1 /*    utf8.c
2  *
3  *    Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4  *    by Larry Wall and others
5  *
6  *    You may distribute under the terms of either the GNU General Public
7  *    License or the Artistic License, as specified in the README file.
8  *
9  */
10 
11 /*
12  * 'What a fix!' said Sam.  'That's the one place in all the lands we've ever
13  *  heard of that we don't want to see any closer; and that's the one place
14  *  we're trying to get to!  And that's just where we can't get, nohow.'
15  *
16  *     [p.603 of _The Lord of the Rings_, IV/I: "The Taming of Sméagol"]
17  *
18  * 'Well do I understand your speech,' he answered in the same language;
19  * 'yet few strangers do so.  Why then do you not speak in the Common Tongue,
20  *  as is the custom in the West, if you wish to be answered?'
21  *                           --Gandalf, addressing Théoden's door wardens
22  *
23  *     [p.508 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
24  *
25  * ...the travellers perceived that the floor was paved with stones of many
26  * hues; branching runes and strange devices intertwined beneath their feet.
27  *
28  *     [p.512 of _The Lord of the Rings_, III/vi: "The King of the Golden Hall"]
29  */
30 
31 #include "EXTERN.h"
32 #define PERL_IN_UTF8_C
33 #include "perl.h"
34 #include "invlist_inline.h"
35 
36 static const char malformed_text[] = "Malformed UTF-8 character";
37 static const char unees[] =
38                         "Malformed UTF-8 character (unexpected end of string)";
39 
40 /*
41 =head1 Unicode Support
42 These are various utility functions for manipulating UTF8-encoded
43 strings.  For the uninitiated, this is a method of representing arbitrary
44 Unicode characters as a variable number of bytes, in such a way that
45 characters in the ASCII range are unmodified, and a zero byte never appears
46 within non-zero characters.
47 
48 =cut
49 */
50 
51 /* helper for Perl__force_out_malformed_utf8_message(). Like
52  * SAVECOMPILEWARNINGS(), but works with PL_curcop rather than
53  * PL_compiling */
54 
55 static void
S_restore_cop_warnings(pTHX_ void * p)56 S_restore_cop_warnings(pTHX_ void *p)
57 {
58     free_and_set_cop_warnings(PL_curcop, (STRLEN*) p);
59 }
60 
61 
62 void
Perl__force_out_malformed_utf8_message(pTHX_ const U8 * const p,const U8 * const e,const U32 flags,const bool die_here)63 Perl__force_out_malformed_utf8_message(pTHX_
64             const U8 *const p,      /* First byte in UTF-8 sequence */
65             const U8 * const e,     /* Final byte in sequence (may include
66                                        multiple chars */
67             const U32 flags,        /* Flags to pass to utf8n_to_uvchr(),
68                                        usually 0, or some DISALLOW flags */
69             const bool die_here)    /* If TRUE, this function does not return */
70 {
71     /* This core-only function is to be called when a malformed UTF-8 character
72      * is found, in order to output the detailed information about the
73      * malformation before dieing.  The reason it exists is for the occasions
74      * when such a malformation is fatal, but warnings might be turned off, so
75      * that normally they would not be actually output.  This ensures that they
76      * do get output.  Because a sequence may be malformed in more than one
77      * way, multiple messages may be generated, so we can't make them fatal, as
78      * that would cause the first one to die.
79      *
80      * Instead we pretend -W was passed to perl, then die afterwards.  The
81      * flexibility is here to return to the caller so they can finish up and
82      * die themselves */
83     U32 errors;
84 
85     PERL_ARGS_ASSERT__FORCE_OUT_MALFORMED_UTF8_MESSAGE;
86 
87     ENTER;
88     SAVEI8(PL_dowarn);
89     SAVESPTR(PL_curcop);
90 
91     PL_dowarn = G_WARN_ALL_ON|G_WARN_ON;
92     if (PL_curcop) {
93         /* this is like SAVECOMPILEWARNINGS() except with PL_curcop rather
94          * than PL_compiling */
95         SAVEDESTRUCTOR_X(S_restore_cop_warnings,
96                 (void*)PL_curcop->cop_warnings);
97         PL_curcop->cop_warnings = pWARN_ALL;
98     }
99 
100     (void) utf8n_to_uvchr_error(p, e - p, NULL, flags & ~UTF8_CHECK_ONLY, &errors);
101 
102     LEAVE;
103 
104     if (! errors) {
105 	Perl_croak(aTHX_ "panic: _force_out_malformed_utf8_message should"
106                          " be called only when there are errors found");
107     }
108 
109     if (die_here) {
110         Perl_croak(aTHX_ "Malformed UTF-8 character (fatal)");
111     }
112 }
113 
114 STATIC HV *
S_new_msg_hv(pTHX_ const char * const message,U32 categories,U32 flag)115 S_new_msg_hv(pTHX_ const char * const message, /* The message text */
116                    U32 categories,  /* Packed warning categories */
117                    U32 flag)        /* Flag associated with this message */
118 {
119     /* Creates, populates, and returns an HV* that describes an error message
120      * for the translators between UTF8 and code point */
121 
122     SV* msg_sv = newSVpv(message, 0);
123     SV* category_sv = newSVuv(categories);
124     SV* flag_bit_sv = newSVuv(flag);
125 
126     HV* msg_hv = newHV();
127 
128     PERL_ARGS_ASSERT_NEW_MSG_HV;
129 
130     (void) hv_stores(msg_hv, "text", msg_sv);
131     (void) hv_stores(msg_hv, "warn_categories",  category_sv);
132     (void) hv_stores(msg_hv, "flag_bit", flag_bit_sv);
133 
134     return msg_hv;
135 }
136 
137 /*
138 =for apidoc uvoffuni_to_utf8_flags
139 
140 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
141 Instead, B<Almost all code should use L<perlapi/uvchr_to_utf8> or
142 L<perlapi/uvchr_to_utf8_flags>>.
143 
144 This function is like them, but the input is a strict Unicode
145 (as opposed to native) code point.  Only in very rare circumstances should code
146 not be using the native code point.
147 
148 For details, see the description for L<perlapi/uvchr_to_utf8_flags>.
149 
150 =cut
151 */
152 
153 U8 *
Perl_uvoffuni_to_utf8_flags(pTHX_ U8 * d,UV uv,const UV flags)154 Perl_uvoffuni_to_utf8_flags(pTHX_ U8 *d, UV uv, const UV flags)
155 {
156     PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS;
157 
158     return uvoffuni_to_utf8_flags_msgs(d, uv, flags, NULL);
159 }
160 
161 /* All these formats take a single UV code point argument */
162 const char surrogate_cp_format[] = "UTF-16 surrogate U+%04" UVXf;
163 const char nonchar_cp_format[]   = "Unicode non-character U+%04" UVXf
164                                    " is not recommended for open interchange";
165 const char super_cp_format[]     = "Code point 0x%" UVXf " is not Unicode,"
166                                    " may not be portable";
167 
168 #define HANDLE_UNICODE_SURROGATE(uv, flags, msgs)                   \
169     STMT_START {                                                    \
170         if (flags & UNICODE_WARN_SURROGATE) {                       \
171             U32 category = packWARN(WARN_SURROGATE);                \
172             const char * format = surrogate_cp_format;              \
173             if (msgs) {                                             \
174                 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),     \
175                                    category,                        \
176                                    UNICODE_GOT_SURROGATE);          \
177             }                                                       \
178             else {                                                  \
179                 Perl_ck_warner_d(aTHX_ category, format, uv);       \
180             }                                                       \
181         }                                                           \
182         if (flags & UNICODE_DISALLOW_SURROGATE) {                   \
183             return NULL;                                            \
184         }                                                           \
185     } STMT_END;
186 
187 #define HANDLE_UNICODE_NONCHAR(uv, flags, msgs)                     \
188     STMT_START {                                                    \
189         if (flags & UNICODE_WARN_NONCHAR) {                         \
190             U32 category = packWARN(WARN_NONCHAR);                  \
191             const char * format = nonchar_cp_format;                \
192             if (msgs) {                                             \
193                 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),     \
194                                    category,                        \
195                                    UNICODE_GOT_NONCHAR);            \
196             }                                                       \
197             else {                                                  \
198                 Perl_ck_warner_d(aTHX_ category, format, uv);       \
199             }                                                       \
200         }                                                           \
201         if (flags & UNICODE_DISALLOW_NONCHAR) {                     \
202             return NULL;                                            \
203         }                                                           \
204     } STMT_END;
205 
206 /*  Use shorter names internally in this file */
207 #define SHIFT   UTF_ACCUMULATION_SHIFT
208 #undef  MARK
209 #define MARK    UTF_CONTINUATION_MARK
210 #define MASK    UTF_CONTINUATION_MASK
211 
212 /*
213 =for apidoc uvchr_to_utf8_flags_msgs
214 
215 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
216 
217 Most code should use C<L</uvchr_to_utf8_flags>()> rather than call this directly.
218 
219 This function is for code that wants any warning and/or error messages to be
220 returned to the caller rather than be displayed.  All messages that would have
221 been displayed if all lexical warnings are enabled will be returned.
222 
223 It is just like C<L</uvchr_to_utf8_flags>> but it takes an extra parameter
224 placed after all the others, C<msgs>.  If this parameter is 0, this function
225 behaves identically to C<L</uvchr_to_utf8_flags>>.  Otherwise, C<msgs> should
226 be a pointer to an C<HV *> variable, in which this function creates a new HV to
227 contain any appropriate messages.  The hash has three key-value pairs, as
228 follows:
229 
230 =over 4
231 
232 =item C<text>
233 
234 The text of the message as a C<SVpv>.
235 
236 =item C<warn_categories>
237 
238 The warning category (or categories) packed into a C<SVuv>.
239 
240 =item C<flag>
241 
242 A single flag bit associated with this message, in a C<SVuv>.
243 The bit corresponds to some bit in the C<*errors> return value,
244 such as C<UNICODE_GOT_SURROGATE>.
245 
246 =back
247 
248 It's important to note that specifying this parameter as non-null will cause
249 any warnings this function would otherwise generate to be suppressed, and
250 instead be placed in C<*msgs>.  The caller can check the lexical warnings state
251 (or not) when choosing what to do with the returned messages.
252 
253 The caller, of course, is responsible for freeing any returned HV.
254 
255 =cut
256 */
257 
258 /* Undocumented; we don't want people using this.  Instead they should use
259  * uvchr_to_utf8_flags_msgs() */
260 U8 *
Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 * d,UV uv,const UV flags,HV ** msgs)261 Perl_uvoffuni_to_utf8_flags_msgs(pTHX_ U8 *d, UV uv, const UV flags, HV** msgs)
262 {
263     PERL_ARGS_ASSERT_UVOFFUNI_TO_UTF8_FLAGS_MSGS;
264 
265     if (msgs) {
266         *msgs = NULL;
267     }
268 
269     if (OFFUNI_IS_INVARIANT(uv)) {
270 	*d++ = LATIN1_TO_NATIVE(uv);
271 	return d;
272     }
273 
274     if (uv <= MAX_UTF8_TWO_BYTE) {
275         *d++ = I8_TO_NATIVE_UTF8(( uv >> SHIFT) | UTF_START_MARK(2));
276         *d++ = I8_TO_NATIVE_UTF8(( uv           & MASK) |   MARK);
277         return d;
278     }
279 
280     /* Not 2-byte; test for and handle 3-byte result.   In the test immediately
281      * below, the 16 is for start bytes E0-EF (which are all the possible ones
282      * for 3 byte characters).  The 2 is for 2 continuation bytes; these each
283      * contribute SHIFT bits.  This yields 0x4000 on EBCDIC platforms, 0x1_0000
284      * on ASCII; so 3 bytes covers the range 0x400-0x3FFF on EBCDIC;
285      * 0x800-0xFFFF on ASCII */
286     if (uv < (16 * (1U << (2 * SHIFT)))) {
287 	*d++ = I8_TO_NATIVE_UTF8(( uv >> ((3 - 1) * SHIFT)) | UTF_START_MARK(3));
288 	*d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) |   MARK);
289 	*d++ = I8_TO_NATIVE_UTF8(( uv  /* (1 - 1) */        & MASK) |   MARK);
290 
291 #ifndef EBCDIC  /* These problematic code points are 4 bytes on EBCDIC, so
292                    aren't tested here */
293         /* The most likely code points in this range are below the surrogates.
294          * Do an extra test to quickly exclude those. */
295         if (UNLIKELY(uv >= UNICODE_SURROGATE_FIRST)) {
296             if (UNLIKELY(   UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv)
297                          || UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv)))
298             {
299                 HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
300             }
301             else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
302                 HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
303             }
304         }
305 #endif
306 	return d;
307     }
308 
309     /* Not 3-byte; that means the code point is at least 0x1_0000 on ASCII
310      * platforms, and 0x4000 on EBCDIC.  There are problematic cases that can
311      * happen starting with 4-byte characters on ASCII platforms.  We unify the
312      * code for these with EBCDIC, even though some of them require 5-bytes on
313      * those, because khw believes the code saving is worth the very slight
314      * performance hit on these high EBCDIC code points. */
315 
316     if (UNLIKELY(UNICODE_IS_SUPER(uv))) {
317         if (UNLIKELY(      uv > MAX_LEGAL_CP
318                      && ! (flags & UNICODE_ALLOW_ABOVE_IV_MAX)))
319         {
320             Perl_croak(aTHX_ "%s", form_cp_too_large_msg(16, NULL, 0, uv));
321         }
322         if (       (flags & UNICODE_WARN_SUPER)
323             || (   (flags & UNICODE_WARN_PERL_EXTENDED)
324                 && UNICODE_IS_PERL_EXTENDED(uv)))
325         {
326             const char * format = super_cp_format;
327             U32 category = packWARN(WARN_NON_UNICODE);
328             U32 flag = UNICODE_GOT_SUPER;
329 
330             /* Choose the more dire applicable warning */
331             if (UNICODE_IS_PERL_EXTENDED(uv)) {
332                 format = PL_extended_cp_format;
333                 category = packWARN2(WARN_NON_UNICODE, WARN_PORTABLE);
334                 if (flags & (UNICODE_WARN_PERL_EXTENDED
335                             |UNICODE_DISALLOW_PERL_EXTENDED))
336                 {
337                     flag = UNICODE_GOT_PERL_EXTENDED;
338                 }
339             }
340 
341             if (msgs) {
342                 *msgs = new_msg_hv(Perl_form(aTHX_ format, uv),
343                                    category, flag);
344             }
345             else if (    ckWARN_d(WARN_NON_UNICODE)
346                      || (   (flag & UNICODE_GOT_PERL_EXTENDED)
347                          && ckWARN(WARN_PORTABLE)))
348             {
349                 Perl_warner(aTHX_ category, format, uv);
350             }
351         }
352         if (       (flags & UNICODE_DISALLOW_SUPER)
353             || (   (flags & UNICODE_DISALLOW_PERL_EXTENDED)
354                 &&  UNICODE_IS_PERL_EXTENDED(uv)))
355         {
356             return NULL;
357         }
358     }
359     else if (UNLIKELY(UNICODE_IS_END_PLANE_NONCHAR_GIVEN_NOT_SUPER(uv))) {
360         HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
361     }
362 
363     /* Test for and handle 4-byte result.   In the test immediately below, the
364      * 8 is for start bytes F0-F7 (which are all the possible ones for 4 byte
365      * characters).  The 3 is for 3 continuation bytes; these each contribute
366      * SHIFT bits.  This yields 0x4_0000 on EBCDIC platforms, 0x20_0000 on
367      * ASCII, so 4 bytes covers the range 0x4000-0x3_FFFF on EBCDIC;
368      * 0x1_0000-0x1F_FFFF on ASCII */
369     if (uv < (8 * (1U << (3 * SHIFT)))) {
370 	*d++ = I8_TO_NATIVE_UTF8(( uv >> ((4 - 1) * SHIFT)) | UTF_START_MARK(4));
371 	*d++ = I8_TO_NATIVE_UTF8(((uv >> ((3 - 1) * SHIFT)) & MASK) |   MARK);
372 	*d++ = I8_TO_NATIVE_UTF8(((uv >> ((2 - 1) * SHIFT)) & MASK) |   MARK);
373 	*d++ = I8_TO_NATIVE_UTF8(( uv  /* (1 - 1) */        & MASK) |   MARK);
374 
375 #ifdef EBCDIC   /* These were handled on ASCII platforms in the code for 3-byte
376                    characters.  The end-plane non-characters for EBCDIC were
377                    handled just above */
378         if (UNLIKELY(UNICODE_IS_32_CONTIGUOUS_NONCHARS(uv))) {
379             HANDLE_UNICODE_NONCHAR(uv, flags, msgs);
380         }
381         else if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
382             HANDLE_UNICODE_SURROGATE(uv, flags, msgs);
383         }
384 #endif
385 
386 	return d;
387     }
388 
389     /* Not 4-byte; that means the code point is at least 0x20_0000 on ASCII
390      * platforms, and 0x4000 on EBCDIC.  At this point we switch to a loop
391      * format.  The unrolled version above turns out to not save all that much
392      * time, and at these high code points (well above the legal Unicode range
393      * on ASCII platforms, and well above anything in common use in EBCDIC),
394      * khw believes that less code outweighs slight performance gains. */
395 
396     {
397 	STRLEN len  = OFFUNISKIP(uv);
398 	U8 *p = d+len-1;
399 	while (p > d) {
400 	    *p-- = I8_TO_NATIVE_UTF8((uv & MASK) | MARK);
401 	    uv >>= SHIFT;
402 	}
403 	*p = I8_TO_NATIVE_UTF8((uv & UTF_START_MASK(len)) | UTF_START_MARK(len));
404 	return d+len;
405     }
406 }
407 
408 /*
409 =for apidoc uvchr_to_utf8
410 
411 Adds the UTF-8 representation of the native code point C<uv> to the end
412 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
413 C<UTF8_MAXBYTES+1>) free bytes available.  The return value is the pointer to
414 the byte after the end of the new character.  In other words,
415 
416     d = uvchr_to_utf8(d, uv);
417 
418 is the recommended wide native character-aware way of saying
419 
420     *(d++) = uv;
421 
422 This function accepts any code point from 0..C<IV_MAX> as input.
423 C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
424 
425 It is possible to forbid or warn on non-Unicode code points, or those that may
426 be problematic by using L</uvchr_to_utf8_flags>.
427 
428 =cut
429 */
430 
431 /* This is also a macro */
432 PERL_CALLCONV U8*       Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv);
433 
434 U8 *
Perl_uvchr_to_utf8(pTHX_ U8 * d,UV uv)435 Perl_uvchr_to_utf8(pTHX_ U8 *d, UV uv)
436 {
437     return uvchr_to_utf8(d, uv);
438 }
439 
440 /*
441 =for apidoc uvchr_to_utf8_flags
442 
443 Adds the UTF-8 representation of the native code point C<uv> to the end
444 of the string C<d>; C<d> should have at least C<UVCHR_SKIP(uv)+1> (up to
445 C<UTF8_MAXBYTES+1>) free bytes available.  The return value is the pointer to
446 the byte after the end of the new character.  In other words,
447 
448     d = uvchr_to_utf8_flags(d, uv, flags);
449 
450 or, in most cases,
451 
452     d = uvchr_to_utf8_flags(d, uv, 0);
453 
454 This is the Unicode-aware way of saying
455 
456     *(d++) = uv;
457 
458 If C<flags> is 0, this function accepts any code point from 0..C<IV_MAX> as
459 input.  C<IV_MAX> is typically 0x7FFF_FFFF in a 32-bit word.
460 
461 Specifying C<flags> can further restrict what is allowed and not warned on, as
462 follows:
463 
464 If C<uv> is a Unicode surrogate code point and C<UNICODE_WARN_SURROGATE> is set,
465 the function will raise a warning, provided UTF8 warnings are enabled.  If
466 instead C<UNICODE_DISALLOW_SURROGATE> is set, the function will fail and return
467 NULL.  If both flags are set, the function will both warn and return NULL.
468 
469 Similarly, the C<UNICODE_WARN_NONCHAR> and C<UNICODE_DISALLOW_NONCHAR> flags
470 affect how the function handles a Unicode non-character.
471 
472 And likewise, the C<UNICODE_WARN_SUPER> and C<UNICODE_DISALLOW_SUPER> flags
473 affect the handling of code points that are above the Unicode maximum of
474 0x10FFFF.  Languages other than Perl may not be able to accept files that
475 contain these.
476 
477 The flag C<UNICODE_WARN_ILLEGAL_INTERCHANGE> selects all three of
478 the above WARN flags; and C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> selects all
479 three DISALLOW flags.  C<UNICODE_DISALLOW_ILLEGAL_INTERCHANGE> restricts the
480 allowed inputs to the strict UTF-8 traditionally defined by Unicode.
481 Similarly, C<UNICODE_WARN_ILLEGAL_C9_INTERCHANGE> and
482 C<UNICODE_DISALLOW_ILLEGAL_C9_INTERCHANGE> are shortcuts to select the
483 above-Unicode and surrogate flags, but not the non-character ones, as
484 defined in
485 L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>.
486 See L<perlunicode/Noncharacter code points>.
487 
488 Extremely high code points were never specified in any standard, and require an
489 extension to UTF-8 to express, which Perl does.  It is likely that programs
490 written in something other than Perl would not be able to read files that
491 contain these; nor would Perl understand files written by something that uses a
492 different extension.  For these reasons, there is a separate set of flags that
493 can warn and/or disallow these extremely high code points, even if other
494 above-Unicode ones are accepted.  They are the C<UNICODE_WARN_PERL_EXTENDED>
495 and C<UNICODE_DISALLOW_PERL_EXTENDED> flags.  For more information see
496 L</C<UTF8_GOT_PERL_EXTENDED>>.  Of course C<UNICODE_DISALLOW_SUPER> will
497 treat all above-Unicode code points, including these, as malformations.  (Note
498 that the Unicode standard considers anything above 0x10FFFF to be illegal, but
499 there are standards predating it that allow up to 0x7FFF_FFFF (2**31 -1))
500 
501 A somewhat misleadingly named synonym for C<UNICODE_WARN_PERL_EXTENDED> is
502 retained for backward compatibility: C<UNICODE_WARN_ABOVE_31_BIT>.  Similarly,
503 C<UNICODE_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
504 C<UNICODE_DISALLOW_PERL_EXTENDED>.  The names are misleading because on EBCDIC
505 platforms,these flags can apply to code points that actually do fit in 31 bits.
506 The new names accurately describe the situation in all cases.
507 
508 =cut
509 */
510 
511 /* This is also a macro */
512 PERL_CALLCONV U8*       Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags);
513 
514 U8 *
Perl_uvchr_to_utf8_flags(pTHX_ U8 * d,UV uv,UV flags)515 Perl_uvchr_to_utf8_flags(pTHX_ U8 *d, UV uv, UV flags)
516 {
517     return uvchr_to_utf8_flags(d, uv, flags);
518 }
519 
520 #ifndef UV_IS_QUAD
521 
522 STATIC int
S_is_utf8_cp_above_31_bits(const U8 * const s,const U8 * const e,const bool consider_overlongs)523 S_is_utf8_cp_above_31_bits(const U8 * const s,
524                            const U8 * const e,
525                            const bool consider_overlongs)
526 {
527     /* Returns TRUE if the first code point represented by the Perl-extended-
528      * UTF-8-encoded string starting at 's', and looking no further than 'e -
529      * 1' doesn't fit into 31 bytes.  That is, that if it is >= 2**31.
530      *
531      * The function handles the case where the input bytes do not include all
532      * the ones necessary to represent a full character.  That is, they may be
533      * the intial bytes of the representation of a code point, but possibly
534      * the final ones necessary for the complete representation may be beyond
535      * 'e - 1'.
536      *
537      * The function also can handle the case where the input is an overlong
538      * sequence.  If 'consider_overlongs' is 0, the function assumes the
539      * input is not overlong, without checking, and will return based on that
540      * assumption.  If this parameter is 1, the function will go to the trouble
541      * of figuring out if it actually evaluates to above or below 31 bits.
