #endif
3872 
3873     /* The exceptions we want to catch */
3874     mask = EXC_MASK_BAD_ACCESS;
3875 
3876     r = task_get_exception_ports(
3877         me,
3878         mask,
3879         GC_old_exc_ports.masks,
3880         &GC_old_exc_ports.count,
3881         GC_old_exc_ports.ports,
3882         GC_old_exc_ports.behaviors,
3883         GC_old_exc_ports.flavors
3884     );
3885     if(r != KERN_SUCCESS) ABORT("task_get_exception_ports failed");
3886 
3887     r = task_set_exception_ports(
3888         me,
3889         mask,
3890         GC_ports.exception,
3891         EXCEPTION_DEFAULT,
3892         GC_MACH_THREAD_STATE_FLAVOR
3893     );
3894     if(r != KERN_SUCCESS) ABORT("task_set_exception_ports failed");
3895 
3896     if(pthread_attr_init(&attr) != 0) ABORT("pthread_attr_init failed");
3897     if(pthread_attr_setdetachstate(&attr,PTHREAD_CREATE_DETACHED) != 0)
3898         ABORT("pthread_attr_setdetachedstate failed");
3899 
3900 #	undef pthread_create
3901     /* This will call the real pthread function, not our wrapper */
3902     if(pthread_create(&thread,&attr,GC_mprotect_thread,NULL) != 0)
3903         ABORT("pthread_create failed");
3904     pthread_attr_destroy(&attr);
3905 
3906     /* Setup the sigbus handler for ignoring the meaningless SIGBUSs */
3907     #ifdef BROKEN_EXCEPTION_HANDLING
3908     {
3909         struct sigaction sa, oldsa;
3910         sa.sa_handler = (SIG_PF)GC_darwin_sigbus;
3911         sigemptyset(&sa.sa_mask);
3912         sa.sa_flags = SA_RESTART|SA_SIGINFO;
3913         if(sigaction(SIGBUS,&sa,&oldsa) < 0) ABORT("sigaction");
3914         GC_old_bus_handler = (SIG_PF)oldsa.sa_handler;
3915         if (GC_old_bus_handler != SIG_DFL) {
3916 #       	ifdef PRINTSTATS
3917                 GC_err_printf0("Replaced other SIGBUS handler\n");
3918 #       	endif
3919         }
3920     }
3921     #endif /* BROKEN_EXCEPTION_HANDLING  */
3922 }
3923 
3924 /* The source code for Apple's GDB was used as a reference for the exception
3925    forwarding code. This code is similar to be GDB code only because there is
3926    only one way to do it. */
GC_forward_exception(mach_port_t thread,mach_port_t task,exception_type_t exception,exception_data_t data,mach_msg_type_number_t data_count)3927 static kern_return_t GC_forward_exception(
3928         mach_port_t thread,
3929         mach_port_t task,
3930         exception_type_t exception,
3931         exception_data_t data,
3932         mach_msg_type_number_t data_count
3933 ) {
3934     int i;
3935     kern_return_t r;
3936     mach_port_t port;
3937     exception_behavior_t behavior;
3938     thread_state_flavor_t flavor;
3939 
3940     thread_state_t thread_state;
3941     mach_msg_type_number_t thread_state_count = THREAD_STATE_MAX;
3942 
3943     for(i=0;i<GC_old_exc_ports.count;i++)
3944         if(GC_old_exc_ports.masks[i] & (1 << exception))
3945             break;
3946     if(i==GC_old_exc_ports.count) ABORT("No handler for exception!");
3947 
3948     port = GC_old_exc_ports.ports[i];
3949     behavior = GC_old_exc_ports.behaviors[i];
3950     flavor = GC_old_exc_ports.flavors[i];
3951 
3952     if(behavior != EXCEPTION_DEFAULT) {
3953         r = thread_get_state(thread,flavor,thread_state,&thread_state_count);
3954         if(r != KERN_SUCCESS)
3955             ABORT("thread_get_state failed in forward_exception");
3956     }
3957 
3958     switch(behavior) {
3959         case EXCEPTION_DEFAULT:
3960             r = exception_raise(port,thread,task,exception,data,data_count);
3961             break;
3962         case EXCEPTION_STATE:
3963             r = exception_raise_state(port,thread,task,exception,data,
3964                 data_count,&flavor,thread_state,thread_state_count,
3965                 thread_state,&thread_state_count);
3966             break;
3967         case EXCEPTION_STATE_IDENTITY:
3968             r = exception_raise_state_identity(port,thread,task,exception,data,
3969                 data_count,&flavor,thread_state,thread_state_count,
3970                 thread_state,&thread_state_count);
3971             break;
3972         default:
3973             r = KERN_FAILURE; /* make gcc happy */
3974             ABORT("forward_exception: unknown behavior");
3975             break;
3976     }
3977 
3978     if(behavior != EXCEPTION_DEFAULT) {
3979         r = thread_set_state(thread,flavor,thread_state,thread_state_count);
3980         if(r != KERN_SUCCESS)
3981             ABORT("thread_set_state failed in forward_exception");
3982     }
3983 
3984     return r;
3985 }
3986 
3987 #define FWD() GC_forward_exception(thread,task,exception,code,code_count)
3988 
3989 /* This violates the namespace rules but there isn't anything that can be done
3990    about it. The exception handling stuff is hard coded to call this */
3991 kern_return_t
catch_exception_raise(mach_port_t exception_port,mach_port_t thread,mach_port_t task,exception_type_t exception,exception_data_t code,mach_msg_type_number_t code_count)3992 catch_exception_raise(
3993    mach_port_t exception_port,mach_port_t thread,mach_port_t task,
3994    exception_type_t exception,exception_data_t code,
3995    mach_msg_type_number_t code_count
3996 ) {
3997     kern_return_t r;
3998     char *addr;
3999     struct hblk *h;
4000     int i;
4001 #   if defined(POWERPC)
4002 #     if CPP_WORDSZ == 32
4003         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE;
4004         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE_COUNT;
4005         ppc_exception_state_t exc_state;
4006 #     else
4007         thread_state_flavor_t flavor = PPC_EXCEPTION_STATE64;
4008         mach_msg_type_number_t exc_state_count = PPC_EXCEPTION_STATE64_COUNT;
4009         ppc_exception_state64_t exc_state;
4010 #     endif
4011 #   elif defined(I386)
4012         thread_state_flavor_t flavor = i386_EXCEPTION_STATE;
4013         mach_msg_type_number_t exc_state_count = i386_EXCEPTION_STATE_COUNT;
4014         i386_exception_state_t exc_state;
4015 #   else
4016 #	error FIXME for non-ppc darwin
4017 #   endif
4018 
4019 
4020     if(exception != EXC_BAD_ACCESS || code[0] != KERN_PROTECTION_FAILURE) {
4021         #ifdef DEBUG_EXCEPTION_HANDLING
4022         /* We aren't interested, pass it on to the old handler */
4023         GC_printf3("Exception: 0x%x Code: 0x%x 0x%x in catch....\n",
4024             exception,
4025             code_count > 0 ? code[0] : -1,
4026             code_count > 1 ? code[1] : -1);
4027         #endif
4028         return FWD();
4029     }
4030 
4031     r = thread_get_state(thread,flavor,
4032         (natural_t*)&exc_state,&exc_state_count);
4033     if(r != KERN_SUCCESS) {
4034         /* The thread is supposed to be suspended while the exception handler
4035            is called. This shouldn't fail. */
4036         #ifdef BROKEN_EXCEPTION_HANDLING
4037             GC_err_printf0("thread_get_state failed in "
4038                 "catch_exception_raise\n");
4039             return KERN_SUCCESS;
4040         #else
4041             ABORT("thread_get_state failed in catch_exception_raise");
4042         #endif
4043     }
4044 
4045     /* This is the address that caused the fault */
4046 #if defined(POWERPC)
4047     addr = (char*) exc_state.dar;
4048 #elif defined (I386)
4049     addr = (char*) exc_state.faultvaddr;
4050 #else
4051 #   error FIXME for non POWERPC/I386
4052 #endif
4053 
4054     if((HDR(addr)) == 0) {
4055         /* Ugh... just like the SIGBUS problem above, it seems we get a bogus
4056            KERN_PROTECTION_FAILURE every once and a while. We wait till we get
4057            a bunch in a row before doing anything about it. If a "real" fault
4058            ever occurres it'll just keep faulting over and over and we'll hit
4059            the limit pretty quickly. */
4060         #ifdef BROKEN_EXCEPTION_HANDLING
4061             static char *last_fault;
4062             static int last_fault_count;
4063 