542      *
543      * The sequence is otherwise assumed to be well-formed, without checking.
544      */
545 
546     const STRLEN len = e - s;
547     int is_overlong;
548 
549     PERL_ARGS_ASSERT_IS_UTF8_CP_ABOVE_31_BITS;
550 
551     assert(! UTF8_IS_INVARIANT(*s) && e > s);
552 
553 #ifdef EBCDIC
554 
555     PERL_UNUSED_ARG(consider_overlongs);
556 
557     /* On the EBCDIC code pages we handle, only the native start byte 0xFE can
558      * mean a 32-bit or larger code point (0xFF is an invariant).  0xFE can
559      * also be the start byte for a 31-bit code point; we need at least 2
560      * bytes, and maybe up through 8 bytes, to determine that.  (It can also be
561      * the start byte for an overlong sequence, but for 30-bit or smaller code
562      * points, so we don't have to worry about overlongs on EBCDIC.) */
563     if (*s != 0xFE) {
564         return 0;
565     }
566 
567     if (len == 1) {
568         return -1;
569     }
570 
571 #else
572 
573     /* On ASCII, FE and FF are the only start bytes that can evaluate to
574      * needing more than 31 bits. */
575     if (LIKELY(*s < 0xFE)) {
576         return 0;
577     }
578 
579     /* What we have left are FE and FF.  Both of these require more than 31
580      * bits unless they are for overlongs. */
581     if (! consider_overlongs) {
582         return 1;
583     }
584 
585     /* Here, we have FE or FF.  If the input isn't overlong, it evaluates to
586      * above 31 bits.  But we need more than one byte to discern this, so if
587      * passed just the start byte, it could be an overlong evaluating to
588      * smaller */
589     if (len == 1) {
590         return -1;
591     }
592 
593     /* Having excluded len==1, and knowing that FE and FF are both valid start
594      * bytes, we can call the function below to see if the sequence is
595      * overlong.  (We don't need the full generality of the called function,
596      * but for these huge code points, speed shouldn't be a consideration, and
597      * the compiler does have enough information, since it's static to this
598      * file, to optimize to just the needed parts.) */
599     is_overlong = is_utf8_overlong_given_start_byte_ok(s, len);
600 
601     /* If it isn't overlong, more than 31 bits are required. */
602     if (is_overlong == 0) {
603         return 1;
604     }
605 
606     /* If it is indeterminate if it is overlong, return that */
607     if (is_overlong < 0) {
608         return -1;
609     }
610 
611     /* Here is overlong.  Such a sequence starting with FE is below 31 bits, as
612      * the max it can be is 2**31 - 1 */
613     if (*s == 0xFE) {
614         return 0;
615     }
616 
617 #endif
618 
619     /* Here, ASCII and EBCDIC rejoin:
620     *  On ASCII:   We have an overlong sequence starting with FF
621     *  On EBCDIC:  We have a sequence starting with FE. */
622 
623     {   /* For C89, use a block so the declaration can be close to its use */
624 
625 #ifdef EBCDIC
626 
627         /* U+7FFFFFFF (2 ** 31 - 1)
628          *              [0] [1] [2] [3] [4] [5] [6] [7] [8] [9] 10  11  12  13
629          *   IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x42\x73\x73\x73\x73\x73\x73
630          *    IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x42\x72\x72\x72\x72\x72\x72
631          *   POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x42\x75\x75\x75\x75\x75\x75
632          *         I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA1\xBF\xBF\xBF\xBF\xBF\xBF
633          * U+80000000 (2 ** 31):
634          *   IBM-1047: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
635          *    IBM-037: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
636          *   POSIX-BC: \xFE\x41\x41\x41\x41\x41\x41\x43\x41\x41\x41\x41\x41\x41
637          *         I8: \xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA2\xA0\xA0\xA0\xA0\xA0\xA0
638          *
639          * and since we know that *s = \xfe, any continuation sequcence
640          * following it that is gt the below is above 31 bits
641                                                 [0] [1] [2] [3] [4] [5] [6] */
642         const U8 conts_for_highest_30_bit[] = "\x41\x41\x41\x41\x41\x41\x42";
643 
644 #else
645 
646         /* FF overlong for U+7FFFFFFF (2 ** 31 - 1)
647          *      ASCII: \xFF\x80\x80\x80\x80\x80\x80\x81\xBF\xBF\xBF\xBF\xBF
648          * FF overlong for U+80000000 (2 ** 31):
649          *      ASCII: \xFF\x80\x80\x80\x80\x80\x80\x82\x80\x80\x80\x80\x80
650          * and since we know that *s = \xff, any continuation sequcence
651          * following it that is gt the below is above 30 bits
652                                                 [0] [1] [2] [3] [4] [5] [6] */
653         const U8 conts_for_highest_30_bit[] = "\x80\x80\x80\x80\x80\x80\x81";
654 
655 
656 #endif
657         const STRLEN conts_len = sizeof(conts_for_highest_30_bit) - 1;
658         const STRLEN cmp_len = MIN(conts_len, len - 1);
659 
660         /* Now compare the continuation bytes in s with the ones we have
661          * compiled in that are for the largest 30 bit code point.  If we have
662          * enough bytes available to determine the answer, or the bytes we do
663          * have differ from them, we can compare the two to get a definitive
664          * answer (Note that in UTF-EBCDIC, the two lowest possible
665          * continuation bytes are \x41 and \x42.) */
666         if (cmp_len >= conts_len || memNE(s + 1,
667                                           conts_for_highest_30_bit,
668                                           cmp_len))
669         {
670             return cBOOL(memGT(s + 1, conts_for_highest_30_bit, cmp_len));
671         }
672 
673         /* Here, all the bytes we have are the same as the highest 30-bit code
674          * point, but we are missing so many bytes that we can't make the
675          * determination */
676         return -1;
677     }
678 }
679 
680 #endif
681 
682 PERL_STATIC_INLINE int
S_is_utf8_overlong_given_start_byte_ok(const U8 * const s,const STRLEN len)683 S_is_utf8_overlong_given_start_byte_ok(const U8 * const s, const STRLEN len)
684 {
685     /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
686      * 's' + 'len' - 1 is an overlong.  It returns 1 if it is an overlong; 0 if
687      * it isn't, and -1 if there isn't enough information to tell.  This last
688      * return value can happen if the sequence is incomplete, missing some
689      * trailing bytes that would form a complete character.  If there are
690      * enough bytes to make a definitive decision, this function does so.
691      * Usually 2 bytes sufficient.
692      *
693      * Overlongs can occur whenever the number of continuation bytes changes.
694      * That means whenever the number of leading 1 bits in a start byte
695      * increases from the next lower start byte.  That happens for start bytes
696      * C0, E0, F0, F8, FC, FE, and FF.  On modern perls, the following illegal
697      * start bytes have already been excluded, so don't need to be tested here;
698      * ASCII platforms: C0, C1
699      * EBCDIC platforms C0, C1, C2, C3, C4, E0
700      */
701 
702     const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
703     const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
704 
705     PERL_ARGS_ASSERT_IS_UTF8_OVERLONG_GIVEN_START_BYTE_OK;
706     assert(len > 1 && UTF8_IS_START(*s));
707 
708     /* Each platform has overlongs after the start bytes given above (expressed
709      * in I8 for EBCDIC).  What constitutes an overlong varies by platform, but
710      * the logic is the same, except the E0 overlong has already been excluded
711      * on EBCDIC platforms.   The  values below were found by manually
712      * inspecting the UTF-8 patterns.  See the tables in utf8.h and
713      * utfebcdic.h. */
714 
715 #       ifdef EBCDIC
716 #           define F0_ABOVE_OVERLONG 0xB0
717 #           define F8_ABOVE_OVERLONG 0xA8
718 #           define FC_ABOVE_OVERLONG 0xA4
719 #           define FE_ABOVE_OVERLONG 0xA2
720 #           define FF_OVERLONG_PREFIX "\xfe\x41\x41\x41\x41\x41\x41\x41"
721                                     /* I8(0xfe) is FF */
722 #       else
723 
724     if (s0 == 0xE0 && UNLIKELY(s1 < 0xA0)) {
725         return 1;
726     }
727 
728 #           define F0_ABOVE_OVERLONG 0x90
729 #           define F8_ABOVE_OVERLONG 0x88
730 #           define FC_ABOVE_OVERLONG 0x84
731 #           define FE_ABOVE_OVERLONG 0x82
732 #           define FF_OVERLONG_PREFIX "\xff\x80\x80\x80\x80\x80\x80"
733 #       endif
734 
735 
736     if (   (s0 == 0xF0 && UNLIKELY(s1 < F0_ABOVE_OVERLONG))
737         || (s0 == 0xF8 && UNLIKELY(s1 < F8_ABOVE_OVERLONG))
738         || (s0 == 0xFC && UNLIKELY(s1 < FC_ABOVE_OVERLONG))
739         || (s0 == 0xFE && UNLIKELY(s1 < FE_ABOVE_OVERLONG)))
740     {
741         return 1;
742     }
743 
744     /* Check for the FF overlong */
745     return isFF_OVERLONG(s, len);
746 }
747 
748 PERL_STATIC_INLINE int
S_isFF_OVERLONG(const U8 * const s,const STRLEN len)749 S_isFF_OVERLONG(const U8 * const s, const STRLEN len)
750 {
751     /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
752      * 'e' - 1 is an overlong beginning with \xFF.  It returns 1 if it is; 0 if
753      * it isn't, and -1 if there isn't enough information to tell.  This last
754      * return value can happen if the sequence is incomplete, missing some
755      * trailing bytes that would form a complete character.  If there are
756      * enough bytes to make a definitive decision, this function does so. */
757 
758     PERL_ARGS_ASSERT_ISFF_OVERLONG;
759 
760     /* To be an FF overlong, all the available bytes must match */
761     if (LIKELY(memNE(s, FF_OVERLONG_PREFIX,
762                      MIN(len, sizeof(FF_OVERLONG_PREFIX) - 1))))
763     {
764         return 0;
765     }
766 
767     /* To be an FF overlong sequence, all the bytes in FF_OVERLONG_PREFIX must
768      * be there; what comes after them doesn't matter.  See tables in utf8.h,
769      * utfebcdic.h. */
770     if (len >= sizeof(FF_OVERLONG_PREFIX) - 1) {
771         return 1;
772     }
773 
774     /* The missing bytes could cause the result to go one way or the other, so
775      * the result is indeterminate */
776     return -1;
777 }
778 
779 #if defined(UV_IS_QUAD) /* These assume IV_MAX is 2**63-1 */
780 #  ifdef EBCDIC     /* Actually is I8 */
781 #   define HIGHEST_REPRESENTABLE_UTF8                                       \
782                 "\xFF\xA7\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
783 #  else
784 #   define HIGHEST_REPRESENTABLE_UTF8                                       \
785                 "\xFF\x80\x87\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
786 #  endif
787 #endif
788 
789 PERL_STATIC_INLINE int
S_does_utf8_overflow(const U8 * const s,const U8 * e,const bool consider_overlongs)790 S_does_utf8_overflow(const U8 * const s,
791                      const U8 * e,
792                      const bool consider_overlongs)
793 {
794     /* Returns an int indicating whether or not the UTF-8 sequence from 's' to
795      * 'e' - 1 would overflow an IV on this platform; that is if it represents
796      * a code point larger than the highest representable code point.  It
797      * returns 1 if it does overflow; 0 if it doesn't, and -1 if there isn't
798      * enough information to tell.  This last return value can happen if the
799      * sequence is incomplete, missing some trailing bytes that would form a
800      * complete character.  If there are enough bytes to make a definitive
801      * decision, this function does so.
802      *
803      * If 'consider_overlongs' is TRUE, the function checks for the possibility
804      * that the sequence is an overlong that doesn't overflow.  Otherwise, it
805      * assumes the sequence is not an overlong.  This can give different
806      * results only on ASCII 32-bit platforms.
807      *
808      * (For ASCII platforms, we could use memcmp() because we don't have to
809      * convert each byte to I8, but it's very rare input indeed that would
810      * approach overflow, so the loop below will likely only get executed once.)
811      *
812      * 'e' - 1 must not be beyond a full character. */
813 
814 
815     PERL_ARGS_ASSERT_DOES_UTF8_OVERFLOW;
816     assert(s <= e && s + UTF8SKIP(s) >= e);
817 
818 #if ! defined(UV_IS_QUAD)
819 
820     return is_utf8_cp_above_31_bits(s, e, consider_overlongs);
821 
822 #else
823 
824     PERL_UNUSED_ARG(consider_overlongs);
825 
826     {
827         const STRLEN len = e - s;
828         const U8 *x;
829         const U8 * y = (const U8 *) HIGHEST_REPRESENTABLE_UTF8;
830 
831         for (x = s; x < e; x++, y++) {
832 
833             if (UNLIKELY(NATIVE_UTF8_TO_I8(*x) == *y)) {
834                 continue;
835             }
836 
837             /* If this byte is larger than the corresponding highest UTF-8
838              * byte, the sequence overflow; otherwise the byte is less than,
839              * and so the sequence doesn't overflow */
840             return NATIVE_UTF8_TO_I8(*x) > *y;
841 
842         }
843 
844         /* Got to the end and all bytes are the same.  If the input is a whole
845          * character, it doesn't overflow.  And if it is a partial character,
846          * there's not enough information to tell */
847         if (len < sizeof(HIGHEST_REPRESENTABLE_UTF8) - 1) {
848             return -1;
849         }
850 
851         return 0;
852     }
853 
854 #endif
855 
856 }
857 
858 #if 0
859 
860 /* This is the portions of the above function that deal with UV_MAX instead of
861  * IV_MAX.  They are left here in case we want to combine them so that internal
862  * uses can have larger code points.  The only logic difference is that the
863  * 32-bit EBCDIC platform is treate like the 64-bit, and the 32-bit ASCII has
864  * different logic.
865  */
866 
867 /* Anything larger than this will overflow the word if it were converted into a UV */
868 #if defined(UV_IS_QUAD)
869 #  ifdef EBCDIC     /* Actually is I8 */
870 #   define HIGHEST_REPRESENTABLE_UTF8                                       \
871                 "\xFF\xAF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
872 #  else
873 #   define HIGHEST_REPRESENTABLE_UTF8                                       \
874                 "\xFF\x80\x8F\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF\xBF"
875 #  endif
876 #else   /* 32-bit */
877 #  ifdef EBCDIC
878 #   define HIGHEST_REPRESENTABLE_UTF8                                       \
879                 "\xFF\xA0\xA0\xA0\xA0\xA0\xA0\xA3\xBF\xBF\xBF\xBF\xBF\xBF"
880 #  else
881 #   define HIGHEST_REPRESENTABLE_UTF8  "\xFE\x83\xBF\xBF\xBF\xBF\xBF"
882 #  endif
883 #endif
884 
885 #if ! defined(UV_IS_QUAD) && ! defined(EBCDIC)
886 
887     /* On 32 bit ASCII machines, many overlongs that start with FF don't
888      * overflow */
889     if (consider_overlongs && isFF_OVERLONG(s, len) > 0) {
890 
891         /* To be such an overlong, the first bytes of 's' must match
892          * FF_OVERLONG_PREFIX, which is "\xff\x80\x80\x80\x80\x80\x80".  If we
893          * don't have any additional bytes available, the sequence, when
894          * completed might or might not fit in 32 bits.  But if we have that
895          * next byte, we can tell for sure.  If it is <= 0x83, then it does
896          * fit. */
897         if (len <= sizeof(FF_OVERLONG_PREFIX) - 1) {
898             return -1;
899         }
900 
901         return s[sizeof(FF_OVERLONG_PREFIX) - 1] > 0x83;
902     }
903 
904 /* Starting with the #else, the rest of the function is identical except
905  *      1.  we need to move the 'len' declaration to be global to the function
906  *      2.  the endif move to just after the UNUSED_ARG.
907  * An empty endif is given just below to satisfy the preprocessor
908  */
909 #endif
910 
911 #endif
912 
913 #undef F0_ABOVE_OVERLONG
914 #undef F8_ABOVE_OVERLONG
915 #undef FC_ABOVE_OVERLONG
916 #undef FE_ABOVE_OVERLONG
917 #undef FF_OVERLONG_PREFIX
918 
919 STRLEN
Perl_is_utf8_char_helper(const U8 * const s,const U8 * e,const U32 flags)920 Perl_is_utf8_char_helper(const U8 * const s, const U8 * e, const U32 flags)
921 {
922     STRLEN len;
923     const U8 *x;
924 
925     /* A helper function that should not be called directly.
926      *
927      * This function returns non-zero if the string beginning at 's' and
928      * looking no further than 'e - 1' is well-formed Perl-extended-UTF-8 for a
929      * code point; otherwise it returns 0.  The examination stops after the
930      * first code point in 's' is validated, not looking at the rest of the
931      * input.  If 'e' is such that there are not enough bytes to represent a
932      * complete code point, this function will return non-zero anyway, if the
933      * bytes it does have are well-formed UTF-8 as far as they go, and aren't
934      * excluded by 'flags'.
935      *
936      * A non-zero return gives the number of bytes required to represent the
937      * code point.  Be aware that if the input is for a partial character, the
938      * return will be larger than 'e - s'.
939      *
940      * This function assumes that the code point represented is UTF-8 variant.
941      * The caller should have excluded the possibility of it being invariant
942      * before calling this function.
943      *
944      * 'flags' can be 0, or any combination of the UTF8_DISALLOW_foo flags
945      * accepted by L</utf8n_to_uvchr>.  If non-zero, this function will return
946      * 0 if the code point represented is well-formed Perl-extended-UTF-8, but
947      * disallowed by the flags.  If the input is only for a partial character,
948      * the function will return non-zero if there is any sequence of
949      * well-formed UTF-8 that, when appended to the input sequence, could
950      * result in an allowed code point; otherwise it returns 0.  Non characters
951      * cannot be determined based on partial character input.  But many  of the
952      * other excluded types can be determined with just the first one or two
953      * bytes.
954      *
955      */
956 
957     PERL_ARGS_ASSERT_IS_UTF8_CHAR_HELPER;
958 
959     assert(0 == (flags & ~(UTF8_DISALLOW_ILLEGAL_INTERCHANGE
960                           |UTF8_DISALLOW_PERL_EXTENDED)));
961     assert(! UTF8_IS_INVARIANT(*s));
962 
963     /* A variant char must begin with a start byte */
964     if (UNLIKELY(! UTF8_IS_START(*s))) {
965         return 0;
966     }
967 
968     /* Examine a maximum of a single whole code point */
969     if (e - s > UTF8SKIP(s)) {
970         e = s + UTF8SKIP(s);
971     }
972 
973     len = e - s;
974 
975     if (flags && isUTF8_POSSIBLY_PROBLEMATIC(*s)) {
976         const U8 s0 = NATIVE_UTF8_TO_I8(s[0]);
977 
978         /* Here, we are disallowing some set of largish code points, and the
979          * first byte indicates the sequence is for a code point that could be
980          * in the excluded set.  We generally don't have to look beyond this or
981          * the second byte to see if the sequence is actually for one of the
982          * excluded classes.  The code below is derived from this table:
983          *
984          *              UTF-8            UTF-EBCDIC I8
985          *   U+D800: \xED\xA0\x80      \xF1\xB6\xA0\xA0      First surrogate
986          *   U+DFFF: \xED\xBF\xBF      \xF1\xB7\xBF\xBF      Final surrogate
987          * U+110000: \xF4\x90\x80\x80  \xF9\xA2\xA0\xA0\xA0  First above Unicode
988          *
989          * Keep in mind that legal continuation bytes range between \x80..\xBF
990          * for UTF-8, and \xA0..\xBF for I8.  Anything above those aren't
991          * continuation bytes.  Hence, we don't have to test the upper edge
992          * because if any of those is encountered, the sequence is malformed,
993          * and would fail elsewhere in this function.
994          *
995          * The code here likewise assumes that there aren't other
996          * malformations; again the function should fail elsewhere because of
997          * these.  For example, an overlong beginning with FC doesn't actually
998          * have to be a super; it could actually represent a small code point,
999          * even U+0000.  But, since overlongs (and other malformations) are
1000          * illegal, the function should return FALSE in either case.
1001          */
1002 
1003 #ifdef EBCDIC   /* On EBCDIC, these are actually I8 bytes */
1004 #  define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER  0xFA
1005 #  define IS_UTF8_2_BYTE_SUPER(s0, s1)           ((s0) == 0xF9 && (s1) >= 0xA2)
1006 
1007 #  define IS_UTF8_2_BYTE_SURROGATE(s0, s1)       ((s0) == 0xF1              \
1008                                                        /* B6 and B7 */      \
1009                                               && ((s1) & 0xFE ) == 0xB6)
1010 #  define isUTF8_PERL_EXTENDED(s)   (*s == I8_TO_NATIVE_UTF8(0xFF))
1011 #else
1012 #  define FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER  0xF5
1013 #  define IS_UTF8_2_BYTE_SUPER(s0, s1)           ((s0) == 0xF4 && (s1) >= 0x90)
1014 #  define IS_UTF8_2_BYTE_SURROGATE(s0, s1)       ((s0) == 0xED && (s1) >= 0xA0)
1015 #  define isUTF8_PERL_EXTENDED(s)   (*s >= 0xFE)
1016 #endif
1017 
1018         if (  (flags & UTF8_DISALLOW_SUPER)
1019             && UNLIKELY(s0 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1020         {
1021             return 0;           /* Above Unicode */
1022         }
1023 
1024         if (   (flags & UTF8_DISALLOW_PERL_EXTENDED)
1025             &&  UNLIKELY(isUTF8_PERL_EXTENDED(s)))
1026         {
1027             return 0;
1028         }
1029 
1030         if (len > 1) {
1031             const U8 s1 = NATIVE_UTF8_TO_I8(s[1]);
1032 
1033             if (   (flags & UTF8_DISALLOW_SUPER)
1034                 &&  UNLIKELY(IS_UTF8_2_BYTE_SUPER(s0, s1)))
1035             {
1036                 return 0;       /* Above Unicode */
1037             }
1038 
1039             if (   (flags & UTF8_DISALLOW_SURROGATE)
1040                 &&  UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(s0, s1)))
1041             {
1042                 return 0;       /* Surrogate */
1043             }
1044 
1045             if (  (flags & UTF8_DISALLOW_NONCHAR)
1046                 && UNLIKELY(UTF8_IS_NONCHAR(s, e)))
1047             {
1048                 return 0;       /* Noncharacter code point */
1049             }
1050         }
1051     }
1052 
1053     /* Make sure that all that follows are continuation bytes */
1054     for (x = s + 1; x < e; x++) {
1055         if (UNLIKELY(! UTF8_IS_CONTINUATION(*x))) {
1056             return 0;
1057         }
1058     }
1059 
1060     /* Here is syntactically valid.  Next, make sure this isn't the start of an
1061      * overlong. */
1062     if (len > 1 && is_utf8_overlong_given_start_byte_ok(s, len) > 0) {
1063         return 0;
1064     }
1065 
1066     /* And finally, that the code point represented fits in a word on this
1067      * platform */
1068     if (0 < does_utf8_overflow(s, e,
1069                                0 /* Don't consider overlongs */
1070                               ))
1071     {
1072         return 0;
1073     }
1074 
1075     return UTF8SKIP(s);
1076 }
1077 
1078 char *
Perl__byte_dump_string(pTHX_ const U8 * const start,const STRLEN len,const bool format)1079 Perl__byte_dump_string(pTHX_ const U8 * const start, const STRLEN len, const bool format)
1080 {
1081     /* Returns a mortalized C string that is a displayable copy of the 'len'
1082      * bytes starting at 'start'.  'format' gives how to display each byte.