4064             if(addr != last_fault) {
4065                 last_fault = addr;
4066                 last_fault_count = 0;
4067             }
4068             if(++last_fault_count < 32) {
4069                 if(last_fault_count == 1)
4070                     GC_err_printf1(
4071                         "GC: WARNING: Ignoring KERN_PROTECTION_FAILURE at %p\n",
4072                         addr);
4073                 return KERN_SUCCESS;
4074             }
4075 
4076             GC_err_printf1("Unexpected KERN_PROTECTION_FAILURE at %p\n",addr);
4077             /* Can't pass it along to the signal handler because that is
4078                ignoring SIGBUS signals. We also shouldn't call ABORT here as
4079                signals don't always work too well from the exception handler. */
4080             GC_err_printf0("Aborting\n");
4081             exit(EXIT_FAILURE);
4082         #else /* BROKEN_EXCEPTION_HANDLING */
4083             /* Pass it along to the next exception handler
4084                (which should call SIGBUS/SIGSEGV) */
4085             return FWD();
4086         #endif /* !BROKEN_EXCEPTION_HANDLING */
4087     }
4088 
4089     #ifdef BROKEN_EXCEPTION_HANDLING
4090         /* Reset the number of consecutive SIGBUSs */
4091         GC_sigbus_count = 0;
4092     #endif
4093 
4094     if(GC_mprotect_state == GC_MP_NORMAL) { /* common case */
4095         h = (struct hblk*)((word)addr & ~(GC_page_size-1));
4096         UNPROTECT(h, GC_page_size);
4097         for (i = 0; i < divHBLKSZ(GC_page_size); i++) {
4098             register int index = PHT_HASH(h+i);
4099             async_set_pht_entry_from_index(GC_dirty_pages, index);
4100         }
4101     } else if(GC_mprotect_state == GC_MP_DISCARDING) {
4102         /* Lie to the thread for now. No sense UNPROTECT()ing the memory
4103            when we're just going to PROTECT() it again later. The thread
4104            will just fault again once it resumes */
4105     } else {
4106         /* Shouldn't happen, i don't think */
4107         GC_printf0("KERN_PROTECTION_FAILURE while world is stopped\n");
4108         return FWD();
4109     }
4110     return KERN_SUCCESS;
4111 }
4112 #undef FWD
4113 
4114 /* These should never be called, but just in case...  */
catch_exception_raise_state(mach_port_name_t exception_port,int exception,exception_data_t code,mach_msg_type_number_t codeCnt,int flavor,thread_state_t old_state,int old_stateCnt,thread_state_t new_state,int new_stateCnt)4115 kern_return_t catch_exception_raise_state(mach_port_name_t exception_port,
4116     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
4117     int flavor, thread_state_t old_state, int old_stateCnt,
4118     thread_state_t new_state, int new_stateCnt)
4119 {
4120     ABORT("catch_exception_raise_state");
4121     return(KERN_INVALID_ARGUMENT);
4122 }
catch_exception_raise_state_identity(mach_port_name_t exception_port,mach_port_t thread,mach_port_t task,int exception,exception_data_t code,mach_msg_type_number_t codeCnt,int flavor,thread_state_t old_state,int old_stateCnt,thread_state_t new_state,int new_stateCnt)4123 kern_return_t catch_exception_raise_state_identity(
4124     mach_port_name_t exception_port, mach_port_t thread, mach_port_t task,
4125     int exception, exception_data_t code, mach_msg_type_number_t codeCnt,
4126     int flavor, thread_state_t old_state, int old_stateCnt,
4127     thread_state_t new_state, int new_stateCnt)
4128 {
4129     ABORT("catch_exception_raise_state_identity");
4130     return(KERN_INVALID_ARGUMENT);
4131 }
4132 
4133 
4134 #endif /* DARWIN && MPROTECT_VDB */
4135 
4136 # ifndef HAVE_INCREMENTAL_PROTECTION_NEEDS
GC_incremental_protection_needs()4137   int GC_incremental_protection_needs()
4138   {
4139     return GC_PROTECTS_NONE;
4140   }
4141 # endif /* !HAVE_INCREMENTAL_PROTECTION_NEEDS */
4142 
4143 /*
4144  * Call stack save code for debugging.
4145  * Should probably be in mach_dep.c, but that requires reorganization.
4146  */
4147 
4148 /* I suspect the following works for most X86 *nix variants, so 	*/
4149 /* long as the frame pointer is explicitly stored.  In the case of gcc,	*/
4150 /* compiler flags (e.g. -fomit-frame-pointer) determine whether it is.	*/
4151 #if defined(I386) && defined(LINUX) && defined(SAVE_CALL_CHAIN)
4152 #   include <features.h>
4153 
4154     struct frame {
4155 	struct frame *fr_savfp;
4156 	long	fr_savpc;
4157         long	fr_arg[NARGS];  /* All the arguments go here.	*/
4158     };
4159 #endif
4160 
4161 #if defined(SPARC)
4162 #  if defined(LINUX)
4163 #    include <features.h>
4164 
4165      struct frame {
4166 	long	fr_local[8];
4167 	long	fr_arg[6];
4168 	struct frame *fr_savfp;
4169 	long	fr_savpc;
4170 #       ifndef __arch64__
4171 	  char	*fr_stret;
4172 #       endif
4173 	long	fr_argd[6];
4174 	long	fr_argx[0];
4175      };
4176 #  else
4177 #    if defined(SUNOS4)
4178 #      include <machine/frame.h>
4179 #    else
4180 #      if defined (DRSNX)
4181 #	 include <sys/sparc/frame.h>
4182 #      else
4183 #	 if defined(OPENBSD)
4184 #	   include <frame.h>
4185 #	 else
4186 #	   if defined(FREEBSD) || defined(NETBSD)
4187 #	     include <machine/frame.h>
4188 #	   else
4189 #	     include <sys/frame.h>
4190 #	   endif
4191 #	 endif
4192 #      endif
4193 #    endif
4194 #  endif
4195 #  if NARGS > 6
4196 	--> We only know how to to get the first 6 arguments
4197 #  endif
4198 #endif /* SPARC */
4199 
4200 #ifdef  NEED_CALLINFO
4201 /* Fill in the pc and argument information for up to NFRAMES of my	*/
4202 /* callers.  Ignore my frame and my callers frame.			*/
4203 
4204 #ifdef LINUX
4205 #   include <unistd.h>
4206 #endif
4207 
4208 #endif /* NEED_CALLINFO */
4209 
4210 #if defined(GC_HAVE_BUILTIN_BACKTRACE)
4211 # include <execinfo.h>
4212 #endif
4213 
4214 #ifdef SAVE_CALL_CHAIN
4215 
4216 #if NARGS == 0 && NFRAMES % 2 == 0 /* No padding */ \
4217     && defined(GC_HAVE_BUILTIN_BACKTRACE)
4218 
4219 #ifdef REDIRECT_MALLOC
4220   /* Deal with possible malloc calls in backtrace by omitting	*/
4221   /* the infinitely recursing backtrace.			*/
4222 # ifdef THREADS
4223     __thread 	/* If your compiler doesn't understand this */
4224     		/* you could use something like pthread_getspecific.	*/
4225 # endif
4226   GC_in_save_callers = FALSE;
4227 #endif
4228 
GC_save_callers(info)4229 void GC_save_callers (info)
4230 struct callinfo info[NFRAMES];
4231 {
4232   void * tmp_info[NFRAMES + 1];
4233   int npcs, i;
4234 # define IGNORE_FRAMES 1
4235 
4236   /* We retrieve NFRAMES+1 pc values, but discard the first, since it	*/
4237   /* points to our own frame.						*/
4238 # ifdef REDIRECT_MALLOC
4239     if (GC_in_save_callers) {
4240       info[0].ci_pc = (word)(&GC_save_callers);
4241       for (i = 1; i < NFRAMES; ++i) info[i].ci_pc = 0;
4242       return;
4243     }
4244     GC_in_save_callers = TRUE;
4245 # endif
4246   GC_ASSERT(sizeof(struct callinfo) == sizeof(void *));
4247   npcs = backtrace((void **)tmp_info, NFRAMES + IGNORE_FRAMES);
4248   BCOPY(tmp_info+IGNORE_FRAMES, info, (npcs - IGNORE_FRAMES) * sizeof(void *));
4249   for (i = npcs - IGNORE_FRAMES; i < NFRAMES; ++i) info[i].ci_pc = 0;
4250 # ifdef REDIRECT_MALLOC
4251     GC_in_save_callers = FALSE;
4252 # endif
4253 }
4254 
4255 #else /* No builtin backtrace; do it ourselves */
4256 
4257 #if (defined(OPENBSD) || defined(NETBSD) || defined(FREEBSD)) && defined(SPARC)
4258 #  define FR_SAVFP fr_fp
4259 #  define FR_SAVPC fr_pc
4260 #else