1083      * Currently, there are only two formats, so it is currently a bool:
1084      *      0   \xab
1085      *      1    ab         (that is a space between two hex digit bytes)
1086      */
1087 
1088     const STRLEN output_len = 4 * len + 1;  /* 4 bytes per each input, plus a
1089                                                trailing NUL */
1090     const U8 * s = start;
1091     const U8 * const e = start + len;
1092     char * output;
1093     char * d;
1094 
1095     PERL_ARGS_ASSERT__BYTE_DUMP_STRING;
1096 
1097     Newx(output, output_len, char);
1098     SAVEFREEPV(output);
1099 
1100     d = output;
1101     for (s = start; s < e; s++) {
1102         const unsigned high_nibble = (*s & 0xF0) >> 4;
1103         const unsigned low_nibble =  (*s & 0x0F);
1104 
1105         if (format) {
1106             if (s > start) {
1107                 *d++ = ' ';
1108             }
1109         }
1110         else {
1111             *d++ = '\\';
1112             *d++ = 'x';
1113         }
1114 
1115         if (high_nibble < 10) {
1116             *d++ = high_nibble + '0';
1117         }
1118         else {
1119             *d++ = high_nibble - 10 + 'a';
1120         }
1121 
1122         if (low_nibble < 10) {
1123             *d++ = low_nibble + '0';
1124         }
1125         else {
1126             *d++ = low_nibble - 10 + 'a';
1127         }
1128     }
1129 
1130     *d = '\0';
1131     return output;
1132 }
1133 
1134 PERL_STATIC_INLINE char *
S_unexpected_non_continuation_text(pTHX_ const U8 * const s,STRLEN print_len,const STRLEN non_cont_byte_pos,const STRLEN expect_len)1135 S_unexpected_non_continuation_text(pTHX_ const U8 * const s,
1136 
1137                                          /* Max number of bytes to print */
1138                                          STRLEN print_len,
1139 
1140                                          /* Which one is the non-continuation */
1141                                          const STRLEN non_cont_byte_pos,
1142 
1143                                          /* How many bytes should there be? */
1144                                          const STRLEN expect_len)
1145 {
1146     /* Return the malformation warning text for an unexpected continuation
1147      * byte. */
1148 
1149     const char * const where = (non_cont_byte_pos == 1)
1150                                ? "immediately"
1151                                : Perl_form(aTHX_ "%d bytes",
1152                                                  (int) non_cont_byte_pos);
1153     const U8 * x = s + non_cont_byte_pos;
1154     const U8 * e = s + print_len;
1155 
1156     PERL_ARGS_ASSERT_UNEXPECTED_NON_CONTINUATION_TEXT;
1157 
1158     /* We don't need to pass this parameter, but since it has already been
1159      * calculated, it's likely faster to pass it; verify under DEBUGGING */
1160     assert(expect_len == UTF8SKIP(s));
1161 
1162     /* As a defensive coding measure, don't output anything past a NUL.  Such
1163      * bytes shouldn't be in the middle of a malformation, and could mark the
1164      * end of the allocated string, and what comes after is undefined */
1165     for (; x < e; x++) {
1166         if (*x == '\0') {
1167             x++;            /* Output this particular NUL */
1168             break;
1169         }
1170     }
1171 
1172     return Perl_form(aTHX_ "%s: %s (unexpected non-continuation byte 0x%02x,"
1173                            " %s after start byte 0x%02x; need %d bytes, got %d)",
1174                            malformed_text,
1175                            _byte_dump_string(s, x - s, 0),
1176                            *(s + non_cont_byte_pos),
1177                            where,
1178                            *s,
1179                            (int) expect_len,
1180                            (int) non_cont_byte_pos);
1181 }
1182 
1183 /*
1184 
1185 =for apidoc utf8n_to_uvchr
1186 
1187 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1188 Most code should use L</utf8_to_uvchr_buf>() rather than call this
1189 directly.
1190 
1191 Bottom level UTF-8 decode routine.
1192 Returns the native code point value of the first character in the string C<s>,
1193 which is assumed to be in UTF-8 (or UTF-EBCDIC) encoding, and no longer than
1194 C<curlen> bytes; C<*retlen> (if C<retlen> isn't NULL) will be set to
1195 the length, in bytes, of that character.
1196 
1197 The value of C<flags> determines the behavior when C<s> does not point to a
1198 well-formed UTF-8 character.  If C<flags> is 0, encountering a malformation
1199 causes zero to be returned and C<*retlen> is set so that (S<C<s> + C<*retlen>>)
1200 is the next possible position in C<s> that could begin a non-malformed
1201 character.  Also, if UTF-8 warnings haven't been lexically disabled, a warning
1202 is raised.  Some UTF-8 input sequences may contain multiple malformations.
1203 This function tries to find every possible one in each call, so multiple
1204 warnings can be raised for the same sequence.
1205 
1206 Various ALLOW flags can be set in C<flags> to allow (and not warn on)
1207 individual types of malformations, such as the sequence being overlong (that
1208 is, when there is a shorter sequence that can express the same code point;
1209 overlong sequences are expressly forbidden in the UTF-8 standard due to
1210 potential security issues).  Another malformation example is the first byte of
1211 a character not being a legal first byte.  See F<utf8.h> for the list of such
1212 flags.  Even if allowed, this function generally returns the Unicode
1213 REPLACEMENT CHARACTER when it encounters a malformation.  There are flags in
1214 F<utf8.h> to override this behavior for the overlong malformations, but don't
1215 do that except for very specialized purposes.
1216 
1217 The C<UTF8_CHECK_ONLY> flag overrides the behavior when a non-allowed (by other
1218 flags) malformation is found.  If this flag is set, the routine assumes that
1219 the caller will raise a warning, and this function will silently just set
1220 C<retlen> to C<-1> (cast to C<STRLEN>) and return zero.
1221 
1222 Note that this API requires disambiguation between successful decoding a C<NUL>
1223 character, and an error return (unless the C<UTF8_CHECK_ONLY> flag is set), as
1224 in both cases, 0 is returned, and, depending on the malformation, C<retlen> may
1225 be set to 1.  To disambiguate, upon a zero return, see if the first byte of
1226 C<s> is 0 as well.  If so, the input was a C<NUL>; if not, the input had an
1227 error.  Or you can use C<L</utf8n_to_uvchr_error>>.
1228 
1229 Certain code points are considered problematic.  These are Unicode surrogates,
1230 Unicode non-characters, and code points above the Unicode maximum of 0x10FFFF.
1231 By default these are considered regular code points, but certain situations
1232 warrant special handling for them, which can be specified using the C<flags>
1233 parameter.  If C<flags> contains C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>, all
1234 three classes are treated as malformations and handled as such.  The flags
1235 C<UTF8_DISALLOW_SURROGATE>, C<UTF8_DISALLOW_NONCHAR>, and
1236 C<UTF8_DISALLOW_SUPER> (meaning above the legal Unicode maximum) can be set to
1237 disallow these categories individually.  C<UTF8_DISALLOW_ILLEGAL_INTERCHANGE>
1238 restricts the allowed inputs to the strict UTF-8 traditionally defined by
1239 Unicode.  Use C<UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE> to use the strictness
1240 definition given by
1241 L<Unicode Corrigendum #9|https://www.unicode.org/versions/corrigendum9.html>.
1242 The difference between traditional strictness and C9 strictness is that the
1243 latter does not forbid non-character code points.  (They are still discouraged,
1244 however.)  For more discussion see L<perlunicode/Noncharacter code points>.
1245 
1246 The flags C<UTF8_WARN_ILLEGAL_INTERCHANGE>,
1247 C<UTF8_WARN_ILLEGAL_C9_INTERCHANGE>, C<UTF8_WARN_SURROGATE>,
1248 C<UTF8_WARN_NONCHAR>, and C<UTF8_WARN_SUPER> will cause warning messages to be
1249 raised for their respective categories, but otherwise the code points are
1250 considered valid (not malformations).  To get a category to both be treated as
1251 a malformation and raise a warning, specify both the WARN and DISALLOW flags.
1252 (But note that warnings are not raised if lexically disabled nor if
1253 C<UTF8_CHECK_ONLY> is also specified.)
1254 
1255 Extremely high code points were never specified in any standard, and require an
1256 extension to UTF-8 to express, which Perl does.  It is likely that programs
1257 written in something other than Perl would not be able to read files that
1258 contain these; nor would Perl understand files written by something that uses a
1259 different extension.  For these reasons, there is a separate set of flags that
1260 can warn and/or disallow these extremely high code points, even if other
1261 above-Unicode ones are accepted.  They are the C<UTF8_WARN_PERL_EXTENDED> and
1262 C<UTF8_DISALLOW_PERL_EXTENDED> flags.  For more information see
1263 L</C<UTF8_GOT_PERL_EXTENDED>>.  Of course C<UTF8_DISALLOW_SUPER> will treat all
1264 above-Unicode code points, including these, as malformations.
1265 (Note that the Unicode standard considers anything above 0x10FFFF to be
1266 illegal, but there are standards predating it that allow up to 0x7FFF_FFFF
1267 (2**31 -1))
1268 
1269 A somewhat misleadingly named synonym for C<UTF8_WARN_PERL_EXTENDED> is
1270 retained for backward compatibility: C<UTF8_WARN_ABOVE_31_BIT>.  Similarly,
1271 C<UTF8_DISALLOW_ABOVE_31_BIT> is usable instead of the more accurately named
1272 C<UTF8_DISALLOW_PERL_EXTENDED>.  The names are misleading because these flags
1273 can apply to code points that actually do fit in 31 bits.  This happens on
1274 EBCDIC platforms, and sometimes when the L<overlong
1275 malformation|/C<UTF8_GOT_LONG>> is also present.  The new names accurately
1276 describe the situation in all cases.
1277 
1278 
1279 All other code points corresponding to Unicode characters, including private
1280 use and those yet to be assigned, are never considered malformed and never
1281 warn.
1282 
1283 =for apidoc Amnh||UTF8_CHECK_ONLY
1284 =for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_INTERCHANGE
1285 =for apidoc Amnh||UTF8_DISALLOW_ILLEGAL_C9_INTERCHANGE
1286 =for apidoc Amnh||UTF8_DISALLOW_SURROGATE
1287 =for apidoc Amnh||UTF8_DISALLOW_NONCHAR
1288 =for apidoc Amnh||UTF8_DISALLOW_SUPER
1289 =for apidoc Amnh||UTF8_WARN_ILLEGAL_INTERCHANGE
1290 =for apidoc Amnh||UTF8_WARN_ILLEGAL_C9_INTERCHANGE
1291 =for apidoc Amnh||UTF8_WARN_SURROGATE
1292 =for apidoc Amnh||UTF8_WARN_NONCHAR
1293 =for apidoc Amnh||UTF8_WARN_SUPER
1294 =for apidoc Amnh||UTF8_WARN_PERL_EXTENDED
1295 =for apidoc Amnh||UTF8_DISALLOW_PERL_EXTENDED
1296 
1297 =cut
1298 
1299 Also implemented as a macro in utf8.h
1300 */
1301 
1302 UV
Perl_utf8n_to_uvchr(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags)1303 Perl_utf8n_to_uvchr(const U8 *s,
1304                     STRLEN curlen,
1305                     STRLEN *retlen,
1306                     const U32 flags)
1307 {
1308     PERL_ARGS_ASSERT_UTF8N_TO_UVCHR;
1309 
1310     return utf8n_to_uvchr_error(s, curlen, retlen, flags, NULL);
1311 }
1312 
1313 /*
1314 
1315 =for apidoc utf8n_to_uvchr_error
1316 
1317 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1318 Most code should use L</utf8_to_uvchr_buf>() rather than call this
1319 directly.
1320 
1321 This function is for code that needs to know what the precise malformation(s)
1322 are when an error is found.  If you also need to know the generated warning
1323 messages, use L</utf8n_to_uvchr_msgs>() instead.
1324 
1325 It is like C<L</utf8n_to_uvchr>> but it takes an extra parameter placed after
1326 all the others, C<errors>.  If this parameter is 0, this function behaves
1327 identically to C<L</utf8n_to_uvchr>>.  Otherwise, C<errors> should be a pointer
1328 to a C<U32> variable, which this function sets to indicate any errors found.
1329 Upon return, if C<*errors> is 0, there were no errors found.  Otherwise,
1330 C<*errors> is the bit-wise C<OR> of the bits described in the list below.  Some
1331 of these bits will be set if a malformation is found, even if the input
1332 C<flags> parameter indicates that the given malformation is allowed; those
1333 exceptions are noted:
1334 
1335 =over 4
1336 
1337 =item C<UTF8_GOT_PERL_EXTENDED>
1338 
1339 The input sequence is not standard UTF-8, but a Perl extension.  This bit is
1340 set only if the input C<flags> parameter contains either the
1341 C<UTF8_DISALLOW_PERL_EXTENDED> or the C<UTF8_WARN_PERL_EXTENDED> flags.
1342 
1343 Code points above 0x7FFF_FFFF (2**31 - 1) were never specified in any standard,
1344 and so some extension must be used to express them.  Perl uses a natural
1345 extension to UTF-8 to represent the ones up to 2**36-1, and invented a further
1346 extension to represent even higher ones, so that any code point that fits in a
1347 64-bit word can be represented.  Text using these extensions is not likely to
1348 be portable to non-Perl code.  We lump both of these extensions together and
1349 refer to them as Perl extended UTF-8.  There exist other extensions that people
1350 have invented, incompatible with Perl's.
1351 
1352 On EBCDIC platforms starting in Perl v5.24, the Perl extension for representing
1353 extremely high code points kicks in at 0x3FFF_FFFF (2**30 -1), which is lower
1354 than on ASCII.  Prior to that, code points 2**31 and higher were simply
1355 unrepresentable, and a different, incompatible method was used to represent
1356 code points between 2**30 and 2**31 - 1.
1357 
1358 On both platforms, ASCII and EBCDIC, C<UTF8_GOT_PERL_EXTENDED> is set if
1359 Perl extended UTF-8 is used.
1360 
1361 In earlier Perls, this bit was named C<UTF8_GOT_ABOVE_31_BIT>, which you still
1362 may use for backward compatibility.  That name is misleading, as this flag may
1363 be set when the code point actually does fit in 31 bits.  This happens on
1364 EBCDIC platforms, and sometimes when the L<overlong
1365 malformation|/C<UTF8_GOT_LONG>> is also present.  The new name accurately
1366 describes the situation in all cases.
1367 
1368 =item C<UTF8_GOT_CONTINUATION>
1369 
1370 The input sequence was malformed in that the first byte was a UTF-8
1371 continuation byte.
1372 
1373 =item C<UTF8_GOT_EMPTY>
1374 
1375 The input C<curlen> parameter was 0.
1376 
1377 =item C<UTF8_GOT_LONG>
1378 
1379 The input sequence was malformed in that there is some other sequence that
1380 evaluates to the same code point, but that sequence is shorter than this one.
1381 
1382 Until Unicode 3.1, it was legal for programs to accept this malformation, but
1383 it was discovered that this created security issues.
1384 
1385 =item C<UTF8_GOT_NONCHAR>
1386 
1387 The code point represented by the input UTF-8 sequence is for a Unicode
1388 non-character code point.
1389 This bit is set only if the input C<flags> parameter contains either the
1390 C<UTF8_DISALLOW_NONCHAR> or the C<UTF8_WARN_NONCHAR> flags.
1391 
1392 =item C<UTF8_GOT_NON_CONTINUATION>
1393 
1394 The input sequence was malformed in that a non-continuation type byte was found
1395 in a position where only a continuation type one should be.  See also
1396 L</C<UTF8_GOT_SHORT>>.
1397 
1398 =item C<UTF8_GOT_OVERFLOW>
1399 
1400 The input sequence was malformed in that it is for a code point that is not
1401 representable in the number of bits available in an IV on the current platform.
1402 
1403 =item C<UTF8_GOT_SHORT>
1404 
1405 The input sequence was malformed in that C<curlen> is smaller than required for
1406 a complete sequence.  In other words, the input is for a partial character
1407 sequence.
1408 
1409 
1410 C<UTF8_GOT_SHORT> and C<UTF8_GOT_NON_CONTINUATION> both indicate a too short
1411 sequence.  The difference is that C<UTF8_GOT_NON_CONTINUATION> indicates always
1412 that there is an error, while C<UTF8_GOT_SHORT> means that an incomplete
1413 sequence was looked at.   If no other flags are present, it means that the
1414 sequence was valid as far as it went.  Depending on the application, this could
1415 mean one of three things:
1416 
1417 =over
1418 
1419 =item *
1420 
1421 The C<curlen> length parameter passed in was too small, and the function was
1422 prevented from examining all the necessary bytes.
1423 
1424 =item *
1425 
1426 The buffer being looked at is based on reading data, and the data received so
1427 far stopped in the middle of a character, so that the next read will
1428 read the remainder of this character.  (It is up to the caller to deal with the
1429 split bytes somehow.)
1430 
1431 =item *
1432 
1433 This is a real error, and the partial sequence is all we're going to get.
1434 
1435 =back
1436 
1437 =item C<UTF8_GOT_SUPER>
1438 
1439 The input sequence was malformed in that it is for a non-Unicode code point;
1440 that is, one above the legal Unicode maximum.
1441 This bit is set only if the input C<flags> parameter contains either the
1442 C<UTF8_DISALLOW_SUPER> or the C<UTF8_WARN_SUPER> flags.
1443 
1444 =item C<UTF8_GOT_SURROGATE>
1445 
1446 The input sequence was malformed in that it is for a -Unicode UTF-16 surrogate
1447 code point.
1448 This bit is set only if the input C<flags> parameter contains either the
1449 C<UTF8_DISALLOW_SURROGATE> or the C<UTF8_WARN_SURROGATE> flags.
1450 
1451 =back
1452 
1453 To do your own error handling, call this function with the C<UTF8_CHECK_ONLY>
1454 flag to suppress any warnings, and then examine the C<*errors> return.
1455 
1456 =cut
1457 
1458 Also implemented as a macro in utf8.h
1459 */
1460 
1461 UV
Perl_utf8n_to_uvchr_error(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags,U32 * errors)1462 Perl_utf8n_to_uvchr_error(const U8 *s,
1463                           STRLEN curlen,
1464                           STRLEN *retlen,
1465                           const U32 flags,
1466                           U32 * errors)
1467 {
1468     PERL_ARGS_ASSERT_UTF8N_TO_UVCHR_ERROR;
1469 
1470     return utf8n_to_uvchr_msgs(s, curlen, retlen, flags, errors, NULL);
1471 }
1472 
1473 /*
1474 
1475 =for apidoc utf8n_to_uvchr_msgs
1476 
1477 THIS FUNCTION SHOULD BE USED IN ONLY VERY SPECIALIZED CIRCUMSTANCES.
1478 Most code should use L</utf8_to_uvchr_buf>() rather than call this
1479 directly.
1480 
1481 This function is for code that needs to know what the precise malformation(s)
1482 are when an error is found, and wants the corresponding warning and/or error
1483 messages to be returned to the caller rather than be displayed.  All messages
1484 that would have been displayed if all lexcial warnings are enabled will be
1485 returned.
1486 
1487 It is just like C<L</utf8n_to_uvchr_error>> but it takes an extra parameter
1488 placed after all the others, C<msgs>.  If this parameter is 0, this function
1489 behaves identically to C<L</utf8n_to_uvchr_error>>.  Otherwise, C<msgs> should
1490 be a pointer to an C<AV *> variable, in which this function creates a new AV to
1491 contain any appropriate messages.  The elements of the array are ordered so
1492 that the first message that would have been displayed is in the 0th element,
1493 and so on.  Each element is a hash with three key-value pairs, as follows:
1494 
1495 =over 4
1496 
1497 =item C<text>
1498 
1499 The text of the message as a C<SVpv>.
1500 
1501 =item C<warn_categories>
1502 
1503 The warning category (or categories) packed into a C<SVuv>.
1504 
1505 =item C<flag>
1506 
1507 A single flag bit associated with this message, in a C<SVuv>.
1508 The bit corresponds to some bit in the C<*errors> return value,
1509 such as C<UTF8_GOT_LONG>.
1510 
1511 =back
1512 
1513 It's important to note that specifying this parameter as non-null will cause
1514 any warnings this function would otherwise generate to be suppressed, and
1515 instead be placed in C<*msgs>.  The caller can check the lexical warnings state
1516 (or not) when choosing what to do with the returned messages.
1517 
1518 If the flag C<UTF8_CHECK_ONLY> is passed, no warnings are generated, and hence
1519 no AV is created.
1520 
1521 The caller, of course, is responsible for freeing any returned AV.
1522 
1523 =cut
1524 */
1525 
1526 UV
Perl__utf8n_to_uvchr_msgs_helper(const U8 * s,STRLEN curlen,STRLEN * retlen,const U32 flags,U32 * errors,AV ** msgs)1527 Perl__utf8n_to_uvchr_msgs_helper(const U8 *s,
1528                                STRLEN curlen,
1529                                STRLEN *retlen,
1530                                const U32 flags,
1531                                U32 * errors,
1532                                AV ** msgs)
1533 {
1534     const U8 * const s0 = s;
1535     const U8 * send = s0 + curlen;
1536     U32 possible_problems;  /* A bit is set here for each potential problem
1537                                found as we go along */
1538     UV uv;
1539     STRLEN expectlen;     /* How long should this sequence be? */
1540     STRLEN avail_len;     /* When input is too short, gives what that is */
1541     U32 discard_errors;   /* Used to save branches when 'errors' is NULL; this
1542                              gets set and discarded */
1543 
1544     /* The below are used only if there is both an overlong malformation and a
1545      * too short one.  Otherwise the first two are set to 's0' and 'send', and
1546      * the third not used at all */
1547     U8 * adjusted_s0;
1548     U8 temp_char_buf[UTF8_MAXBYTES + 1]; /* Used to avoid a Newx in this
1549                                             routine; see [perl #130921] */
1550     UV uv_so_far;
1551     dTHX;
1552 
1553     PERL_ARGS_ASSERT__UTF8N_TO_UVCHR_MSGS_HELPER;
1554 
1555     /* Here, is one of: a) malformed; b) a problematic code point (surrogate,
1556      * non-unicode, or nonchar); or c) on ASCII platforms, one of the Hangul
1557      * syllables that the dfa doesn't properly handle.  Quickly dispose of the
1558      * final case. */
1559 
1560 #ifndef EBCDIC
1561 
1562     /* Each of the affected Hanguls starts with \xED */
1563 
1564     if (is_HANGUL_ED_utf8_safe(s0, send)) {
1565         if (retlen) {
1566             *retlen = 3;
1567         }
1568         if (errors) {
1569             *errors = 0;
1570         }
1571         if (msgs) {
1572             *msgs = NULL;
1573         }
1574 
1575         return ((0xED & UTF_START_MASK(3)) << (2 * UTF_ACCUMULATION_SHIFT))
1576              | ((s0[1] & UTF_CONTINUATION_MASK) << UTF_ACCUMULATION_SHIFT)
1577              |  (s0[2] & UTF_CONTINUATION_MASK);
1578     }
1579 
1580 #endif
1581 
1582     /* In conjunction with the exhaustive tests that can be enabled in
1583      * APItest/t/utf8_warn_base.pl, this can make sure the dfa does precisely
1584      * what it is intended to do, and that no flaws in it are masked by
1585      * dropping down and executing the code below
1586     assert(! isUTF8_CHAR(s0, send)
1587           || UTF8_IS_SURROGATE(s0, send)
1588           || UTF8_IS_SUPER(s0, send)
1589           || UTF8_IS_NONCHAR(s0,send));
1590     */
1591 
1592     s = s0;
1593     uv = *s0;
1594     possible_problems = 0;
1595     expectlen = 0;
1596     avail_len = 0;
1597     discard_errors = 0;
1598     adjusted_s0 = (U8 *) s0;
1599     uv_so_far = 0;
1600 
1601     if (errors) {
1602         *errors = 0;
1603     }
1604     else {
1605         errors = &discard_errors;
1606     }
1607 
1608     /* The order of malformation tests here is important.  We should consume as
1609      * few bytes as possible in order to not skip any valid character.  This is
1610      * required by the Unicode Standard (section 3.9 of Unicode 6.0); see also
1611      * https://unicode.org/reports/tr36 for more discussion as to why.  For
1612      * example, once we've done a UTF8SKIP, we can tell the expected number of
1613      * bytes, and could fail right off the bat if the input parameters indicate
1614      * that there are too few available.  But it could be that just that first
1615      * byte is garbled, and the intended character occupies fewer bytes.  If we
1616      * blindly assumed that the first byte is correct, and skipped based on
1617      * that number, we could skip over a valid input character.  So instead, we
1618      * always examine the sequence byte-by-byte.