4261 #  define FR_SAVFP fr_savfp
4262 #  define FR_SAVPC fr_savpc
4263 #endif
4264 
4265 #if defined(SPARC) && (defined(__arch64__) || defined(__sparcv9))
4266 #   define BIAS 2047
4267 #else
4268 #   define BIAS 0
4269 #endif
4270 
4271 void GC_save_callers (info)
4272 struct callinfo info[NFRAMES];
4273 {
4274   struct frame *frame;
4275   struct frame *fp;
4276   int nframes = 0;
4277 # ifdef I386
4278     /* We assume this is turned on only with gcc as the compiler. */
4279     asm("movl %%ebp,%0" : "=r"(frame));
4280     fp = frame;
4281 # else
4282     frame = (struct frame *) GC_save_regs_in_stack ();
4283     fp = (struct frame *)((long) frame -> FR_SAVFP + BIAS);
4284 #endif
4285 
4286    for (; (!(fp HOTTER_THAN frame) && !(GC_stackbottom HOTTER_THAN (ptr_t)fp)
4287 	   && (nframes < NFRAMES));
4288        fp = (struct frame *)((long) fp -> FR_SAVFP + BIAS), nframes++) {
4289       register int i;
4290 
4291       info[nframes].ci_pc = fp->FR_SAVPC;
4292 #     if NARGS > 0
4293         for (i = 0; i < NARGS; i++) {
4294 	  info[nframes].ci_arg[i] = ~(fp->fr_arg[i]);
4295         }
4296 #     endif /* NARGS > 0 */
4297   }
4298   if (nframes < NFRAMES) info[nframes].ci_pc = 0;
4299 }
4300 
4301 #endif /* No builtin backtrace */
4302 
4303 #endif /* SAVE_CALL_CHAIN */
4304 
4305 #ifdef NEED_CALLINFO
4306 
4307 /* Print info to stderr.  We do NOT hold the allocation lock */
GC_print_callers(info)4308 void GC_print_callers (info)
4309 struct callinfo info[NFRAMES];
4310 {
4311     register int i;
4312     static int reentry_count = 0;
4313     GC_bool stop = FALSE;
4314 
4315     /* FIXME: This should probably use a different lock, so that we	*/
4316     /* become callable with or without the allocation lock.		*/
4317     LOCK();
4318       ++reentry_count;
4319     UNLOCK();
4320 
4321 #   if NFRAMES == 1
4322       GC_err_printf0("\tCaller at allocation:\n");
4323 #   else
4324       GC_err_printf0("\tCall chain at allocation:\n");
4325 #   endif
4326     for (i = 0; i < NFRAMES && !stop ; i++) {
4327      	if (info[i].ci_pc == 0) break;
4328 #	if NARGS > 0
4329 	{
4330 	  int j;
4331 
4332      	  GC_err_printf0("\t\targs: ");
4333      	  for (j = 0; j < NARGS; j++) {
4334      	    if (j != 0) GC_err_printf0(", ");
4335      	    GC_err_printf2("%d (0x%X)", ~(info[i].ci_arg[j]),
4336      	    				~(info[i].ci_arg[j]));
4337      	  }
4338 	  GC_err_printf0("\n");
4339 	}
4340 # 	endif
4341         if (reentry_count > 1) {
4342 	    /* We were called during an allocation during	*/
4343 	    /* a previous GC_print_callers call; punt.		*/
4344      	    GC_err_printf1("\t\t##PC##= 0x%lx\n", info[i].ci_pc);
4345 	    continue;
4346 	}
4347 	{
4348 #	  ifdef LINUX
4349 	    FILE *pipe;
4350 #	  endif
4351 #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4352 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4353 	    char **sym_name =
4354 	      backtrace_symbols((void **)(&(info[i].ci_pc)), 1);
4355 	    char *name = sym_name[0];
4356 #	  else
4357 	    char buf[40];
4358 	    char *name = buf;
4359      	    sprintf(buf, "##PC##= 0x%lx", info[i].ci_pc);
4360 #	  endif
4361 #	  if defined(LINUX) && !defined(SMALL_CONFIG)
4362 	    /* Try for a line number. */
4363 	    {
4364 #	        define EXE_SZ 100
4365 		static char exe_name[EXE_SZ];
4366 #		define CMD_SZ 200
4367 		char cmd_buf[CMD_SZ];
4368 #		define RESULT_SZ 200
4369 		static char result_buf[RESULT_SZ];
4370 		size_t result_len;
4371 		char *old_preload;
4372 #		define PRELOAD_SZ 200
4373     		char preload_buf[PRELOAD_SZ];
4374 		static GC_bool found_exe_name = FALSE;
4375 		static GC_bool will_fail = FALSE;
4376 		int ret_code;
4377 		/* Try to get it via a hairy and expensive scheme.	*/
4378 		/* First we get the name of the executable:		*/
4379 		if (will_fail) goto out;
4380 		if (!found_exe_name) {
4381 		  ret_code = readlink("/proc/self/exe", exe_name, EXE_SZ);
4382 		  if (ret_code < 0 || ret_code >= EXE_SZ
4383 		      || exe_name[0] != '/') {
4384 		    will_fail = TRUE;	/* Dont try again. */
4385 		    goto out;
4386 		  }
4387 		  exe_name[ret_code] = '\0';
4388 		  found_exe_name = TRUE;
4389 		}
4390 		/* Then we use popen to start addr2line -e <exe> <addr>	*/
4391 		/* There are faster ways to do this, but hopefully this	*/
4392 		/* isn't time critical.					*/
4393 		sprintf(cmd_buf, "/usr/bin/addr2line -f -e %s 0x%lx", exe_name,
4394 				 (unsigned long)info[i].ci_pc);
4395 		old_preload = getenv ("LD_PRELOAD");
4396 	        if (0 != old_preload) {
4397 		  if (strlen (old_preload) >= PRELOAD_SZ) {
4398 		    will_fail = TRUE;
4399 		    goto out;
4400 		  }
4401 		  strcpy (preload_buf, old_preload);
4402 		  unsetenv ("LD_PRELOAD");
4403 	        }
4404 		pipe = popen(cmd_buf, "r");
4405 		if (0 != old_preload
4406 		    && 0 != setenv ("LD_PRELOAD", preload_buf, 0)) {
4407 		  WARN("Failed to reset LD_PRELOAD\n", 0);
4408       		}
4409 		if (pipe == NULL
4410 		    || (result_len = fread(result_buf, 1, RESULT_SZ - 1, pipe))
4411 		       == 0) {
4412 		  if (pipe != NULL) pclose(pipe);
4413 		  will_fail = TRUE;
4414 		  goto out;
4415 		}
4416 		if (result_buf[result_len - 1] == '\n') --result_len;
4417 		result_buf[result_len] = 0;
4418 		if (result_buf[0] == '?'
4419 		    || result_buf[result_len-2] == ':'
4420 		       && result_buf[result_len-1] == '0') {
4421 		    pclose(pipe);
4422 		    goto out;
4423 		}
4424 		/* Get rid of embedded newline, if any.  Test for "main" */
4425 		{
4426 		   char * nl = strchr(result_buf, '\n');
4427 		   if (nl != NULL && nl < result_buf + result_len) {
4428 		     *nl = ':';
4429 		   }
4430 		   if (strncmp(result_buf, "main", nl - result_buf) == 0) {
4431 		     stop = TRUE;
4432 		   }
4433 		}
4434 		if (result_len < RESULT_SZ - 25) {
4435 		  /* Add in hex address	*/
4436 		    sprintf(result_buf + result_len, " [0x%lx]",
4437 			  (unsigned long)info[i].ci_pc);
4438 		}
4439 		name = result_buf;
4440 		pclose(pipe);
4441 		out:;
4442 	    }
4443 #	  endif /* LINUX */
4444 	  GC_err_printf1("\t\t%s\n", name);
4445 #	  if defined(GC_HAVE_BUILTIN_BACKTRACE) \
4446 	     && !defined(GC_BACKTRACE_SYMBOLS_BROKEN)
4447 	    free(sym_name);  /* May call GC_free; that's OK */
4448 #         endif
4449 	}
4450     }
4451     LOCK();
4452       --reentry_count;
4453     UNLOCK();
4454 }
4455 
4456 #endif /* NEED_CALLINFO */
4457 
4458 
4459 
4460 #if defined(LINUX) && defined(__ELF__) && !defined(SMALL_CONFIG)
4461 
4462 /* Dump /proc/self/maps to GC_stderr, to enable looking up names for
4463    addresses in FIND_LEAK output. */
4464 
dump_maps(char * maps)4465 static word dump_maps(char *maps)
4466 {
4467     GC_err_write(maps, strlen(maps));
4468     return 1;
4469 }
4470 
GC_print_address_map()4471 void GC_print_address_map()
4472 {
4473     GC_err_printf0("---------- Begin address map ----------\n");
4474     GC_apply_to_maps(dump_maps);
4475     GC_err_printf0("---------- End address map ----------\n");
4476 }
4477 
4478 #endif
4479 
4480 
4481