1619      *
1620      * We also should not consume too few bytes, otherwise someone could inject
1621      * things.  For example, an input could be deliberately designed to
1622      * overflow, and if this code bailed out immediately upon discovering that,
1623      * returning to the caller C<*retlen> pointing to the very next byte (one
1624      * which is actually part of the overflowing sequence), that could look
1625      * legitimate to the caller, which could discard the initial partial
1626      * sequence and process the rest, inappropriately.
1627      *
1628      * Some possible input sequences are malformed in more than one way.  This
1629      * function goes to lengths to try to find all of them.  This is necessary
1630      * for correctness, as the inputs may allow one malformation but not
1631      * another, and if we abandon searching for others after finding the
1632      * allowed one, we could allow in something that shouldn't have been.
1633      */
1634 
1635     if (UNLIKELY(curlen == 0)) {
1636         possible_problems |= UTF8_GOT_EMPTY;
1637         curlen = 0;
1638         uv = UNICODE_REPLACEMENT;
1639 	goto ready_to_handle_errors;
1640     }
1641 
1642     expectlen = UTF8SKIP(s);
1643 
1644     /* A well-formed UTF-8 character, as the vast majority of calls to this
1645      * function will be for, has this expected length.  For efficiency, set
1646      * things up here to return it.  It will be overriden only in those rare
1647      * cases where a malformation is found */
1648     if (retlen) {
1649 	*retlen = expectlen;
1650     }
1651 
1652     /* A continuation character can't start a valid sequence */
1653     if (UNLIKELY(UTF8_IS_CONTINUATION(uv))) {
1654 	possible_problems |= UTF8_GOT_CONTINUATION;
1655         curlen = 1;
1656         uv = UNICODE_REPLACEMENT;
1657 	goto ready_to_handle_errors;
1658     }
1659 
1660     /* Here is not a continuation byte, nor an invariant.  The only thing left
1661      * is a start byte (possibly for an overlong).  (We can't use UTF8_IS_START
1662      * because it excludes start bytes like \xC0 that always lead to
1663      * overlongs.) */
1664 
1665     /* Convert to I8 on EBCDIC (no-op on ASCII), then remove the leading bits
1666      * that indicate the number of bytes in the character's whole UTF-8
1667      * sequence, leaving just the bits that are part of the value.  */
1668     uv = NATIVE_UTF8_TO_I8(uv) & UTF_START_MASK(expectlen);
1669 
1670     /* Setup the loop end point, making sure to not look past the end of the
1671      * input string, and flag it as too short if the size isn't big enough. */
1672     if (UNLIKELY(curlen < expectlen)) {
1673         possible_problems |= UTF8_GOT_SHORT;
1674         avail_len = curlen;
1675     }
1676     else {
1677         send = (U8*) s0 + expectlen;
1678     }
1679 
1680     /* Now, loop through the remaining bytes in the character's sequence,
1681      * accumulating each into the working value as we go. */
1682     for (s = s0 + 1; s < send; s++) {
1683 	if (LIKELY(UTF8_IS_CONTINUATION(*s))) {
1684 	    uv = UTF8_ACCUMULATE(uv, *s);
1685             continue;
1686         }
1687 
1688         /* Here, found a non-continuation before processing all expected bytes.
1689          * This byte indicates the beginning of a new character, so quit, even
1690          * if allowing this malformation. */
1691         possible_problems |= UTF8_GOT_NON_CONTINUATION;
1692         break;
1693     } /* End of loop through the character's bytes */
1694 
1695     /* Save how many bytes were actually in the character */
1696     curlen = s - s0;
1697 
1698     /* Note that there are two types of too-short malformation.  One is when
1699      * there is actual wrong data before the normal termination of the
1700      * sequence.  The other is that the sequence wasn't complete before the end
1701      * of the data we are allowed to look at, based on the input 'curlen'.
1702      * This means that we were passed data for a partial character, but it is
1703      * valid as far as we saw.  The other is definitely invalid.  This
1704      * distinction could be important to a caller, so the two types are kept
1705      * separate.
1706      *
1707      * A convenience macro that matches either of the too-short conditions.  */
1708 #   define UTF8_GOT_TOO_SHORT (UTF8_GOT_SHORT|UTF8_GOT_NON_CONTINUATION)
1709 
1710     if (UNLIKELY(possible_problems & UTF8_GOT_TOO_SHORT)) {
1711         uv_so_far = uv;
1712         uv = UNICODE_REPLACEMENT;
1713     }
1714 
1715     /* Check for overflow.  The algorithm requires us to not look past the end
1716      * of the current character, even if partial, so the upper limit is 's' */
1717     if (UNLIKELY(0 < does_utf8_overflow(s0, s,
1718                                          1 /* Do consider overlongs */
1719                                         )))
1720     {
1721         possible_problems |= UTF8_GOT_OVERFLOW;
1722         uv = UNICODE_REPLACEMENT;
1723     }
1724 
1725     /* Check for overlong.  If no problems so far, 'uv' is the correct code
1726      * point value.  Simply see if it is expressible in fewer bytes.  Otherwise
1727      * we must look at the UTF-8 byte sequence itself to see if it is for an
1728      * overlong */
1729     if (     (   LIKELY(! possible_problems)
1730               && UNLIKELY(expectlen > (STRLEN) OFFUNISKIP(uv)))
1731         || (       UNLIKELY(possible_problems)
1732             && (   UNLIKELY(! UTF8_IS_START(*s0))
1733                 || (   curlen > 1
1734                     && UNLIKELY(0 < is_utf8_overlong_given_start_byte_ok(s0,
1735                                                                 s - s0))))))
1736     {
1737         possible_problems |= UTF8_GOT_LONG;
1738 
1739         if (   UNLIKELY(   possible_problems & UTF8_GOT_TOO_SHORT)
1740 
1741                           /* The calculation in the 'true' branch of this 'if'
1742                            * below won't work if overflows, and isn't needed
1743                            * anyway.  Further below we handle all overflow
1744                            * cases */
1745             &&   LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW)))
1746         {
1747             UV min_uv = uv_so_far;
1748             STRLEN i;
1749 
1750             /* Here, the input is both overlong and is missing some trailing
1751              * bytes.  There is no single code point it could be for, but there
1752              * may be enough information present to determine if what we have
1753              * so far is for an unallowed code point, such as for a surrogate.
1754              * The code further below has the intelligence to determine this,
1755              * but just for non-overlong UTF-8 sequences.  What we do here is
1756              * calculate the smallest code point the input could represent if
1757              * there were no too short malformation.  Then we compute and save
1758              * the UTF-8 for that, which is what the code below looks at
1759              * instead of the raw input.  It turns out that the smallest such
1760              * code point is all we need. */
1761             for (i = curlen; i < expectlen; i++) {
1762                 min_uv = UTF8_ACCUMULATE(min_uv,
1763                                      I8_TO_NATIVE_UTF8(UTF_CONTINUATION_MARK));
1764             }
1765 
1766             adjusted_s0 = temp_char_buf;
1767             (void) uvoffuni_to_utf8_flags(adjusted_s0, min_uv, 0);
1768         }
1769     }
1770 
1771     /* Here, we have found all the possible problems, except for when the input
1772      * is for a problematic code point not allowed by the input parameters. */
1773 
1774                                 /* uv is valid for overlongs */
1775     if (   (   (      LIKELY(! (possible_problems & ~UTF8_GOT_LONG))
1776 
1777                       /* isn't problematic if < this */
1778                    && uv >= UNICODE_SURROGATE_FIRST)
1779             || (   UNLIKELY(possible_problems)
1780 
1781                           /* if overflow, we know without looking further
1782                            * precisely which of the problematic types it is,
1783                            * and we deal with those in the overflow handling
1784                            * code */
1785                 && LIKELY(! (possible_problems & UTF8_GOT_OVERFLOW))
1786                 && (   isUTF8_POSSIBLY_PROBLEMATIC(*adjusted_s0)
1787                     || UNLIKELY(isUTF8_PERL_EXTENDED(s0)))))
1788 	&& ((flags & ( UTF8_DISALLOW_NONCHAR
1789                       |UTF8_DISALLOW_SURROGATE
1790                       |UTF8_DISALLOW_SUPER
1791                       |UTF8_DISALLOW_PERL_EXTENDED
1792 	              |UTF8_WARN_NONCHAR
1793                       |UTF8_WARN_SURROGATE
1794                       |UTF8_WARN_SUPER
1795                       |UTF8_WARN_PERL_EXTENDED))))
1796     {
1797         /* If there were no malformations, or the only malformation is an
1798          * overlong, 'uv' is valid */
1799         if (LIKELY(! (possible_problems & ~UTF8_GOT_LONG))) {
1800             if (UNLIKELY(UNICODE_IS_SURROGATE(uv))) {
1801                 possible_problems |= UTF8_GOT_SURROGATE;
1802             }
1803             else if (UNLIKELY(uv > PERL_UNICODE_MAX)) {
1804                 possible_problems |= UTF8_GOT_SUPER;
1805             }
1806             else if (UNLIKELY(UNICODE_IS_NONCHAR(uv))) {
1807                 possible_problems |= UTF8_GOT_NONCHAR;
1808             }
1809         }
1810         else {  /* Otherwise, need to look at the source UTF-8, possibly
1811                    adjusted to be non-overlong */
1812 
1813             if (UNLIKELY(NATIVE_UTF8_TO_I8(*adjusted_s0)
1814                                 >= FIRST_START_BYTE_THAT_IS_DEFINITELY_SUPER))
1815             {
1816                 possible_problems |= UTF8_GOT_SUPER;
1817             }
1818             else if (curlen > 1) {
1819                 if (UNLIKELY(IS_UTF8_2_BYTE_SUPER(
1820                                       NATIVE_UTF8_TO_I8(*adjusted_s0),
1821                                       NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1822                 {
1823                     possible_problems |= UTF8_GOT_SUPER;
1824                 }
1825                 else if (UNLIKELY(IS_UTF8_2_BYTE_SURROGATE(
1826                                       NATIVE_UTF8_TO_I8(*adjusted_s0),
1827                                       NATIVE_UTF8_TO_I8(*(adjusted_s0 + 1)))))
1828                 {
1829                     possible_problems |= UTF8_GOT_SURROGATE;
1830                 }
1831             }
1832 
1833             /* We need a complete well-formed UTF-8 character to discern
1834              * non-characters, so can't look for them here */
1835         }
1836     }
1837 
1838   ready_to_handle_errors:
1839 
1840     /* At this point:
1841      * curlen               contains the number of bytes in the sequence that
1842      *                      this call should advance the input by.
1843      * avail_len            gives the available number of bytes passed in, but
1844      *                      only if this is less than the expected number of
1845      *                      bytes, based on the code point's start byte.
1846      * possible_problems'   is 0 if there weren't any problems; otherwise a bit
1847      *                      is set in it for each potential problem found.
1848      * uv                   contains the code point the input sequence
1849      *                      represents; or if there is a problem that prevents
1850      *                      a well-defined value from being computed, it is
1851      *                      some subsitute value, typically the REPLACEMENT
1852      *                      CHARACTER.
1853      * s0                   points to the first byte of the character
1854      * s                    points to just after were we left off processing
1855      *                      the character
1856      * send                 points to just after where that character should
1857      *                      end, based on how many bytes the start byte tells
1858      *                      us should be in it, but no further than s0 +
1859      *                      avail_len
1860      */
1861 
1862     if (UNLIKELY(possible_problems)) {
1863         bool disallowed = FALSE;
1864         const U32 orig_problems = possible_problems;
1865 
1866         if (msgs) {
1867             *msgs = NULL;
1868         }
1869 
1870         while (possible_problems) { /* Handle each possible problem */
1871             U32 pack_warn = 0;
1872             char * message = NULL;
1873             U32 this_flag_bit = 0;
1874 
1875             /* Each 'if' clause handles one problem.  They are ordered so that
1876              * the first ones' messages will be displayed before the later
1877              * ones; this is kinda in decreasing severity order.  But the
1878              * overlong must come last, as it changes 'uv' looked at by the
1879              * others */
1880             if (possible_problems & UTF8_GOT_OVERFLOW) {
1881 
1882                 /* Overflow means also got a super and are using Perl's
1883                  * extended UTF-8, but we handle all three cases here */
1884                 possible_problems
1885                   &= ~(UTF8_GOT_OVERFLOW|UTF8_GOT_SUPER|UTF8_GOT_PERL_EXTENDED);
1886                 *errors |= UTF8_GOT_OVERFLOW;
1887 
1888                 /* But the API says we flag all errors found */
1889                 if (flags & (UTF8_WARN_SUPER|UTF8_DISALLOW_SUPER)) {
1890                     *errors |= UTF8_GOT_SUPER;
1891                 }
1892                 if (flags
1893                         & (UTF8_WARN_PERL_EXTENDED|UTF8_DISALLOW_PERL_EXTENDED))
1894                 {
1895                     *errors |= UTF8_GOT_PERL_EXTENDED;
1896                 }
1897 
1898                 /* Disallow if any of the three categories say to */
1899                 if ( ! (flags &   UTF8_ALLOW_OVERFLOW)
1900                     || (flags & ( UTF8_DISALLOW_SUPER
1901                                  |UTF8_DISALLOW_PERL_EXTENDED)))
1902                 {
1903                     disallowed = TRUE;
1904                 }
1905 
1906                 /* Likewise, warn if any say to */
1907                 if (  ! (flags & UTF8_ALLOW_OVERFLOW)
1908                     ||  (flags & (UTF8_WARN_SUPER|UTF8_WARN_PERL_EXTENDED)))
1909                 {
1910 
1911                     /* The warnings code explicitly says it doesn't handle the
1912                      * case of packWARN2 and two categories which have
1913                      * parent-child relationship.  Even if it works now to
1914                      * raise the warning if either is enabled, it wouldn't
1915                      * necessarily do so in the future.  We output (only) the
1916                      * most dire warning */
1917                     if (! (flags & UTF8_CHECK_ONLY)) {
1918                         if (msgs || ckWARN_d(WARN_UTF8)) {
1919                             pack_warn = packWARN(WARN_UTF8);
1920                         }
1921                         else if (msgs || ckWARN_d(WARN_NON_UNICODE)) {
1922                             pack_warn = packWARN(WARN_NON_UNICODE);
1923                         }
1924                         if (pack_warn) {
1925                             message = Perl_form(aTHX_ "%s: %s (overflows)",
1926                                             malformed_text,
1927                                             _byte_dump_string(s0, curlen, 0));
1928                             this_flag_bit = UTF8_GOT_OVERFLOW;
1929                         }
1930                     }
1931                 }
1932             }
1933             else if (possible_problems & UTF8_GOT_EMPTY) {
1934                 possible_problems &= ~UTF8_GOT_EMPTY;
1935                 *errors |= UTF8_GOT_EMPTY;
1936 
1937                 if (! (flags & UTF8_ALLOW_EMPTY)) {
1938 
1939                     /* This so-called malformation is now treated as a bug in
1940                      * the caller.  If you have nothing to decode, skip calling
1941                      * this function */
1942                     assert(0);
1943 
1944                     disallowed = TRUE;
1945                     if (  (msgs
1946                         || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1947                     {
1948                         pack_warn = packWARN(WARN_UTF8);
1949                         message = Perl_form(aTHX_ "%s (empty string)",
1950                                                    malformed_text);
1951                         this_flag_bit = UTF8_GOT_EMPTY;
1952                     }
1953                 }
1954             }
1955             else if (possible_problems & UTF8_GOT_CONTINUATION) {
1956                 possible_problems &= ~UTF8_GOT_CONTINUATION;
1957                 *errors |= UTF8_GOT_CONTINUATION;
1958 
1959                 if (! (flags & UTF8_ALLOW_CONTINUATION)) {
1960                     disallowed = TRUE;
1961                     if ((   msgs
1962                          || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1963                     {
1964                         pack_warn = packWARN(WARN_UTF8);
1965                         message = Perl_form(aTHX_
1966                                 "%s: %s (unexpected continuation byte 0x%02x,"
1967                                 " with no preceding start byte)",
1968                                 malformed_text,
1969                                 _byte_dump_string(s0, 1, 0), *s0);
1970                         this_flag_bit = UTF8_GOT_CONTINUATION;
1971                     }
1972                 }
1973             }
1974             else if (possible_problems & UTF8_GOT_SHORT) {
1975                 possible_problems &= ~UTF8_GOT_SHORT;
1976                 *errors |= UTF8_GOT_SHORT;
1977 
1978                 if (! (flags & UTF8_ALLOW_SHORT)) {
1979                     disallowed = TRUE;
1980                     if ((   msgs
1981                          || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
1982                     {
1983                         pack_warn = packWARN(WARN_UTF8);
1984                         message = Perl_form(aTHX_
1985                              "%s: %s (too short; %d byte%s available, need %d)",
1986                              malformed_text,
1987                              _byte_dump_string(s0, send - s0, 0),
1988                              (int)avail_len,
1989                              avail_len == 1 ? "" : "s",
1990                              (int)expectlen);
1991                         this_flag_bit = UTF8_GOT_SHORT;
1992                     }
1993                 }
1994 
1995             }
1996             else if (possible_problems & UTF8_GOT_NON_CONTINUATION) {
1997                 possible_problems &= ~UTF8_GOT_NON_CONTINUATION;
1998                 *errors |= UTF8_GOT_NON_CONTINUATION;
1999 
2000                 if (! (flags & UTF8_ALLOW_NON_CONTINUATION)) {
2001                     disallowed = TRUE;
2002                     if ((   msgs
2003                          || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2004                     {
2005 
2006                         /* If we don't know for sure that the input length is
2007                          * valid, avoid as much as possible reading past the
2008                          * end of the buffer */
2009                         int printlen = (flags & _UTF8_NO_CONFIDENCE_IN_CURLEN)
2010                                        ? (int) (s - s0)
2011                                        : (int) (send - s0);
2012                         pack_warn = packWARN(WARN_UTF8);
2013                         message = Perl_form(aTHX_ "%s",
2014                             unexpected_non_continuation_text(s0,
2015                                                             printlen,
2016                                                             s - s0,
2017                                                             (int) expectlen));
2018                         this_flag_bit = UTF8_GOT_NON_CONTINUATION;
2019                     }
2020                 }
2021             }
2022             else if (possible_problems & UTF8_GOT_SURROGATE) {
2023                 possible_problems &= ~UTF8_GOT_SURROGATE;
2024 
2025                 if (flags & UTF8_WARN_SURROGATE) {
2026                     *errors |= UTF8_GOT_SURROGATE;
2027 
2028                     if (   ! (flags & UTF8_CHECK_ONLY)
2029                         && (msgs || ckWARN_d(WARN_SURROGATE)))
2030                     {
2031                         pack_warn = packWARN(WARN_SURROGATE);
2032 
2033                         /* These are the only errors that can occur with a
2034                         * surrogate when the 'uv' isn't valid */
2035                         if (orig_problems & UTF8_GOT_TOO_SHORT) {
2036                             message = Perl_form(aTHX_
2037                                     "UTF-16 surrogate (any UTF-8 sequence that"
2038                                     " starts with \"%s\" is for a surrogate)",
2039                                     _byte_dump_string(s0, curlen, 0));
2040                         }
2041                         else {
2042                             message = Perl_form(aTHX_ surrogate_cp_format, uv);
2043                         }
2044                         this_flag_bit = UTF8_GOT_SURROGATE;
2045                     }
2046                 }
2047 
2048                 if (flags & UTF8_DISALLOW_SURROGATE) {
2049                     disallowed = TRUE;
2050                     *errors |= UTF8_GOT_SURROGATE;
2051                 }
2052             }
2053             else if (possible_problems & UTF8_GOT_SUPER) {
2054                 possible_problems &= ~UTF8_GOT_SUPER;
2055 
2056                 if (flags & UTF8_WARN_SUPER) {
2057                     *errors |= UTF8_GOT_SUPER;
2058 
2059                     if (   ! (flags & UTF8_CHECK_ONLY)
2060                         && (msgs || ckWARN_d(WARN_NON_UNICODE)))
2061                     {
2062                         pack_warn = packWARN(WARN_NON_UNICODE);
2063 
2064                         if (orig_problems & UTF8_GOT_TOO_SHORT) {
2065                             message = Perl_form(aTHX_
2066                                     "Any UTF-8 sequence that starts with"
2067                                     " \"%s\" is for a non-Unicode code point,"
2068                                     " may not be portable",
2069                                     _byte_dump_string(s0, curlen, 0));
2070                         }
2071                         else {
2072                             message = Perl_form(aTHX_ super_cp_format, uv);
2073                         }
2074                         this_flag_bit = UTF8_GOT_SUPER;
2075                     }
2076                 }
2077 
2078                 /* Test for Perl's extended UTF-8 after the regular SUPER ones,
2079                  * and before possibly bailing out, so that the more dire
2080                  * warning will override the regular one. */
2081                 if (UNLIKELY(isUTF8_PERL_EXTENDED(s0))) {
2082                     if (  ! (flags & UTF8_CHECK_ONLY)
2083                         &&  (flags & (UTF8_WARN_PERL_EXTENDED|UTF8_WARN_SUPER))
2084                         &&  (msgs || (   ckWARN_d(WARN_NON_UNICODE)
2085                                       || ckWARN(WARN_PORTABLE))))
2086                     {
2087                         pack_warn = packWARN2(WARN_NON_UNICODE, WARN_PORTABLE);
2088 
2089                         /* If it is an overlong that evaluates to a code point
2090                          * that doesn't have to use the Perl extended UTF-8, it
2091                          * still used it, and so we output a message that
2092                          * doesn't refer to the code point.  The same is true
2093                          * if there was a SHORT malformation where the code
2094                          * point is not valid.  In that case, 'uv' will have
2095                          * been set to the REPLACEMENT CHAR, and the message
2096                          * below without the code point in it will be selected
2097                          * */
2098                         if (UNICODE_IS_PERL_EXTENDED(uv)) {
2099                             message = Perl_form(aTHX_
2100                                             PL_extended_cp_format, uv);
2101                         }
2102                         else {
2103                             message = Perl_form(aTHX_
2104                                         "Any UTF-8 sequence that starts with"
2105                                         " \"%s\" is a Perl extension, and"
2106                                         " so is not portable",
2107                                         _byte_dump_string(s0, curlen, 0));
2108                         }
2109                         this_flag_bit = UTF8_GOT_PERL_EXTENDED;
2110                     }
2111 
2112                     if (flags & ( UTF8_WARN_PERL_EXTENDED
2113                                  |UTF8_DISALLOW_PERL_EXTENDED))
2114                     {
2115                         *errors |= UTF8_GOT_PERL_EXTENDED;
2116 
2117                         if (flags & UTF8_DISALLOW_PERL_EXTENDED) {
2118                             disallowed = TRUE;
2119                         }
2120                     }
2121                 }
2122 
2123                 if (flags & UTF8_DISALLOW_SUPER) {
2124                     *errors |= UTF8_GOT_SUPER;
2125                     disallowed = TRUE;
2126                 }
2127             }
2128             else if (possible_problems & UTF8_GOT_NONCHAR) {
2129                 possible_problems &= ~UTF8_GOT_NONCHAR;
2130 
2131                 if (flags & UTF8_WARN_NONCHAR) {
2132                     *errors |= UTF8_GOT_NONCHAR;
2133 
2134                     if (  ! (flags & UTF8_CHECK_ONLY)
2135                         && (msgs || ckWARN_d(WARN_NONCHAR)))
2136                     {
2137                         /* The code above should have guaranteed that we don't
2138                          * get here with errors other than overlong */
2139                         assert (! (orig_problems
2140                                         & ~(UTF8_GOT_LONG|UTF8_GOT_NONCHAR)));
2141 
2142                         pack_warn = packWARN(WARN_NONCHAR);
2143                         message = Perl_form(aTHX_ nonchar_cp_format, uv);
2144                         this_flag_bit = UTF8_GOT_NONCHAR;
2145                     }
2146                 }
2147 
2148                 if (flags & UTF8_DISALLOW_NONCHAR) {
2149                     disallowed = TRUE;
2150                     *errors |= UTF8_GOT_NONCHAR;
2151                 }
2152             }
2153             else if (possible_problems & UTF8_GOT_LONG) {
2154                 possible_problems &= ~UTF8_GOT_LONG;
2155                 *errors |= UTF8_GOT_LONG;
2156 
2157                 if (flags & UTF8_ALLOW_LONG) {
2158 
2159                     /* We don't allow the actual overlong value, unless the
2160                      * special extra bit is also set */
2161                     if (! (flags & (   UTF8_ALLOW_LONG_AND_ITS_VALUE
2162                                     & ~UTF8_ALLOW_LONG)))
2163                     {
2164                         uv = UNICODE_REPLACEMENT;
2165                     }
2166                 }
2167                 else {
2168                     disallowed = TRUE;
2169 
2170                     if ((   msgs
2171                          || ckWARN_d(WARN_UTF8)) && ! (flags & UTF8_CHECK_ONLY))
2172                     {
2173                         pack_warn = packWARN(WARN_UTF8);
2174 
2175                         /* These error types cause 'uv' to be something that
2176                          * isn't what was intended, so can't use it in the
2177                          * message.  The other error types either can't
2178                          * generate an overlong, or else the 'uv' is valid */
2179                         if (orig_problems &
2180                                         (UTF8_GOT_TOO_SHORT|UTF8_GOT_OVERFLOW))
2181                         {
2182                             message = Perl_form(aTHX_
2183                                     "%s: %s (any UTF-8 sequence that starts"
2184                                     " with \"%s\" is overlong which can and"
2185                                     " should be represented with a"
2186                                     " different, shorter sequence)",
2187                                     malformed_text,
2188                                     _byte_dump_string(s0, send - s0, 0),
2189                                     _byte_dump_string(s0, curlen, 0));
2190                         }
2191                         else {
2192                             U8 tmpbuf[UTF8_MAXBYTES+1];
2193                             const U8 * const e = uvoffuni_to_utf8_flags(tmpbuf,
2194                                                                         uv, 0);
2195                             /* Don't use U+ for non-Unicode code points, which
2196                              * includes those in the Latin1 range */
2197                             const char * preface = (    uv > PERL_UNICODE_MAX
2198 #ifdef EBCDIC
2199                                                      || uv <= 0xFF
2200 #endif
2201                                                     )
2202                                                    ? "0x"
2203                                                    : "U+";
2204                             message = Perl_form(aTHX_
2205                                 "%s: %s (overlong; instead use %s to represent"
2206                                 " %s%0*" UVXf ")",
2207                                 malformed_text,
2208                                 _byte_dump_string(s0, send - s0, 0),
2209                                 _byte_dump_string(tmpbuf, e - tmpbuf, 0),
2210                                 preface,
2211                                 ((uv < 256) ? 2 : 4), /* Field width of 2 for
2212                                                          small code points */
2213                                 UNI_TO_NATIVE(uv));
2214                         }
2215                         this_flag_bit = UTF8_GOT_LONG;
2216                     }
2217                 }
2218             } /* End of looking through the possible flags */
2219 
2220             /* Display the message (if any) for the problem being handled in
2221              * this iteration of the loop */
2222             if (message) {
2223                 if (msgs) {
2224                     assert(this_flag_bit);
2225 
2226                     if (*msgs == NULL) {
2227                         *msgs = newAV();
2228                     }
2229 
2230                     av_push(*msgs, newRV_noinc((SV*) new_msg_hv(message,
2231                                                                 pack_warn,
2232                                                                 this_flag_bit)));
2233                 }
2234                 else if (PL_op)
2235                     Perl_warner(aTHX_ pack_warn, "%s in %s", message,
2236                                                  OP_DESC(PL_op));
2237                 else
2238                     Perl_warner(aTHX_ pack_warn, "%s", message);
2239             }
2240         }   /* End of 'while (possible_problems)' */
2241 
2242         /* Since there was a possible problem, the returned length may need to
2243          * be changed from the one stored at the beginning of this function.
2244          * Instead of trying to figure out if that's needed, just do it. */
2245         if (retlen) {
2246             *retlen = curlen;
2247         }
2248 
2249         if (disallowed) {
2250             if (flags & UTF8_CHECK_ONLY && retlen) {
2251                 *retlen = ((STRLEN) -1);
2252             }
2253             return 0;
2254         }
2255     }
2256 
2257     return UNI_TO_NATIVE(uv);
2258 }
2259 
2260 /*
2261 =for apidoc utf8_to_uvchr_buf
2262 
2263 Returns the native code point of the first character in the string C<s> which
2264 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2265 C<*retlen> will be set to the length, in bytes, of that character.
2266 
2267 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2268 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2269 C<NULL>) to -1.  If those warnings are off, the computed value, if well-defined
2270 (or the Unicode REPLACEMENT CHARACTER if not), is silently returned, and
2271 C<*retlen> is set (if C<retlen> isn't C<NULL>) so that (S<C<s> + C<*retlen>>) is
2272 the next possible position in C<s> that could begin a non-malformed character.
2273 See L</utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2274 returned.
2275 
2276 =cut
2277 
2278 Also implemented as a macro in utf8.h
2279 
2280 */
2281 
2282 
2283 UV
Perl_utf8_to_uvchr_buf(pTHX_ const U8 * s,const U8 * send,STRLEN * retlen)2284 Perl_utf8_to_uvchr_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2285 {
2286     PERL_ARGS_ASSERT_UTF8_TO_UVCHR_BUF;
2287 
2288     return utf8_to_uvchr_buf_helper(s, send, retlen);
2289 }
2290 
2291 /* This is marked as deprecated
2292  *
2293 =for apidoc utf8_to_uvuni_buf
2294 
2295 Only in very rare circumstances should code need to be dealing in Unicode
2296 (as opposed to native) code points.  In those few cases, use
2297 C<L<NATIVE_TO_UNI(utf8_to_uvchr_buf(...))|perlapi/utf8_to_uvchr_buf>> instead.
2298 If you are not absolutely sure this is one of those cases, then assume it isn't
2299 and use plain C<utf8_to_uvchr_buf> instead.
2300 
2301 Returns the Unicode (not-native) code point of the first character in the
2302 string C<s> which
2303 is assumed to be in UTF-8 encoding; C<send> points to 1 beyond the end of C<s>.
2304 C<retlen> will be set to the length, in bytes, of that character.
2305 
2306 If C<s> does not point to a well-formed UTF-8 character and UTF8 warnings are
2307 enabled, zero is returned and C<*retlen> is set (if C<retlen> isn't
2308 NULL) to -1.  If those warnings are off, the computed value if well-defined (or
2309 the Unicode REPLACEMENT CHARACTER, if not) is silently returned, and C<*retlen>
2310 is set (if C<retlen> isn't NULL) so that (S<C<s> + C<*retlen>>) is the
2311 next possible position in C<s> that could begin a non-malformed character.
2312 See L<perlapi/utf8n_to_uvchr> for details on when the REPLACEMENT CHARACTER is
2313 returned.
2314 
2315 =cut
2316 */
2317 
2318 UV
Perl_utf8_to_uvuni_buf(pTHX_ const U8 * s,const U8 * send,STRLEN * retlen)2319 Perl_utf8_to_uvuni_buf(pTHX_ const U8 *s, const U8 *send, STRLEN *retlen)
2320 {
2321     PERL_ARGS_ASSERT_UTF8_TO_UVUNI_BUF;
2322 
2323     assert(send > s);
2324 
2325     return NATIVE_TO_UNI(utf8_to_uvchr_buf(s, send, retlen));
2326 }
2327 
2328 /*
2329 =for apidoc utf8_length
2330 
2331 Returns the number of characters in the sequence of UTF-8-encoded bytes starting
2332 at C<s> and ending at the byte just before C<e>.  If <s> and <e> point to the
2333 same place, it returns 0 with no warning raised.
2334 
2335 If C<e E<lt> s> or if the scan would end up past C<e>, it raises a UTF8 warning
2336 and returns the number of valid characters.
2337 
2338 =cut
2339 */
2340 
2341 STRLEN
Perl_utf8_length(pTHX_ const U8 * s,const U8 * e)2342 Perl_utf8_length(pTHX_ const U8 *s, const U8 *e)
2343 {
2344     STRLEN len = 0;
2345 
2346     PERL_ARGS_ASSERT_UTF8_LENGTH;
2347 
2348     /* Note: cannot use UTF8_IS_...() too eagerly here since e.g.
2349      * the bitops (especially ~) can create illegal UTF-8.
2350      * In other words: in Perl UTF-8 is not just for Unicode. */
2351 
2352     if (UNLIKELY(e < s))
2353 	goto warn_and_return;
2354     while (s < e) {
2355         s += UTF8SKIP(s);
2356 	len++;
2357     }
2358 
2359     if (UNLIKELY(e != s)) {
2360 	len--;
2361         warn_and_return:
2362 	if (PL_op)
2363 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2364 			     "%s in %s", unees, OP_DESC(PL_op));
2365 	else
2366 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2367     }
2368 
2369     return len;
2370 }
2371 
2372 /*
2373 =for apidoc bytes_cmp_utf8
2374 
2375 Compares the sequence of characters (stored as octets) in C<b>, C<blen> with the
2376 sequence of characters (stored as UTF-8)
2377 in C<u>, C<ulen>.  Returns 0 if they are
2378 equal, -1 or -2 if the first string is less than the second string, +1 or +2
2379 if the first string is greater than the second string.
2380 
2381 -1 or +1 is returned if the shorter string was identical to the start of the
2382 longer string.  -2 or +2 is returned if
2383 there was a difference between characters
2384 within the strings.
2385 
2386 =cut
2387 */
2388 
2389 int
Perl_bytes_cmp_utf8(pTHX_ const U8 * b,STRLEN blen,const U8 * u,STRLEN ulen)2390 Perl_bytes_cmp_utf8(pTHX_ const U8 *b, STRLEN blen, const U8 *u, STRLEN ulen)
2391 {
2392     const U8 *const bend = b + blen;
2393     const U8 *const uend = u + ulen;
2394 
2395     PERL_ARGS_ASSERT_BYTES_CMP_UTF8;
2396 
2397     while (b < bend && u < uend) {
2398         U8 c = *u++;
2399 	if (!UTF8_IS_INVARIANT(c)) {
2400 	    if (UTF8_IS_DOWNGRADEABLE_START(c)) {
2401 		if (u < uend) {
2402 		    U8 c1 = *u++;
2403 		    if (UTF8_IS_CONTINUATION(c1)) {
2404 			c = EIGHT_BIT_UTF8_TO_NATIVE(c, c1);
2405 		    } else {
2406                         /* diag_listed_as: Malformed UTF-8 character%s */
2407 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2408                               "%s %s%s",
2409                               unexpected_non_continuation_text(u - 2, 2, 1, 2),
2410                               PL_op ? " in " : "",
2411                               PL_op ? OP_DESC(PL_op) : "");
2412 			return -2;
2413 		    }
2414 		} else {
2415 		    if (PL_op)
2416 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
2417 					 "%s in %s", unees, OP_DESC(PL_op));
2418 		    else
2419 			Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8), "%s", unees);
2420 		    return -2; /* Really want to return undef :-)  */
2421 		}
2422 	    } else {
2423 		return -2;
2424 	    }
2425 	}
2426 	if (*b != c) {
2427 	    return *b < c ? -2 : +2;
2428 	}
2429 	++b;
2430     }
2431 
2432     if (b == bend && u == uend)
2433 	return 0;
2434 
2435     return b < bend ? +1 : -1;
2436 }
2437 
2438 /*
2439 =for apidoc utf8_to_bytes
2440 
2441 Converts a string C<"s"> of length C<*lenp> from UTF-8 into native byte encoding.
2442 Unlike L</bytes_to_utf8>, this over-writes the original string, and
2443 updates C<*lenp> to contain the new length.
2444 Returns zero on failure (leaving C<"s"> unchanged) setting C<*lenp> to -1.
2445 
2446 Upon successful return, the number of variants in the string can be computed by
2447 having saved the value of C<*lenp> before the call, and subtracting the
2448 after-call value of C<*lenp> from it.
2449 
2450 If you need a copy of the string, see L</bytes_from_utf8>.
2451 
2452 =cut
2453 */
2454 
2455 U8 *
Perl_utf8_to_bytes(pTHX_ U8 * s,STRLEN * lenp)2456 Perl_utf8_to_bytes(pTHX_ U8 *s, STRLEN *lenp)
2457 {
2458     U8 * first_variant;
2459 
2460     PERL_ARGS_ASSERT_UTF8_TO_BYTES;
2461     PERL_UNUSED_CONTEXT;
2462 
2463     /* This is a no-op if no variants at all in the input */
2464     if (is_utf8_invariant_string_loc(s, *lenp, (const U8 **) &first_variant)) {
2465         return s;
2466     }
2467 
2468     {
2469         U8 * const save = s;
2470         U8 * const send = s + *lenp;
2471         U8 * d;
2472 
2473         /* Nothing before the first variant needs to be changed, so start the real
2474          * work there */
2475         s = first_variant;
2476         while (s < send) {
2477             if (! UTF8_IS_INVARIANT(*s)) {
2478                 if (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s, send)) {
2479                     *lenp = ((STRLEN) -1);
2480                     return 0;
2481                 }
2482                 s++;
2483             }
2484             s++;
2485         }
2486 
2487         /* Is downgradable, so do it */
2488         d = s = first_variant;
2489         while (s < send) {
2490             U8 c = *s++;
2491             if (! UVCHR_IS_INVARIANT(c)) {
2492                 /* Then it is two-byte encoded */
2493                 c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2494                 s++;
2495             }
2496             *d++ = c;
2497         }
2498         *d = '\0';
2499         *lenp = d - save;
2500 
2501         return save;
2502     }
2503 }
2504 
2505 /*
2506 =for apidoc bytes_from_utf8
2507 
2508 Converts a potentially UTF-8 encoded string C<s> of length C<*lenp> into native
2509 byte encoding.  On input, the boolean C<*is_utf8p> gives whether or not C<s> is
2510 actually encoded in UTF-8.
2511 
2512 Unlike L</utf8_to_bytes> but like L</bytes_to_utf8>, this is non-destructive of
2513 the input string.
2514 
2515 Do nothing if C<*is_utf8p> is 0, or if there are code points in the string
2516 not expressible in native byte encoding.  In these cases, C<*is_utf8p> and
2517 C<*lenp> are unchanged, and the return value is the original C<s>.
2518 
2519 Otherwise, C<*is_utf8p> is set to 0, and the return value is a pointer to a
2520 newly created string containing a downgraded copy of C<s>, and whose length is
2521 returned in C<*lenp>, updated.  The new string is C<NUL>-terminated.  The
2522 caller is responsible for arranging for the memory used by this string to get
2523 freed.
2524 
2525 Upon successful return, the number of variants in the string can be computed by
2526 having saved the value of C<*lenp> before the call, and subtracting the
2527 after-call value of C<*lenp> from it.
2528 
2529 =cut
2530 
2531 There is a macro that avoids this function call, but this is retained for
2532 anyone who calls it with the Perl_ prefix */
2533 
2534 U8 *
Perl_bytes_from_utf8(pTHX_ const U8 * s,STRLEN * lenp,bool * is_utf8p)2535 Perl_bytes_from_utf8(pTHX_ const U8 *s, STRLEN *lenp, bool *is_utf8p)
2536 {
2537     PERL_ARGS_ASSERT_BYTES_FROM_UTF8;
2538     PERL_UNUSED_CONTEXT;
2539 
2540     return bytes_from_utf8_loc(s, lenp, is_utf8p, NULL);
2541 }
2542 
2543 /*
2544 =for comment
2545 skip apidoc
2546 This is not currently externally documented because we don't want people to use
2547 it for now.  XXX Perhaps that is too paranoid, and it should be documented?
2548 
2549 =for apidoc bytes_from_utf8_loc
2550 
2551 Like C<L</bytes_from_utf8>()>, but takes an extra parameter, a pointer to where
2552 to store the location of the first character in C<"s"> that cannot be
2553 converted to non-UTF8.
2554 
2555 If that parameter is C<NULL>, this function behaves identically to
2556 C<bytes_from_utf8>.
2557 
2558 Otherwise if C<*is_utf8p> is 0 on input, the function behaves identically to
2559 C<bytes_from_utf8>, except it also sets C<*first_non_downgradable> to C<NULL>.
2560 
2561 Otherwise, the function returns a newly created C<NUL>-terminated string
2562 containing the non-UTF8 equivalent of the convertible first portion of
2563 C<"s">.  C<*lenp> is set to its length, not including the terminating C<NUL>.
2564 If the entire input string was converted, C<*is_utf8p> is set to a FALSE value,
2565 and C<*first_non_downgradable> is set to C<NULL>.
2566 
2567 Otherwise, C<*first_non_downgradable> set to point to the first byte of the
2568 first character in the original string that wasn't converted.  C<*is_utf8p> is
2569 unchanged.  Note that the new string may have length 0.
2570 
2571 Another way to look at it is, if C<*first_non_downgradable> is non-C<NULL> and
2572 C<*is_utf8p> is TRUE, this function starts at the beginning of C<"s"> and
2573 converts as many characters in it as possible stopping at the first one it
2574 finds that can't be converted to non-UTF-8.  C<*first_non_downgradable> is
2575 set to point to that.  The function returns the portion that could be converted
2576 in a newly created C<NUL>-terminated string, and C<*lenp> is set to its length,
2577 not including the terminating C<NUL>.  If the very first character in the
2578 original could not be converted, C<*lenp> will be 0, and the new string will
2579 contain just a single C<NUL>.  If the entire input string was converted,
2580 C<*is_utf8p> is set to FALSE and C<*first_non_downgradable> is set to C<NULL>.
2581 
2582 Upon successful return, the number of variants in the converted portion of the
2583 string can be computed by having saved the value of C<*lenp> before the call,
2584 and subtracting the after-call value of C<*lenp> from it.
2585 
2586 =cut
2587 
2588 
2589 */
2590 
2591 U8 *
Perl_bytes_from_utf8_loc(const U8 * s,STRLEN * lenp,bool * is_utf8p,const U8 ** first_unconverted)2592 Perl_bytes_from_utf8_loc(const U8 *s, STRLEN *lenp, bool *is_utf8p, const U8** first_unconverted)
2593 {
2594     U8 *d;
2595     const U8 *original = s;
2596     U8 *converted_start;
2597     const U8 *send = s + *lenp;
2598 
2599     PERL_ARGS_ASSERT_BYTES_FROM_UTF8_LOC;
2600 
2601     if (! *is_utf8p) {
2602         if (first_unconverted) {
2603             *first_unconverted = NULL;
2604         }
2605 
2606         return (U8 *) original;
2607     }
2608 
2609     Newx(d, (*lenp) + 1, U8);
2610 
2611     converted_start = d;
2612     while (s < send) {
2613         U8 c = *s++;
2614         if (! UTF8_IS_INVARIANT(c)) {
2615 
2616             /* Then it is multi-byte encoded.  If the code point is above 0xFF,
2617              * have to stop now */
2618             if (UNLIKELY (! UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(s - 1, send))) {
2619                 if (first_unconverted) {
2620                     *first_unconverted = s - 1;
2621                     goto finish_and_return;
2622                 }
2623                 else {
2624                     Safefree(converted_start);
2625                     return (U8 *) original;
2626                 }
2627             }
2628 
2629             c = EIGHT_BIT_UTF8_TO_NATIVE(c, *s);
2630             s++;
2631         }
2632         *d++ = c;
2633     }
2634 
2635     /* Here, converted the whole of the input */
2636     *is_utf8p = FALSE;
2637     if (first_unconverted) {
2638         *first_unconverted = NULL;
2639     }
2640 
2641   finish_and_return:
2642     *d = '\0';
2643     *lenp = d - converted_start;
2644 
2645     /* Trim unused space */
2646     Renew(converted_start, *lenp + 1, U8);
2647 
2648     return converted_start;
2649 }
2650 
2651 /*
2652 =for apidoc bytes_to_utf8
2653 
2654 Converts a string C<s> of length C<*lenp> bytes from the native encoding into
2655 UTF-8.
2656 Returns a pointer to the newly-created string, and sets C<*lenp> to
2657 reflect the new length in bytes.  The caller is responsible for arranging for
2658 the memory used by this string to get freed.
2659 
2660 Upon successful return, the number of variants in the string can be computed by
2661 having saved the value of C<*lenp> before the call, and subtracting it from the
2662 after-call value of C<*lenp>.
2663 
2664 A C<NUL> character will be written after the end of the string.
2665 
2666 If you want to convert to UTF-8 from encodings other than
2667 the native (Latin1 or EBCDIC),
2668 see L</sv_recode_to_utf8>().
2669 
2670 =cut
2671 */
2672 
2673 U8*
Perl_bytes_to_utf8(pTHX_ const U8 * s,STRLEN * lenp)2674 Perl_bytes_to_utf8(pTHX_ const U8 *s, STRLEN *lenp)
2675 {
2676     const U8 * const send = s + (*lenp);
2677     U8 *d;
2678     U8 *dst;
2679 
2680     PERL_ARGS_ASSERT_BYTES_TO_UTF8;
2681     PERL_UNUSED_CONTEXT;
2682 
2683     /* 1 for each byte + 1 for each byte that expands to two, + trailing NUL */
2684     Newx(d, (*lenp) + variant_under_utf8_count(s, send) + 1, U8);
2685     dst = d;
2686 
2687     while (s < send) {
2688         append_utf8_from_native_byte(*s, &d);
2689         s++;
2690     }
2691 
2692     *d = '\0';
2693     *lenp = d-dst;
2694 
2695     return dst;
2696 }
2697 
2698 /*
2699  * Convert native (big-endian) UTF-16 to UTF-8.  For reversed (little-endian),
2700  * use utf16_to_utf8_reversed().
2701  *
2702  * UTF-16 requires 2 bytes for every code point below 0x10000; otherwise 4 bytes.
2703  * UTF-8 requires 1-3 bytes for every code point below 0x1000; otherwise 4 bytes.
2704  * UTF-EBCDIC requires 1-4 bytes for every code point below 0x1000; otherwise 4-5 bytes.
2705  *
2706  * These functions don't check for overflow.  The worst case is every code
2707  * point in the input is 2 bytes, and requires 4 bytes on output.  (If the code
2708  * is never going to run in EBCDIC, it is 2 bytes requiring 3 on output.)  Therefore the
2709  * destination must be pre-extended to 2 times the source length.
2710  *
2711  * Do not use in-place.  We optimize for native, for obvious reasons. */
2712 
2713 U8*
Perl_utf16_to_utf8(pTHX_ U8 * p,U8 * d,Size_t bytelen,Size_t * newlen)2714 Perl_utf16_to_utf8(pTHX_ U8* p, U8* d, Size_t bytelen, Size_t *newlen)
2715 {
2716     U8* pend;
2717     U8* dstart = d;
2718 
2719     PERL_ARGS_ASSERT_UTF16_TO_UTF8;
2720 
2721     if (bytelen & 1)
2722 	Perl_croak(aTHX_ "panic: utf16_to_utf8: odd bytelen %" UVuf,
2723                                                                (UV)bytelen);
2724 
2725     pend = p + bytelen;
2726 
2727     while (p < pend) {
2728 	UV uv = (p[0] << 8) + p[1]; /* UTF-16BE */
2729 	p += 2;
2730 	if (OFFUNI_IS_INVARIANT(uv)) {
2731 	    *d++ = LATIN1_TO_NATIVE((U8) uv);
2732 	    continue;
2733 	}
2734 	if (uv <= MAX_UTF8_TWO_BYTE) {
2735 	    *d++ = UTF8_TWO_BYTE_HI(UNI_TO_NATIVE(uv));
2736 	    *d++ = UTF8_TWO_BYTE_LO(UNI_TO_NATIVE(uv));
2737 	    continue;
2738 	}
2739 
2740 #define FIRST_HIGH_SURROGATE UNICODE_SURROGATE_FIRST
2741 #define LAST_HIGH_SURROGATE  0xDBFF
2742 #define FIRST_LOW_SURROGATE  0xDC00
2743 #define LAST_LOW_SURROGATE   UNICODE_SURROGATE_LAST
2744 #define FIRST_IN_PLANE1      0x10000
2745 
2746         /* This assumes that most uses will be in the first Unicode plane, not
2747          * needing surrogates */
2748 	if (UNLIKELY(inRANGE(uv, UNICODE_SURROGATE_FIRST,
2749                                  UNICODE_SURROGATE_LAST)))
2750         {
2751             if (UNLIKELY(p >= pend) || UNLIKELY(uv > LAST_HIGH_SURROGATE)) {
2752                 Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2753             }
2754 	    else {
2755 		UV low = (p[0] << 8) + p[1];
2756 		if (UNLIKELY(! inRANGE(low, FIRST_LOW_SURROGATE,
2757                                             LAST_LOW_SURROGATE)))
2758                 {
2759 		    Perl_croak(aTHX_ "Malformed UTF-16 surrogate");
2760                 }
2761 		p += 2;
2762 		uv = ((uv - FIRST_HIGH_SURROGATE) << 10)
2763                                 + (low - FIRST_LOW_SURROGATE) + FIRST_IN_PLANE1;
2764 	    }
2765 	}
2766 #ifdef EBCDIC
2767         d = uvoffuni_to_utf8_flags(d, uv, 0);
2768 #else
2769 	if (uv < FIRST_IN_PLANE1) {
2770 	    *d++ = (U8)(( uv >> 12)         | 0xe0);
2771 	    *d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
2772 	    *d++ = (U8)(( uv        & 0x3f) | 0x80);
2773 	    continue;
2774 	}
2775 	else {
2776 	    *d++ = (U8)(( uv >> 18)         | 0xf0);
2777 	    *d++ = (U8)(((uv >> 12) & 0x3f) | 0x80);
2778 	    *d++ = (U8)(((uv >>  6) & 0x3f) | 0x80);
2779 	    *d++ = (U8)(( uv        & 0x3f) | 0x80);
2780 	    continue;
2781 	}
2782 #endif
2783     }
2784     *newlen = d - dstart;
2785     return d;
2786 }
2787 
2788 /* Note: this one is slightly destructive of the source. */
2789 
2790 U8*
Perl_utf16_to_utf8_reversed(pTHX_ U8 * p,U8 * d,Size_t bytelen,Size_t * newlen)2791 Perl_utf16_to_utf8_reversed(pTHX_ U8* p, U8* d, Size_t bytelen, Size_t *newlen)
2792 {
2793     U8* s = (U8*)p;
2794     U8* const send = s + bytelen;
2795 
2796     PERL_ARGS_ASSERT_UTF16_TO_UTF8_REVERSED;
2797 
2798     if (bytelen & 1)
2799 	Perl_croak(aTHX_ "panic: utf16_to_utf8_reversed: odd bytelen %" UVuf,
2800 		   (UV)bytelen);
2801 
2802     while (s < send) {
2803 	const U8 tmp = s[0];
2804 	s[0] = s[1];
2805 	s[1] = tmp;
2806 	s += 2;
2807     }
2808     return utf16_to_utf8(p, d, bytelen, newlen);
2809 }
2810 
2811 bool
Perl__is_uni_FOO(pTHX_ const U8 classnum,const UV c)2812 Perl__is_uni_FOO(pTHX_ const U8 classnum, const UV c)
2813 {
2814     dVAR;
2815     return _invlist_contains_cp(PL_XPosix_ptrs[classnum], c);
2816 }
2817 
2818 bool
Perl__is_uni_perl_idcont(pTHX_ UV c)2819 Perl__is_uni_perl_idcont(pTHX_ UV c)
2820 {
2821     dVAR;
2822     return _invlist_contains_cp(PL_utf8_perl_idcont, c);
2823 }
2824 
2825 bool
Perl__is_uni_perl_idstart(pTHX_ UV c)2826 Perl__is_uni_perl_idstart(pTHX_ UV c)
2827 {
2828     dVAR;
2829     return _invlist_contains_cp(PL_utf8_perl_idstart, c);
2830 }
2831 
2832 UV
Perl__to_upper_title_latin1(pTHX_ const U8 c,U8 * p,STRLEN * lenp,const char S_or_s)2833 Perl__to_upper_title_latin1(pTHX_ const U8 c, U8* p, STRLEN *lenp,
2834                                   const char S_or_s)
2835 {
2836     /* We have the latin1-range values compiled into the core, so just use
2837      * those, converting the result to UTF-8.  The only difference between upper
2838      * and title case in this range is that LATIN_SMALL_LETTER_SHARP_S is
2839      * either "SS" or "Ss".  Which one to use is passed into the routine in
2840      * 'S_or_s' to avoid a test */
2841 
2842     UV converted = toUPPER_LATIN1_MOD(c);
2843 
2844     PERL_ARGS_ASSERT__TO_UPPER_TITLE_LATIN1;
2845 
2846     assert(S_or_s == 'S' || S_or_s == 's');
2847 
2848     if (UVCHR_IS_INVARIANT(converted)) { /* No difference between the two for
2849 					     characters in this range */
2850 	*p = (U8) converted;
2851 	*lenp = 1;
2852 	return converted;
2853     }
2854 
2855     /* toUPPER_LATIN1_MOD gives the correct results except for three outliers,
2856      * which it maps to one of them, so as to only have to have one check for
2857      * it in the main case */
2858     if (UNLIKELY(converted == LATIN_SMALL_LETTER_Y_WITH_DIAERESIS)) {
2859 	switch (c) {
2860 	    case LATIN_SMALL_LETTER_Y_WITH_DIAERESIS:
2861 		converted = LATIN_CAPITAL_LETTER_Y_WITH_DIAERESIS;
2862 		break;
2863 	    case MICRO_SIGN:
2864 		converted = GREEK_CAPITAL_LETTER_MU;
2865 		break;
2866 #if    UNICODE_MAJOR_VERSION > 2                                        \
2867    || (UNICODE_MAJOR_VERSION == 2 && UNICODE_DOT_VERSION >= 1           \
2868                                   && UNICODE_DOT_DOT_VERSION >= 8)
2869 	    case LATIN_SMALL_LETTER_SHARP_S:
2870 		*(p)++ = 'S';
2871 		*p = S_or_s;
2872 		*lenp = 2;
2873 		return 'S';
2874 #endif
2875 	    default:
2876 		Perl_croak(aTHX_ "panic: to_upper_title_latin1 did not expect"
2877                                  " '%c' to map to '%c'",
2878                                  c, LATIN_SMALL_LETTER_Y_WITH_DIAERESIS);
2879 		NOT_REACHED; /* NOTREACHED */
2880 	}
2881     }
2882 
2883     *(p)++ = UTF8_TWO_BYTE_HI(converted);
2884     *p = UTF8_TWO_BYTE_LO(converted);
2885     *lenp = 2;
2886 
2887     return converted;
2888 }
2889 
2890 /* If compiled on an early Unicode version, there may not be auxiliary tables
2891  * */
2892 #ifndef HAS_UC_AUX_TABLES
2893 #  define UC_AUX_TABLE_ptrs     NULL
2894 #  define UC_AUX_TABLE_lengths  NULL
2895 #endif
2896 #ifndef HAS_TC_AUX_TABLES
2897 #  define TC_AUX_TABLE_ptrs     NULL
2898 #  define TC_AUX_TABLE_lengths  NULL
2899 #endif
2900 #ifndef HAS_LC_AUX_TABLES
2901 #  define LC_AUX_TABLE_ptrs     NULL
2902 #  define LC_AUX_TABLE_lengths  NULL
2903 #endif
2904 #ifndef HAS_CF_AUX_TABLES
2905 #  define CF_AUX_TABLE_ptrs     NULL
2906 #  define CF_AUX_TABLE_lengths  NULL
2907 #endif
2908 #ifndef HAS_UC_AUX_TABLES
2909 #  define UC_AUX_TABLE_ptrs     NULL
2910 #  define UC_AUX_TABLE_lengths  NULL
2911 #endif
2912 
2913 /* Call the function to convert a UTF-8 encoded character to the specified case.
2914  * Note that there may be more than one character in the result.
2915  * 's' is a pointer to the first byte of the input character
2916  * 'd' will be set to the first byte of the string of changed characters.  It
2917  *	needs to have space for UTF8_MAXBYTES_CASE+1 bytes
2918  * 'lenp' will be set to the length in bytes of the string of changed characters
2919  *
2920  * The functions return the ordinal of the first character in the string of
2921  * 'd' */
2922 #define CALL_UPPER_CASE(uv, s, d, lenp)                                     \
2923                 _to_utf8_case(uv, s, d, lenp, PL_utf8_toupper,              \
2924                                               Uppercase_Mapping_invmap,     \
2925                                               UC_AUX_TABLE_ptrs,            \
2926                                               UC_AUX_TABLE_lengths,         \
2927                                               "uppercase")
2928 #define CALL_TITLE_CASE(uv, s, d, lenp)                                     \
2929                 _to_utf8_case(uv, s, d, lenp, PL_utf8_totitle,              \
2930                                               Titlecase_Mapping_invmap,     \
2931                                               TC_AUX_TABLE_ptrs,            \
2932                                               TC_AUX_TABLE_lengths,         \
2933                                               "titlecase")
2934 #define CALL_LOWER_CASE(uv, s, d, lenp)                                     \
2935                 _to_utf8_case(uv, s, d, lenp, PL_utf8_tolower,              \
2936                                               Lowercase_Mapping_invmap,     \
2937                                               LC_AUX_TABLE_ptrs,            \
2938                                               LC_AUX_TABLE_lengths,         \
2939                                               "lowercase")
2940 
2941 
2942 /* This additionally has the input parameter 'specials', which if non-zero will
2943  * cause this to use the specials hash for folding (meaning get full case
2944  * folding); otherwise, when zero, this implies a simple case fold */
2945 #define CALL_FOLD_CASE(uv, s, d, lenp, specials)                            \
2946         (specials)                                                          \
2947         ?  _to_utf8_case(uv, s, d, lenp, PL_utf8_tofold,                    \
2948                                           Case_Folding_invmap,              \
2949                                           CF_AUX_TABLE_ptrs,                \
2950                                           CF_AUX_TABLE_lengths,             \
2951                                           "foldcase")                       \
2952         : _to_utf8_case(uv, s, d, lenp, PL_utf8_tosimplefold,               \
2953                                          Simple_Case_Folding_invmap,        \
2954                                          NULL, NULL,                        \
2955                                          "foldcase")
2956 
2957 UV
Perl_to_uni_upper(pTHX_ UV c,U8 * p,STRLEN * lenp)2958 Perl_to_uni_upper(pTHX_ UV c, U8* p, STRLEN *lenp)
2959 {
2960     /* Convert the Unicode character whose ordinal is <c> to its uppercase
2961      * version and store that in UTF-8 in <p> and its length in bytes in <lenp>.
2962      * Note that the <p> needs to be at least UTF8_MAXBYTES_CASE+1 bytes since
2963      * the changed version may be longer than the original character.
2964      *
2965      * The ordinal of the first character of the changed version is returned
2966      * (but note, as explained above, that there may be more.) */
2967 
2968     dVAR;
2969     PERL_ARGS_ASSERT_TO_UNI_UPPER;
2970 
2971     if (c < 256) {
2972 	return _to_upper_title_latin1((U8) c, p, lenp, 'S');
2973     }
2974 
2975     return CALL_UPPER_CASE(c, NULL, p, lenp);
2976 }
2977 
2978 UV
Perl_to_uni_title(pTHX_ UV c,U8 * p,STRLEN * lenp)2979 Perl_to_uni_title(pTHX_ UV c, U8* p, STRLEN *lenp)
2980 {
2981     dVAR;
2982     PERL_ARGS_ASSERT_TO_UNI_TITLE;
2983 
2984     if (c < 256) {
2985 	return _to_upper_title_latin1((U8) c, p, lenp, 's');
2986     }
2987 
2988     return CALL_TITLE_CASE(c, NULL, p, lenp);
2989 }
2990 
2991 STATIC U8
S_to_lower_latin1(const U8 c,U8 * p,STRLEN * lenp,const char dummy)2992 S_to_lower_latin1(const U8 c, U8* p, STRLEN *lenp, const char dummy)
2993 {
2994     /* We have the latin1-range values compiled into the core, so just use
2995      * those, converting the result to UTF-8.  Since the result is always just
2996      * one character, we allow <p> to be NULL */
2997 
2998     U8 converted = toLOWER_LATIN1(c);
2999 
3000     PERL_UNUSED_ARG(dummy);
3001 
3002     if (p != NULL) {
3003 	if (NATIVE_BYTE_IS_INVARIANT(converted)) {
3004 	    *p = converted;
3005 	    *lenp = 1;
3006 	}
3007 	else {
3008             /* Result is known to always be < 256, so can use the EIGHT_BIT
3009              * macros */
3010 	    *p = UTF8_EIGHT_BIT_HI(converted);
3011 	    *(p+1) = UTF8_EIGHT_BIT_LO(converted);
3012 	    *lenp = 2;
3013 	}
3014     }
3015     return converted;
3016 }
3017 
3018 UV
Perl_to_uni_lower(pTHX_ UV c,U8 * p,STRLEN * lenp)3019 Perl_to_uni_lower(pTHX_ UV c, U8* p, STRLEN *lenp)
3020 {
3021     dVAR;
3022     PERL_ARGS_ASSERT_TO_UNI_LOWER;
3023 
3024     if (c < 256) {
3025 	return to_lower_latin1((U8) c, p, lenp, 0 /* 0 is a dummy arg */ );
3026     }
3027 
3028     return CALL_LOWER_CASE(c, NULL, p, lenp);
3029 }
3030 
3031 UV
Perl__to_fold_latin1(const U8 c,U8 * p,STRLEN * lenp,const unsigned int flags)3032 Perl__to_fold_latin1(const U8 c, U8* p, STRLEN *lenp, const unsigned int flags)
3033 {
3034     /* Corresponds to to_lower_latin1(); <flags> bits meanings:
3035      *	    FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3036      *	    FOLD_FLAGS_FULL  iff full folding is to be used;
3037      *
3038      *	Not to be used for locale folds
3039      */
3040 
3041     UV converted;
3042 
3043     PERL_ARGS_ASSERT__TO_FOLD_LATIN1;
3044 
3045     assert (! (flags & FOLD_FLAGS_LOCALE));
3046 
3047     if (UNLIKELY(c == MICRO_SIGN)) {
3048 	converted = GREEK_SMALL_LETTER_MU;
3049     }
3050 #if    UNICODE_MAJOR_VERSION > 3 /* no multifolds in early Unicode */   \
3051    || (UNICODE_MAJOR_VERSION == 3 && (   UNICODE_DOT_VERSION > 0)       \
3052                                       || UNICODE_DOT_DOT_VERSION > 0)
3053     else if (   (flags & FOLD_FLAGS_FULL)
3054              && UNLIKELY(c == LATIN_SMALL_LETTER_SHARP_S))
3055     {
3056         /* If can't cross 127/128 boundary, can't return "ss"; instead return
3057          * two U+017F characters, as fc("\df") should eq fc("\x{17f}\x{17f}")
3058          * under those circumstances. */
3059         if (flags & FOLD_FLAGS_NOMIX_ASCII) {
3060             *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3061             Copy(LATIN_SMALL_LETTER_LONG_S_UTF8 LATIN_SMALL_LETTER_LONG_S_UTF8,
3062                  p, *lenp, U8);
3063             return LATIN_SMALL_LETTER_LONG_S;
3064         }
3065         else {
3066             *(p)++ = 's';
3067             *p = 's';
3068             *lenp = 2;
3069             return 's';
3070         }
3071     }
3072 #endif
3073     else { /* In this range the fold of all other characters is their lower
3074               case */
3075 	converted = toLOWER_LATIN1(c);
3076     }
3077 
3078     if (UVCHR_IS_INVARIANT(converted)) {
3079 	*p = (U8) converted;
3080 	*lenp = 1;
3081     }
3082     else {
3083 	*(p)++ = UTF8_TWO_BYTE_HI(converted);
3084 	*p = UTF8_TWO_BYTE_LO(converted);
3085 	*lenp = 2;
3086     }
3087 
3088     return converted;
3089 }
3090 
3091 UV
Perl__to_uni_fold_flags(pTHX_ UV c,U8 * p,STRLEN * lenp,U8 flags)3092 Perl__to_uni_fold_flags(pTHX_ UV c, U8* p, STRLEN *lenp, U8 flags)
3093 {
3094 
3095     /* Not currently externally documented, and subject to change
3096      *  <flags> bits meanings:
3097      *	    FOLD_FLAGS_FULL  iff full folding is to be used;
3098      *	    FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3099      *	                      locale are to be used.
3100      *	    FOLD_FLAGS_NOMIX_ASCII iff non-ASCII to ASCII folds are prohibited
3101      */
3102 
3103     dVAR;
3104     PERL_ARGS_ASSERT__TO_UNI_FOLD_FLAGS;
3105 
3106     if (flags & FOLD_FLAGS_LOCALE) {
3107         /* Treat a non-Turkic UTF-8 locale as not being in locale at all,
3108          * except for potentially warning */
3109         _CHECK_AND_WARN_PROBLEMATIC_LOCALE;
3110         if (IN_UTF8_CTYPE_LOCALE && ! PL_in_utf8_turkic_locale) {
3111             flags &= ~FOLD_FLAGS_LOCALE;
3112         }
3113         else {
3114             goto needs_full_generality;
3115         }
3116     }
3117 
3118     if (c < 256) {
3119         return _to_fold_latin1((U8) c, p, lenp,
3120 			    flags & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII));
3121     }
3122 
3123     /* Here, above 255.  If no special needs, just use the macro */
3124     if ( ! (flags & (FOLD_FLAGS_LOCALE|FOLD_FLAGS_NOMIX_ASCII))) {
3125 	return CALL_FOLD_CASE(c, NULL, p, lenp, flags & FOLD_FLAGS_FULL);
3126     }
3127     else {  /* Otherwise, _toFOLD_utf8_flags has the intelligence to deal with
3128 	       the special flags. */
3129 	U8 utf8_c[UTF8_MAXBYTES + 1];
3130 
3131       needs_full_generality:
3132 	uvchr_to_utf8(utf8_c, c);
3133 	return _toFOLD_utf8_flags(utf8_c, utf8_c + sizeof(utf8_c),
3134                                   p, lenp, flags);
3135     }
3136 }
3137 
3138 PERL_STATIC_INLINE bool
S_is_utf8_common(pTHX_ const U8 * const p,const U8 * const e,SV * const invlist)3139 S_is_utf8_common(pTHX_ const U8 *const p, const U8 * const e,
3140                        SV* const invlist)
3141 {
3142     /* returns a boolean giving whether or not the UTF8-encoded character that
3143      * starts at <p>, and extending no further than <e - 1> is in the inversion
3144      * list <invlist>. */
3145 
3146     UV cp = utf8n_to_uvchr(p, e - p, NULL, 0);
3147 
3148     PERL_ARGS_ASSERT_IS_UTF8_COMMON;
3149 
3150     if (cp == 0 && (p >= e || *p != '\0')) {
3151         _force_out_malformed_utf8_message(p, e, 0, 1);
3152         NOT_REACHED; /* NOTREACHED */
3153     }
3154 
3155     assert(invlist);
3156     return _invlist_contains_cp(invlist, cp);
3157 }
3158 
3159 #if 0	/* Not currently used, but may be needed in the future */
PERLVAR(I,seen_deprecated_macro,HV *)3160 PERLVAR(I, seen_deprecated_macro, HV *)
3161 
3162 STATIC void
3163 S_warn_on_first_deprecated_use(pTHX_ const char * const name,
3164                                      const char * const alternative,
3165                                      const bool use_locale,
3166                                      const char * const file,
3167                                      const unsigned line)
3168 {
3169     const char * key;
3170 
3171     PERL_ARGS_ASSERT_WARN_ON_FIRST_DEPRECATED_USE;
3172 
3173     if (ckWARN_d(WARN_DEPRECATED)) {
3174 
3175         key = Perl_form(aTHX_ "%s;%d;%s;%d", name, use_locale, file, line);
3176 	if (! hv_fetch(PL_seen_deprecated_macro, key, strlen(key), 0)) {
3177             if (! PL_seen_deprecated_macro) {
3178                 PL_seen_deprecated_macro = newHV();
3179             }
3180             if (! hv_store(PL_seen_deprecated_macro, key,
3181                            strlen(key), &PL_sv_undef, 0))
3182             {
3183 		Perl_croak(aTHX_ "panic: hv_store() unexpectedly failed");
3184             }
3185 
3186             if (instr(file, "mathoms.c")) {
3187                 Perl_warner(aTHX_ WARN_DEPRECATED,
3188                             "In %s, line %d, starting in Perl v5.32, %s()"
3189                             " will be removed.  Avoid this message by"
3190                             " converting to use %s().\n",
3191                             file, line, name, alternative);
3192             }
3193             else {
3194                 Perl_warner(aTHX_ WARN_DEPRECATED,
3195                             "In %s, line %d, starting in Perl v5.32, %s() will"
3196                             " require an additional parameter.  Avoid this"
3197                             " message by converting to use %s().\n",
3198                             file, line, name, alternative);
3199             }
3200         }
3201     }
3202 }
3203 #endif
3204 
3205 bool
Perl__is_utf8_FOO(pTHX_ const U8 classnum,const U8 * p,const U8 * const e)3206 Perl__is_utf8_FOO(pTHX_ const U8 classnum, const U8 *p, const U8 * const e)
3207 {
3208     dVAR;
3209     PERL_ARGS_ASSERT__IS_UTF8_FOO;
3210 
3211     return is_utf8_common(p, e, PL_XPosix_ptrs[classnum]);
3212 }
3213 
3214 bool
Perl__is_utf8_perl_idstart(pTHX_ const U8 * p,const U8 * const e)3215 Perl__is_utf8_perl_idstart(pTHX_ const U8 *p, const U8 * const e)
3216 {
3217     dVAR;
3218     PERL_ARGS_ASSERT__IS_UTF8_PERL_IDSTART;
3219 
3220     return is_utf8_common(p, e, PL_utf8_perl_idstart);
3221 }
3222 
3223 bool
Perl__is_utf8_perl_idcont(pTHX_ const U8 * p,const U8 * const e)3224 Perl__is_utf8_perl_idcont(pTHX_ const U8 *p, const U8 * const e)
3225 {
3226     dVAR;
3227     PERL_ARGS_ASSERT__IS_UTF8_PERL_IDCONT;
3228 
3229     return is_utf8_common(p, e, PL_utf8_perl_idcont);
3230 }
3231 
3232 STATIC UV
S__to_utf8_case(pTHX_ const UV uv1,const U8 * p,U8 * ustrp,STRLEN * lenp,SV * invlist,const I32 * const invmap,const U32 * const * const aux_tables,const U8 * const aux_table_lengths,const char * const normal)3233 S__to_utf8_case(pTHX_ const UV uv1, const U8 *p,
3234                       U8* ustrp, STRLEN *lenp,
3235                       SV *invlist, const I32 * const invmap,
3236                       const U32 * const * const aux_tables,
3237                       const U8 * const aux_table_lengths,
3238                       const char * const normal)
3239 {
3240     STRLEN len = 0;
3241 
3242     /* Change the case of code point 'uv1' whose UTF-8 representation (assumed
3243      * by this routine to be valid) begins at 'p'.  'normal' is a string to use
3244      * to name the new case in any generated messages, as a fallback if the
3245      * operation being used is not available.  The new case is given by the
3246      * data structures in the remaining arguments.
3247      *
3248      * On return 'ustrp' points to '*lenp' UTF-8 encoded bytes representing the
3249      * entire changed case string, and the return value is the first code point
3250      * in that string */
3251 
3252     PERL_ARGS_ASSERT__TO_UTF8_CASE;
3253 
3254     /* For code points that don't change case, we already know that the output
3255      * of this function is the unchanged input, so we can skip doing look-ups
3256      * for them.  Unfortunately the case-changing code points are scattered
3257      * around.  But there are some long consecutive ranges where there are no
3258      * case changing code points.  By adding tests, we can eliminate the lookup
3259      * for all the ones in such ranges.  This is currently done here only for
3260      * just a few cases where the scripts are in common use in modern commerce
3261      * (and scripts adjacent to those which can be included without additional
3262      * tests). */
3263 
3264     if (uv1 >= 0x0590) {
3265         /* This keeps from needing further processing the code points most
3266          * likely to be used in the following non-cased scripts: Hebrew,
3267          * Arabic, Syriac, Thaana, NKo, Samaritan, Mandaic, Devanagari,
3268          * Bengali, Gurmukhi, Gujarati, Oriya, Tamil, Telugu, Kannada,
3269          * Malayalam, Sinhala, Thai, Lao, Tibetan, Myanmar */
3270         if (uv1 < 0x10A0) {
3271             goto cases_to_self;
3272         }
3273 
3274         /* The following largish code point ranges also don't have case
3275          * changes, but khw didn't think they warranted extra tests to speed
3276          * them up (which would slightly slow down everything else above them):
3277          * 1100..139F   Hangul Jamo, Ethiopic
3278          * 1400..1CFF   Unified Canadian Aboriginal Syllabics, Ogham, Runic,
3279          *              Tagalog, Hanunoo, Buhid, Tagbanwa, Khmer, Mongolian,
3280          *              Limbu, Tai Le, New Tai Lue, Buginese, Tai Tham,
3281          *              Combining Diacritical Marks Extended, Balinese,
3282          *              Sundanese, Batak, Lepcha, Ol Chiki
3283          * 2000..206F   General Punctuation
3284          */
3285 
3286         if (uv1 >= 0x2D30) {
3287 
3288             /* This keeps the from needing further processing the code points
3289              * most likely to be used in the following non-cased major scripts:
3290              * CJK, Katakana, Hiragana, plus some less-likely scripts.
3291              *
3292              * (0x2D30 above might have to be changed to 2F00 in the unlikely
3293              * event that Unicode eventually allocates the unused block as of
3294              * v8.0 2FE0..2FEF to code points that are cased.  khw has verified
3295              * that the test suite will start having failures to alert you
3296              * should that happen) */
3297             if (uv1 < 0xA640) {
3298                 goto cases_to_self;
3299             }
3300 
3301             if (uv1 >= 0xAC00) {
3302                 if (UNLIKELY(UNICODE_IS_SURROGATE(uv1))) {
3303                     if (ckWARN_d(WARN_SURROGATE)) {
3304                         const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3305                         Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
3306                             "Operation \"%s\" returns its argument for"
3307                             " UTF-16 surrogate U+%04" UVXf, desc, uv1);
3308                     }
3309                     goto cases_to_self;
3310                 }
3311 
3312                 /* AC00..FAFF Catches Hangul syllables and private use, plus
3313                  * some others */
3314                 if (uv1 < 0xFB00) {
3315                     goto cases_to_self;
3316                 }
3317 
3318                 if (UNLIKELY(UNICODE_IS_SUPER(uv1))) {
3319                     if (UNLIKELY(uv1 > MAX_LEGAL_CP)) {
3320                         Perl_croak(aTHX_ "%s", form_cp_too_large_msg(16, NULL, 0, uv1));
3321                     }
3322                     if (ckWARN_d(WARN_NON_UNICODE)) {
3323                         const char* desc = (PL_op) ? OP_DESC(PL_op) : normal;
3324                         Perl_warner(aTHX_ packWARN(WARN_NON_UNICODE),
3325                             "Operation \"%s\" returns its argument for"
3326                             " non-Unicode code point 0x%04" UVXf, desc, uv1);
3327                     }
3328                     goto cases_to_self;
3329                 }
3330 #ifdef HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C
3331                 if (UNLIKELY(uv1
3332                     > HIGHEST_CASE_CHANGING_CP_FOR_USE_ONLY_BY_UTF8_DOT_C))
3333                 {
3334 
3335                     goto cases_to_self;
3336                 }
3337 #endif
3338             }
3339         }
3340 
3341 	/* Note that non-characters are perfectly legal, so no warning should
3342          * be given. */
3343     }
3344 
3345     {
3346         unsigned int i;
3347         const U32 * cp_list;
3348         U8 * d;
3349 
3350         /* 'index' is guaranteed to be non-negative, as this is an inversion
3351          * map that covers all possible inputs.  See [perl #133365] */
3352         SSize_t index = _invlist_search(invlist, uv1);
3353         I32 base = invmap[index];
3354 
3355         /* The data structures are set up so that if 'base' is non-negative,
3356          * the case change is 1-to-1; and if 0, the change is to itself */
3357         if (base >= 0) {
3358             IV lc;
3359 
3360             if (base == 0) {
3361                 goto cases_to_self;
3362             }
3363 
3364             /* This computes, e.g. lc(H) as 'H - A + a', using the lc table */
3365             lc = base + uv1 - invlist_array(invlist)[index];
3366             *lenp = uvchr_to_utf8(ustrp, lc) - ustrp;
3367             return lc;
3368         }
3369 
3370         /* Here 'base' is negative.  That means the mapping is 1-to-many, and
3371          * requires an auxiliary table look up.  abs(base) gives the index into
3372          * a list of such tables which points to the proper aux table.  And a
3373          * parallel list gives the length of each corresponding aux table. */
3374         cp_list = aux_tables[-base];
3375 
3376         /* Create the string of UTF-8 from the mapped-to code points */
3377         d = ustrp;
3378         for (i = 0; i < aux_table_lengths[-base]; i++) {
3379             d = uvchr_to_utf8(d, cp_list[i]);
3380         }
3381         *d = '\0';
3382         *lenp = d - ustrp;
3383 
3384         return cp_list[0];
3385     }
3386 
3387     /* Here, there was no mapping defined, which means that the code point maps
3388      * to itself.  Return the inputs */
3389   cases_to_self:
3390     if (p) {
3391         len = UTF8SKIP(p);
3392         if (p != ustrp) {   /* Don't copy onto itself */
3393             Copy(p, ustrp, len, U8);
3394         }
3395         *lenp = len;
3396     }
3397     else {
3398 	*lenp = uvchr_to_utf8(ustrp, uv1) - ustrp;
3399     }
3400 
3401     return uv1;
3402 
3403 }
3404 
3405 Size_t
Perl__inverse_folds(pTHX_ const UV cp,U32 * first_folds_to,const U32 ** remaining_folds_to)3406 Perl__inverse_folds(pTHX_ const UV cp, U32 * first_folds_to,
3407                           const U32 ** remaining_folds_to)
3408 {
3409     /* Returns the count of the number of code points that fold to the input
3410      * 'cp' (besides itself).
3411      *
3412      * If the return is 0, there is nothing else that folds to it, and
3413      * '*first_folds_to' is set to 0, and '*remaining_folds_to' is set to NULL.
3414      *
3415      * If the return is 1, '*first_folds_to' is set to the single code point,
3416      * and '*remaining_folds_to' is set to NULL.
3417      *
3418      * Otherwise, '*first_folds_to' is set to a code point, and
3419      * '*remaining_fold_to' is set to an array that contains the others.  The
3420      * length of this array is the returned count minus 1.
3421      *
3422      * The reason for this convolution is to avoid having to deal with
3423      * allocating and freeing memory.  The lists are already constructed, so
3424      * the return can point to them, but single code points aren't, so would
3425      * need to be constructed if we didn't employ something like this API
3426      *
3427      * The code points returned by this function are all legal Unicode, which
3428      * occupy at most 21 bits, and so a U32 is sufficient, and the lists are
3429      * constructed with this size (to save space and memory), and we return
3430      * pointers, so they must be this size */
3431 
3432     dVAR;
3433     /* 'index' is guaranteed to be non-negative, as this is an inversion map
3434      * that covers all possible inputs.  See [perl #133365] */
3435     SSize_t index = _invlist_search(PL_utf8_foldclosures, cp);
3436     I32 base = _Perl_IVCF_invmap[index];
3437 
3438     PERL_ARGS_ASSERT__INVERSE_FOLDS;
3439 
3440     if (base == 0) {            /* No fold */
3441         *first_folds_to = 0;
3442         *remaining_folds_to = NULL;
3443         return 0;
3444     }
3445 
3446 #ifndef HAS_IVCF_AUX_TABLES     /* This Unicode version only has 1-1 folds */
3447 
3448     assert(base > 0);
3449 
3450 #else
3451 
3452     if (UNLIKELY(base < 0)) {   /* Folds to more than one character */
3453 
3454         /* The data structure is set up so that the absolute value of 'base' is
3455          * an index into a table of pointers to arrays, with the array
3456          * corresponding to the index being the list of code points that fold
3457          * to 'cp', and the parallel array containing the length of the list
3458          * array */
3459         *first_folds_to = IVCF_AUX_TABLE_ptrs[-base][0];
3460         *remaining_folds_to = IVCF_AUX_TABLE_ptrs[-base] + 1;
3461                                                 /* +1 excludes first_folds_to */
3462         return IVCF_AUX_TABLE_lengths[-base];
3463     }
3464 
3465 #endif
3466 
3467     /* Only the single code point.  This works like 'fc(G) = G - A + a' */
3468     *first_folds_to = (U32) (base + cp
3469                                   - invlist_array(PL_utf8_foldclosures)[index]);
3470     *remaining_folds_to = NULL;
3471     return 1;
3472 }
3473 
3474 STATIC UV
S_check_locale_boundary_crossing(pTHX_ const U8 * const p,const UV result,U8 * const ustrp,STRLEN * lenp)3475 S_check_locale_boundary_crossing(pTHX_ const U8* const p, const UV result,
3476                                        U8* const ustrp, STRLEN *lenp)
3477 {
3478     /* This is called when changing the case of a UTF-8-encoded character above
3479      * the Latin1 range, and the operation is in a non-UTF-8 locale.  If the
3480      * result contains a character that crosses the 255/256 boundary, disallow
3481      * the change, and return the original code point.  See L<perlfunc/lc> for
3482      * why;
3483      *
3484      * p	points to the original string whose case was changed; assumed
3485      *          by this routine to be well-formed
3486      * result	the code point of the first character in the changed-case string
3487      * ustrp	points to the changed-case string (<result> represents its
3488      *          first char)
3489      * lenp	points to the length of <ustrp> */
3490 
3491     UV original;    /* To store the first code point of <p> */
3492 
3493     PERL_ARGS_ASSERT_CHECK_LOCALE_BOUNDARY_CROSSING;
3494 
3495     assert(UTF8_IS_ABOVE_LATIN1(*p));
3496 
3497     /* We know immediately if the first character in the string crosses the
3498      * boundary, so can skip testing */
3499     if (result > 255) {
3500 
3501 	/* Look at every character in the result; if any cross the
3502 	* boundary, the whole thing is disallowed */
3503 	U8* s = ustrp + UTF8SKIP(ustrp);
3504 	U8* e = ustrp + *lenp;
3505 	while (s < e) {
3506 	    if (! UTF8_IS_ABOVE_LATIN1(*s)) {
3507 		goto bad_crossing;
3508 	    }
3509 	    s += UTF8SKIP(s);
3510 	}
3511 
3512         /* Here, no characters crossed, result is ok as-is, but we warn. */
3513         _CHECK_AND_OUTPUT_WIDE_LOCALE_UTF8_MSG(p, p + UTF8SKIP(p));
3514 	return result;
3515     }
3516 
3517   bad_crossing:
3518 
3519     /* Failed, have to return the original */
3520     original = valid_utf8_to_uvchr(p, lenp);
3521 
3522     /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3523     Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3524                            "Can't do %s(\"\\x{%" UVXf "}\") on non-UTF-8"
3525                            " locale; resolved to \"\\x{%" UVXf "}\".",
3526                            OP_DESC(PL_op),
3527                            original,
3528                            original);
3529     Copy(p, ustrp, *lenp, char);
3530     return original;
3531 }
3532 
3533 STATIC UV
S_turkic_fc(pTHX_ const U8 * const p,const U8 * const e,U8 * ustrp,STRLEN * lenp)3534 S_turkic_fc(pTHX_ const U8 * const p, const U8 * const e,
3535                         U8 * ustrp, STRLEN *lenp)
3536 {
3537     /* Returns 0 if the foldcase of the input UTF-8 encoded sequence from
3538      * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3539      * Otherwise, it returns the first code point of the Turkic foldcased
3540      * sequence, and the entire sequence will be stored in *ustrp.  ustrp will
3541      * contain *lenp bytes
3542      *
3543      * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3544      * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER
3545      * DOTLESS I */
3546 
3547     PERL_ARGS_ASSERT_TURKIC_FC;
3548     assert(e > p);
3549 
3550     if (UNLIKELY(*p == 'I')) {
3551         *lenp = 2;
3552         ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_SMALL_LETTER_DOTLESS_I);
3553         ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_SMALL_LETTER_DOTLESS_I);
3554         return LATIN_SMALL_LETTER_DOTLESS_I;
3555     }
3556 
3557     if (UNLIKELY(memBEGINs(p, e - p,
3558                            LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8)))
3559     {
3560         *lenp = 1;
3561         *ustrp = 'i';
3562         return 'i';
3563     }
3564 
3565     return 0;
3566 }
3567 
3568 STATIC UV
S_turkic_lc(pTHX_ const U8 * const p0,const U8 * const e,U8 * ustrp,STRLEN * lenp)3569 S_turkic_lc(pTHX_ const U8 * const p0, const U8 * const e,
3570                         U8 * ustrp, STRLEN *lenp)
3571 {
3572     /* Returns 0 if the lowercase of the input UTF-8 encoded sequence from
3573      * p0..e-1 according to Turkic rules is the same as for non-Turkic.
3574      * Otherwise, it returns the first code point of the Turkic lowercased
3575      * sequence, and the entire sequence will be stored in *ustrp.  ustrp will
3576      * contain *lenp bytes */
3577 
3578     dVAR;
3579     PERL_ARGS_ASSERT_TURKIC_LC;
3580     assert(e > p0);
3581 
3582     /* A 'I' requires context as to what to do */
3583     if (UNLIKELY(*p0 == 'I')) {
3584         const U8 * p = p0 + 1;
3585 
3586         /* According to the Unicode SpecialCasing.txt file, a capital 'I'
3587          * modified by a dot above lowercases to 'i' even in turkic locales. */
3588         while (p < e) {
3589             UV cp;
3590 
3591             if (memBEGINs(p, e - p, COMBINING_DOT_ABOVE_UTF8)) {
3592                 ustrp[0] = 'i';
3593                 *lenp = 1;
3594                 return 'i';
3595             }
3596 
3597             /* For the dot above to modify the 'I', it must be part of a
3598              * combining sequence immediately following the 'I', and no other
3599              * modifier with a ccc of 230 may intervene */
3600             cp = utf8_to_uvchr_buf(p, e, NULL);
3601             if (! _invlist_contains_cp(PL_CCC_non0_non230, cp)) {
3602                 break;
3603             }
3604 
3605             /* Here the combining sequence continues */
3606             p += UTF8SKIP(p);
3607         }
3608     }
3609 
3610     /* In all other cases the lc is the same as the fold */
3611     return turkic_fc(p0, e, ustrp, lenp);
3612 }
3613 
3614 STATIC UV
S_turkic_uc(pTHX_ const U8 * const p,const U8 * const e,U8 * ustrp,STRLEN * lenp)3615 S_turkic_uc(pTHX_ const U8 * const p, const U8 * const e,
3616                         U8 * ustrp, STRLEN *lenp)
3617 {
3618     /* Returns 0 if the upper or title-case of the input UTF-8 encoded sequence
3619      * from p0..e-1 according to Turkic rules is the same as for non-Turkic.
3620      * Otherwise, it returns the first code point of the Turkic upper or
3621      * title-cased sequence, and the entire sequence will be stored in *ustrp.
3622      * ustrp will contain *lenp bytes
3623      *
3624      * Turkic differs only from non-Turkic in that 'i' and LATIN CAPITAL LETTER
3625      * I WITH DOT ABOVE form a case pair, as do 'I' and LATIN SMALL LETTER
3626      * DOTLESS I */
3627 
3628     PERL_ARGS_ASSERT_TURKIC_UC;
3629     assert(e > p);
3630 
3631     if (*p == 'i') {
3632         *lenp = 2;
3633         ustrp[0] = UTF8_TWO_BYTE_HI(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3634         ustrp[1] = UTF8_TWO_BYTE_LO(LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE);
3635         return LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE;
3636     }
3637 
3638     if (memBEGINs(p, e - p, LATIN_SMALL_LETTER_DOTLESS_I_UTF8)) {
3639         *lenp = 1;
3640         *ustrp = 'I';
3641         return 'I';
3642     }
3643 
3644     return 0;
3645 }
3646 
3647 /* The process for changing the case is essentially the same for the four case
3648  * change types, except there are complications for folding.  Otherwise the
3649  * difference is only which case to change to.  To make sure that they all do
3650  * the same thing, the bodies of the functions are extracted out into the
3651  * following two macros.  The functions are written with the same variable
3652  * names, and these are known and used inside these macros.  It would be
3653  * better, of course, to have inline functions to do it, but since different
3654  * macros are called, depending on which case is being changed to, this is not
3655  * feasible in C (to khw's knowledge).  Two macros are created so that the fold
3656  * function can start with the common start macro, then finish with its special
3657  * handling; while the other three cases can just use the common end macro.
3658  *
3659  * The algorithm is to use the proper (passed in) macro or function to change
3660  * the case for code points that are below 256.  The macro is used if using
3661  * locale rules for the case change; the function if not.  If the code point is
3662  * above 255, it is computed from the input UTF-8, and another macro is called
3663  * to do the conversion.  If necessary, the output is converted to UTF-8.  If
3664  * using a locale, we have to check that the change did not cross the 255/256
3665  * boundary, see check_locale_boundary_crossing() for further details.
3666  *
3667  * The macros are split with the correct case change for the below-256 case
3668  * stored into 'result', and in the middle of an else clause for the above-255
3669  * case.  At that point in the 'else', 'result' is not the final result, but is
3670  * the input code point calculated from the UTF-8.  The fold code needs to
3671  * realize all this and take it from there.
3672  *
3673  * To deal with Turkic locales, the function specified by the parameter
3674  * 'turkic' is called when appropriate.
3675  *
3676  * If you read the two macros as sequential, it's easier to understand what's
3677  * going on. */
3678 #define CASE_CHANGE_BODY_START(locale_flags, LC_L1_change_macro, L1_func,    \
3679                                L1_func_extra_param, turkic)                  \
3680                                                                              \
3681     if (flags & (locale_flags)) {                                            \
3682         _CHECK_AND_WARN_PROBLEMATIC_LOCALE;                                  \
3683         if (IN_UTF8_CTYPE_LOCALE) {                                          \
3684             if (UNLIKELY(PL_in_utf8_turkic_locale)) {                        \
3685                 UV ret = turkic(p, e, ustrp, lenp);                          \
3686                 if (ret) return ret;                                         \
3687             }                                                                \
3688                                                                              \
3689             /* Otherwise, treat a UTF-8 locale as not being in locale at     \
3690              * all */                                                        \
3691             flags &= ~(locale_flags);                                        \
3692         }                                                                    \
3693     }                                                                        \
3694                                                                              \
3695     if (UTF8_IS_INVARIANT(*p)) {                                             \
3696         if (flags & (locale_flags)) {                                        \
3697             result = LC_L1_change_macro(*p);                                 \
3698         }                                                                    \
3699         else {                                                               \
3700             return L1_func(*p, ustrp, lenp, L1_func_extra_param);            \
3701         }                                                                    \
3702     }                                                                        \
3703     else if UTF8_IS_NEXT_CHAR_DOWNGRADEABLE(p, e) {                          \
3704         U8 c = EIGHT_BIT_UTF8_TO_NATIVE(*p, *(p+1));                         \
3705         if (flags & (locale_flags)) {                                        \
3706             result = LC_L1_change_macro(c);                                  \
3707         }                                                                    \
3708         else {                                                               \
3709             return L1_func(c, ustrp, lenp,  L1_func_extra_param);            \
3710         }                                                                    \
3711     }                                                                        \
3712     else {  /* malformed UTF-8 or ord above 255 */                           \
3713         STRLEN len_result;                                                   \
3714         result = utf8n_to_uvchr(p, e - p, &len_result, UTF8_CHECK_ONLY);     \
3715         if (len_result == (STRLEN) -1) {                                     \
3716             _force_out_malformed_utf8_message(p, e, 0, 1 /* Die */ );        \
3717         }
3718 
3719 #define CASE_CHANGE_BODY_END(locale_flags, change_macro)                     \
3720         result = change_macro(result, p, ustrp, lenp);                       \
3721                                                                              \
3722         if (flags & (locale_flags)) {                                        \
3723             result = check_locale_boundary_crossing(p, result, ustrp, lenp); \
3724         }                                                                    \
3725         return result;                                                       \
3726     }                                                                        \
3727                                                                              \
3728     /* Here, used locale rules.  Convert back to UTF-8 */                    \
3729     if (UTF8_IS_INVARIANT(result)) {                                         \
3730         *ustrp = (U8) result;                                                \
3731         *lenp = 1;                                                           \
3732     }                                                                        \
3733     else {                                                                   \
3734         *ustrp = UTF8_EIGHT_BIT_HI((U8) result);                             \
3735         *(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);                       \
3736         *lenp = 2;                                                           \
3737     }                                                                        \
3738                                                                              \
3739     return result;
3740 
3741 /* Not currently externally documented, and subject to change:
3742  * <flags> is set iff the rules from the current underlying locale are to
3743  *         be used. */
3744 
3745 UV
Perl__to_utf8_upper_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags)3746 Perl__to_utf8_upper_flags(pTHX_ const U8 *p,
3747                                 const U8 *e,
3748                                 U8* ustrp,
3749                                 STRLEN *lenp,
3750                                 bool flags)
3751 {
3752     dVAR;
3753     UV result;
3754 
3755     PERL_ARGS_ASSERT__TO_UTF8_UPPER_FLAGS;
3756 
3757     /* ~0 makes anything non-zero in 'flags' mean we are using locale rules */
3758     /* 2nd char of uc(U+DF) is 'S' */
3759     CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 'S',
3760                                                                     turkic_uc);
3761     CASE_CHANGE_BODY_END  (~0, CALL_UPPER_CASE);
3762 }
3763 
3764 /* Not currently externally documented, and subject to change:
3765  * <flags> is set iff the rules from the current underlying locale are to be
3766  *         used.  Since titlecase is not defined in POSIX, for other than a
3767  *         UTF-8 locale, uppercase is used instead for code points < 256.
3768  */
3769 
3770 UV
Perl__to_utf8_title_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags)3771 Perl__to_utf8_title_flags(pTHX_ const U8 *p,
3772                                 const U8 *e,
3773                                 U8* ustrp,
3774                                 STRLEN *lenp,
3775                                 bool flags)
3776 {
3777     dVAR;
3778     UV result;
3779 
3780     PERL_ARGS_ASSERT__TO_UTF8_TITLE_FLAGS;
3781 
3782     /* 2nd char of ucfirst(U+DF) is 's' */
3783     CASE_CHANGE_BODY_START(~0, toUPPER_LC, _to_upper_title_latin1, 's',
3784                                                                     turkic_uc);
3785     CASE_CHANGE_BODY_END  (~0, CALL_TITLE_CASE);
3786 }
3787 
3788 /* Not currently externally documented, and subject to change:
3789  * <flags> is set iff the rules from the current underlying locale are to
3790  *         be used.
3791  */
3792 
3793 UV
Perl__to_utf8_lower_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,bool flags)3794 Perl__to_utf8_lower_flags(pTHX_ const U8 *p,
3795                                 const U8 *e,
3796                                 U8* ustrp,
3797                                 STRLEN *lenp,
3798                                 bool flags)
3799 {
3800     dVAR;
3801     UV result;
3802 
3803     PERL_ARGS_ASSERT__TO_UTF8_LOWER_FLAGS;
3804 
3805     CASE_CHANGE_BODY_START(~0, toLOWER_LC, to_lower_latin1, 0 /* 0 is dummy */,
3806                                                                     turkic_lc);
3807     CASE_CHANGE_BODY_END  (~0, CALL_LOWER_CASE)
3808 }
3809 
3810 /* Not currently externally documented, and subject to change,
3811  * in <flags>
3812  *	bit FOLD_FLAGS_LOCALE is set iff the rules from the current underlying
3813  *	                      locale are to be used.
3814  *      bit FOLD_FLAGS_FULL   is set iff full case folds are to be used;
3815  *			      otherwise simple folds
3816  *      bit FOLD_FLAGS_NOMIX_ASCII is set iff folds of non-ASCII to ASCII are
3817  *			      prohibited
3818  */
3819 
3820 UV
Perl__to_utf8_fold_flags(pTHX_ const U8 * p,const U8 * e,U8 * ustrp,STRLEN * lenp,U8 flags)3821 Perl__to_utf8_fold_flags(pTHX_ const U8 *p,
3822                                const U8 *e,
3823                                U8* ustrp,
3824                                STRLEN *lenp,
3825                                U8 flags)
3826 {
3827     dVAR;
3828     UV result;
3829 
3830     PERL_ARGS_ASSERT__TO_UTF8_FOLD_FLAGS;
3831 
3832     /* These are mutually exclusive */
3833     assert (! ((flags & FOLD_FLAGS_LOCALE) && (flags & FOLD_FLAGS_NOMIX_ASCII)));
3834 
3835     assert(p != ustrp); /* Otherwise overwrites */
3836 
3837     CASE_CHANGE_BODY_START(FOLD_FLAGS_LOCALE, toFOLD_LC, _to_fold_latin1,
3838                  ((flags) & (FOLD_FLAGS_FULL | FOLD_FLAGS_NOMIX_ASCII)),
3839                                                                     turkic_fc);
3840 
3841 	result = CALL_FOLD_CASE(result, p, ustrp, lenp, flags & FOLD_FLAGS_FULL);
3842 
3843 	if (flags & FOLD_FLAGS_LOCALE) {
3844 
3845 #           define LONG_S_T      LATIN_SMALL_LIGATURE_LONG_S_T_UTF8
3846 #         ifdef LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3847 #           define CAP_SHARP_S   LATIN_CAPITAL_LETTER_SHARP_S_UTF8
3848 
3849             /* Special case these two characters, as what normally gets
3850              * returned under locale doesn't work */
3851             if (memBEGINs((char *) p, e - p, CAP_SHARP_S))
3852             {
3853                 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3854                 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3855                               "Can't do fc(\"\\x{1E9E}\") on non-UTF-8 locale; "
3856                               "resolved to \"\\x{17F}\\x{17F}\".");
3857                 goto return_long_s;
3858             }
3859             else
3860 #endif
3861                  if (memBEGINs((char *) p, e - p, LONG_S_T))
3862             {
3863                 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3864                 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3865                               "Can't do fc(\"\\x{FB05}\") on non-UTF-8 locale; "
3866                               "resolved to \"\\x{FB06}\".");
3867                 goto return_ligature_st;
3868             }
3869 
3870 #if    UNICODE_MAJOR_VERSION   == 3         \
3871     && UNICODE_DOT_VERSION     == 0         \
3872     && UNICODE_DOT_DOT_VERSION == 1
3873 #           define DOTTED_I   LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE_UTF8
3874 
3875             /* And special case this on this Unicode version only, for the same
3876              * reaons the other two are special cased.  They would cross the
3877              * 255/256 boundary which is forbidden under /l, and so the code
3878              * wouldn't catch that they are equivalent (which they are only in
3879              * this release) */
3880             else if (memBEGINs((char *) p, e - p, DOTTED_I)) {
3881                 /* diag_listed_as: Can't do %s("%s") on non-UTF-8 locale; resolved to "%s". */
3882                 Perl_ck_warner(aTHX_ packWARN(WARN_LOCALE),
3883                               "Can't do fc(\"\\x{0130}\") on non-UTF-8 locale; "
3884                               "resolved to \"\\x{0131}\".");
3885                 goto return_dotless_i;
3886             }
3887 #endif
3888 
3889 	    return check_locale_boundary_crossing(p, result, ustrp, lenp);
3890 	}
3891 	else if (! (flags & FOLD_FLAGS_NOMIX_ASCII)) {
3892 	    return result;
3893 	}
3894 	else {
3895 	    /* This is called when changing the case of a UTF-8-encoded
3896              * character above the ASCII range, and the result should not
3897              * contain an ASCII character. */
3898 
3899 	    UV original;    /* To store the first code point of <p> */
3900 
3901 	    /* Look at every character in the result; if any cross the
3902 	    * boundary, the whole thing is disallowed */
3903 	    U8* s = ustrp;
3904 	    U8* send = ustrp + *lenp;
3905 	    while (s < send) {
3906 		if (isASCII(*s)) {
3907 		    /* Crossed, have to return the original */
3908 		    original = valid_utf8_to_uvchr(p, lenp);
3909 
3910                     /* But in these instances, there is an alternative we can
3911                      * return that is valid */
3912                     if (original == LATIN_SMALL_LETTER_SHARP_S
3913 #ifdef LATIN_CAPITAL_LETTER_SHARP_S /* not defined in early Unicode releases */
3914                         || original == LATIN_CAPITAL_LETTER_SHARP_S
3915 #endif
3916                     ) {
3917                         goto return_long_s;
3918                     }
3919                     else if (original == LATIN_SMALL_LIGATURE_LONG_S_T) {
3920                         goto return_ligature_st;
3921                     }
3922 #if    UNICODE_MAJOR_VERSION   == 3         \
3923     && UNICODE_DOT_VERSION     == 0         \
3924     && UNICODE_DOT_DOT_VERSION == 1
3925 
3926                     else if (original == LATIN_CAPITAL_LETTER_I_WITH_DOT_ABOVE) {
3927                         goto return_dotless_i;
3928                     }
3929 #endif
3930 		    Copy(p, ustrp, *lenp, char);
3931 		    return original;
3932 		}
3933 		s += UTF8SKIP(s);
3934 	    }
3935 
3936 	    /* Here, no characters crossed, result is ok as-is */
3937 	    return result;
3938 	}
3939     }
3940 
3941     /* Here, used locale rules.  Convert back to UTF-8 */
3942     if (UTF8_IS_INVARIANT(result)) {
3943 	*ustrp = (U8) result;
3944 	*lenp = 1;
3945     }
3946     else {
3947 	*ustrp = UTF8_EIGHT_BIT_HI((U8) result);
3948 	*(ustrp + 1) = UTF8_EIGHT_BIT_LO((U8) result);
3949 	*lenp = 2;
3950     }
3951 
3952     return result;
3953 
3954   return_long_s:
3955     /* Certain folds to 'ss' are prohibited by the options, but they do allow
3956      * folds to a string of two of these characters.  By returning this
3957      * instead, then, e.g.,
3958      *      fc("\x{1E9E}") eq fc("\x{17F}\x{17F}")
3959      * works. */
3960 
3961     *lenp = 2 * sizeof(LATIN_SMALL_LETTER_LONG_S_UTF8) - 2;
3962     Copy(LATIN_SMALL_LETTER_LONG_S_UTF8   LATIN_SMALL_LETTER_LONG_S_UTF8,
3963         ustrp, *lenp, U8);
3964     return LATIN_SMALL_LETTER_LONG_S;
3965 
3966   return_ligature_st:
3967     /* Two folds to 'st' are prohibited by the options; instead we pick one and
3968      * have the other one fold to it */
3969 
3970     *lenp = sizeof(LATIN_SMALL_LIGATURE_ST_UTF8) - 1;
3971     Copy(LATIN_SMALL_LIGATURE_ST_UTF8, ustrp, *lenp, U8);
3972     return LATIN_SMALL_LIGATURE_ST;
3973 
3974 #if    UNICODE_MAJOR_VERSION   == 3         \
3975     && UNICODE_DOT_VERSION     == 0         \
3976     && UNICODE_DOT_DOT_VERSION == 1
3977 
3978   return_dotless_i:
3979     *lenp = sizeof(LATIN_SMALL_LETTER_DOTLESS_I_UTF8) - 1;
3980     Copy(LATIN_SMALL_LETTER_DOTLESS_I_UTF8, ustrp, *lenp, U8);
3981     return LATIN_SMALL_LETTER_DOTLESS_I;
3982 
3983 #endif
3984 
3985 }
3986 
3987 bool
3988 Perl_check_utf8_print(pTHX_ const U8* s, const STRLEN len)
3989 {
3990     /* May change: warns if surrogates, non-character code points, or
3991      * non-Unicode code points are in 's' which has length 'len' bytes.
3992      * Returns TRUE if none found; FALSE otherwise.  The only other validity
3993      * check is to make sure that this won't exceed the string's length nor
3994      * overflow */
3995 
3996     const U8* const e = s + len;
3997     bool ok = TRUE;
3998 
3999     PERL_ARGS_ASSERT_CHECK_UTF8_PRINT;
4000 
4001     while (s < e) {
4002 	if (UTF8SKIP(s) > len) {
4003 	    Perl_ck_warner_d(aTHX_ packWARN(WARN_UTF8),
4004 			   "%s in %s", unees, PL_op ? OP_DESC(PL_op) : "print");
4005 	    return FALSE;
4006 	}
4007 	if (UNLIKELY(isUTF8_POSSIBLY_PROBLEMATIC(*s))) {
4008 	    if (UNLIKELY(UTF8_IS_SUPER(s, e))) {
4009                 if (   ckWARN_d(WARN_NON_UNICODE)
4010                     || UNLIKELY(0 < does_utf8_overflow(s, s + len,
4011                                                0 /* Don't consider overlongs */
4012                                                )))
4013                 {
4014                     /* A side effect of this function will be to warn */
4015                     (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_SUPER);
4016                     ok = FALSE;
4017                 }
4018 	    }
4019 	    else if (UNLIKELY(UTF8_IS_SURROGATE(s, e))) {
4020 		if (ckWARN_d(WARN_SURROGATE)) {
4021                     /* This has a different warning than the one the called
4022                      * function would output, so can't just call it, unlike we
4023                      * do for the non-chars and above-unicodes */
4024 		    UV uv = utf8_to_uvchr_buf(s, e, NULL);
4025 		    Perl_warner(aTHX_ packWARN(WARN_SURROGATE),
4026 			"Unicode surrogate U+%04" UVXf " is illegal in UTF-8",
4027                                              uv);
4028 		    ok = FALSE;
4029 		}
4030 	    }
4031 	    else if (   UNLIKELY(UTF8_IS_NONCHAR(s, e))
4032                      && (ckWARN_d(WARN_NONCHAR)))
4033             {
4034                 /* A side effect of this function will be to warn */
4035                 (void) utf8n_to_uvchr(s, e - s, NULL, UTF8_WARN_NONCHAR);
4036 		ok = FALSE;
4037 	    }
4038 	}
4039 	s += UTF8SKIP(s);
4040     }
4041 
4042     return ok;
4043 }
4044 
4045 /*
4046 =for apidoc pv_uni_display
4047 
4048 Build to the scalar C<dsv> a displayable version of the UTF-8 encoded string
4049 C<spv>, length C<len>, the displayable version being at most C<pvlim> bytes
4050 long (if longer, the rest is truncated and C<"..."> will be appended).
4051 
4052 The C<flags> argument can have C<UNI_DISPLAY_ISPRINT> set to display
4053 C<isPRINT()>able characters as themselves, C<UNI_DISPLAY_BACKSLASH>
4054 to display the C<\\[nrfta\\]> as the backslashed versions (like C<"\n">)
4055 (C<UNI_DISPLAY_BACKSLASH> is preferred over C<UNI_DISPLAY_ISPRINT> for C<"\\">).
4056 C<UNI_DISPLAY_QQ> (and its alias C<UNI_DISPLAY_REGEX>) have both
4057 C<UNI_DISPLAY_BACKSLASH> and C<UNI_DISPLAY_ISPRINT> turned on.
4058 
4059 Additionally, there is now C<UNI_DISPLAY_BACKSPACE> which allows C<\b> for a
4060 backspace, but only when C<UNI_DISPLAY_BACKSLASH> also is set.
4061 
4062 The pointer to the PV of the C<dsv> is returned.
4063 
4064 See also L</sv_uni_display>.
4065 
4066 =cut */
4067 char *
4068 Perl_pv_uni_display(pTHX_ SV *dsv, const U8 *spv, STRLEN len, STRLEN pvlim,
4069                           UV flags)
4070 {
4071     int truncated = 0;
4072     const char *s, *e;
4073 
4074     PERL_ARGS_ASSERT_PV_UNI_DISPLAY;
4075 
4076     SvPVCLEAR(dsv);
4077     SvUTF8_off(dsv);
4078     for (s = (const char *)spv, e = s + len; s < e; s += UTF8SKIP(s)) {
4079 	 UV u;
4080 	 bool ok = 0;
4081 
4082 	 if (pvlim && SvCUR(dsv) >= pvlim) {
4083 	      truncated++;
4084 	      break;
4085 	 }
4086 	 u = utf8_to_uvchr_buf((U8*)s, (U8*)e, 0);
4087 	 if (u < 256) {
4088 	     const unsigned char c = (unsigned char)u & 0xFF;
4089 	     if (flags & UNI_DISPLAY_BACKSLASH) {
4090                  if (    isMNEMONIC_CNTRL(c)
4091                      && (   c != '\b'
4092                          || (flags & UNI_DISPLAY_BACKSPACE)))
4093                  {
4094                     const char * mnemonic = cntrl_to_mnemonic(c);
4095                     sv_catpvn(dsv, mnemonic, strlen(mnemonic));
4096                     ok = 1;
4097                  }
4098                  else if (c == '\\') {
4099                     sv_catpvs(dsv, "\\\\");
4100                     ok = 1;
4101                  }
4102              }
4103 	     /* isPRINT() is the locale-blind version. */
4104 	     if (!ok && (flags & UNI_DISPLAY_ISPRINT) && isPRINT(c)) {
4105 		 const char string = c;
4106 		 sv_catpvn(dsv, &string, 1);
4107 		 ok = 1;
4108 	     }
4109 	 }
4110 	 if (!ok)
4111 	     Perl_sv_catpvf(aTHX_ dsv, "\\x{%" UVxf "}", u);
4112     }
4113     if (truncated)
4114 	 sv_catpvs(dsv, "...");
4115 
4116     return SvPVX(dsv);
4117 }
4118 
4119 /*
4120 =for apidoc sv_uni_display
4121 
4122 Build to the scalar C<dsv> a displayable version of the scalar C<sv>,
4123 the displayable version being at most C<pvlim> bytes long
4124 (if longer, the rest is truncated and "..." will be appended).
4125 
4126 The C<flags> argument is as in L</pv_uni_display>().
4127 
4128 The pointer to the PV of the C<dsv> is returned.
4129 
4130 =cut
4131 */
4132 char *
4133 Perl_sv_uni_display(pTHX_ SV *dsv, SV *ssv, STRLEN pvlim, UV flags)
4134 {
4135     const char * const ptr =
4136         isREGEXP(ssv) ? RX_WRAPPED((REGEXP*)ssv) : SvPVX_const(ssv);
4137 
4138     PERL_ARGS_ASSERT_SV_UNI_DISPLAY;
4139 
4140     return Perl_pv_uni_display(aTHX_ dsv, (const U8*)ptr,
4141 				SvCUR(ssv), pvlim, flags);
4142 }
4143 
4144 /*
4145 =for apidoc foldEQ_utf8
4146 
4147 Returns true if the leading portions of the strings C<s1> and C<s2> (either or
4148 both of which may be in UTF-8) are the same case-insensitively; false
4149 otherwise.  How far into the strings to compare is determined by other input
4150 parameters.
4151 
4152 If C<u1> is true, the string C<s1> is assumed to be in UTF-8-encoded Unicode;
4153 otherwise it is assumed to be in native 8-bit encoding.  Correspondingly for
4154 C<u2> with respect to C<s2>.
4155 
4156 If the byte length C<l1> is non-zero, it says how far into C<s1> to check for
4157 fold equality.  In other words, C<s1>+C<l1> will be used as a goal to reach.
4158 The scan will not be considered to be a match unless the goal is reached, and
4159 scanning won't continue past that goal.  Correspondingly for C<l2> with respect
4160 to C<s2>.
4161 
4162 If C<pe1> is non-C<NULL> and the pointer it points to is not C<NULL>, that
4163 pointer is considered an end pointer to the position 1 byte past the maximum
4164 point in C<s1> beyond which scanning will not continue under any circumstances.
4165 (This routine assumes that UTF-8 encoded input strings are not malformed;
4166 malformed input can cause it to read past C<pe1>).  This means that if both
4167 C<l1> and C<pe1> are specified, and C<pe1> is less than C<s1>+C<l1>, the match
4168 will never be successful because it can never
4169 get as far as its goal (and in fact is asserted against).  Correspondingly for
4170 C<pe2> with respect to C<s2>.
4171 
4172 At least one of C<s1> and C<s2> must have a goal (at least one of C<l1> and
4173 C<l2> must be non-zero), and if both do, both have to be
4174 reached for a successful match.   Also, if the fold of a character is multiple
4175 characters, all of them must be matched (see tr21 reference below for
4176 'folding').
4177 
4178 Upon a successful match, if C<pe1> is non-C<NULL>,
4179 it will be set to point to the beginning of the I<next> character of C<s1>
4180 beyond what was matched.  Correspondingly for C<pe2> and C<s2>.
4181 
4182 For case-insensitiveness, the "casefolding" of Unicode is used
4183 instead of upper/lowercasing both the characters, see
4184 L<https://www.unicode.org/unicode/reports/tr21/> (Case Mappings).
4185 
4186 =cut */
4187 
4188 /* A flags parameter has been added which may change, and hence isn't
4189  * externally documented.  Currently it is:
4190  *  0 for as-documented above
4191  *  FOLDEQ_UTF8_NOMIX_ASCII meaning that if a non-ASCII character folds to an
4192 			    ASCII one, to not match
4193  *  FOLDEQ_LOCALE	    is set iff the rules from the current underlying
4194  *	                    locale are to be used.
4195  *  FOLDEQ_S1_ALREADY_FOLDED  s1 has already been folded before calling this
4196  *                          routine.  This allows that step to be skipped.
4197  *                          Currently, this requires s1 to be encoded as UTF-8
4198  *                          (u1 must be true), which is asserted for.
4199  *  FOLDEQ_S1_FOLDS_SANE    With either NOMIX_ASCII or LOCALE, no folds may
4200  *                          cross certain boundaries.  Hence, the caller should
4201  *                          let this function do the folding instead of
4202  *                          pre-folding.  This code contains an assertion to
4203  *                          that effect.  However, if the caller knows what
4204  *                          it's doing, it can pass this flag to indicate that,
4205  *                          and the assertion is skipped.
4206  *  FOLDEQ_S2_ALREADY_FOLDED  Similar to FOLDEQ_S1_ALREADY_FOLDED, but applies
4207  *                          to s2, and s2 doesn't have to be UTF-8 encoded.
4208  *                          This introduces an asymmetry to save a few branches
4209  *                          in a loop.  Currently, this is not a problem, as
4210  *                          never are both inputs pre-folded.  Simply call this
4211  *                          function with the pre-folded one as the second
4212  *                          string.
4213  *  FOLDEQ_S2_FOLDS_SANE
4214  */
4215 I32
4216 Perl_foldEQ_utf8_flags(pTHX_ const char *s1, char **pe1, UV l1, bool u1,
4217                              const char *s2, char **pe2, UV l2, bool u2,
4218                              U32 flags)
4219 {
4220     const U8 *p1  = (const U8*)s1; /* Point to current char */
4221     const U8 *p2  = (const U8*)s2;
4222     const U8 *g1 = NULL;       /* goal for s1 */
4223     const U8 *g2 = NULL;
4224     const U8 *e1 = NULL;       /* Don't scan s1 past this */
4225     U8 *f1 = NULL;             /* Point to current folded */
4226     const U8 *e2 = NULL;
4227     U8 *f2 = NULL;
4228     STRLEN n1 = 0, n2 = 0;              /* Number of bytes in current char */
4229     U8 foldbuf1[UTF8_MAXBYTES_CASE+1];
4230     U8 foldbuf2[UTF8_MAXBYTES_CASE+1];
4231     U8 flags_for_folder = FOLD_FLAGS_FULL;
4232 
4233     PERL_ARGS_ASSERT_FOLDEQ_UTF8_FLAGS;
4234 
4235     assert( ! (             (flags & (FOLDEQ_UTF8_NOMIX_ASCII | FOLDEQ_LOCALE))
4236                && ((        (flags &  FOLDEQ_S1_ALREADY_FOLDED)
4237                         && !(flags &  FOLDEQ_S1_FOLDS_SANE))
4238                     || (    (flags &  FOLDEQ_S2_ALREADY_FOLDED)
4239                         && !(flags &  FOLDEQ_S2_FOLDS_SANE)))));
4240     /* The algorithm is to trial the folds without regard to the flags on
4241      * the first line of the above assert(), and then see if the result
4242      * violates them.  This means that the inputs can't be pre-folded to a
4243      * violating result, hence the assert.  This could be changed, with the
4244      * addition of extra tests here for the already-folded case, which would
4245      * slow it down.  That cost is more than any possible gain for when these
4246      * flags are specified, as the flags indicate /il or /iaa matching which
4247      * is less common than /iu, and I (khw) also believe that real-world /il
4248      * and /iaa matches are most likely to involve code points 0-255, and this
4249      * function only under rare conditions gets called for 0-255. */
4250 
4251     if (flags & FOLDEQ_LOCALE) {
4252         if (IN_UTF8_CTYPE_LOCALE) {
4253             if (UNLIKELY(PL_in_utf8_turkic_locale)) {
4254                 flags_for_folder |= FOLD_FLAGS_LOCALE;
4255             }
4256             else {
4257                 flags &= ~FOLDEQ_LOCALE;
4258             }
4259         }
4260         else {
4261             flags_for_folder |= FOLD_FLAGS_LOCALE;
4262         }
4263     }
4264     if (flags & FOLDEQ_UTF8_NOMIX_ASCII) {
4265         flags_for_folder |= FOLD_FLAGS_NOMIX_ASCII;
4266     }
4267 
4268     if (pe1) {
4269         e1 = *(U8**)pe1;
4270     }
4271 
4272     if (l1) {
4273         g1 = (const U8*)s1 + l1;
4274     }
4275 
4276     if (pe2) {
4277         e2 = *(U8**)pe2;
4278     }
4279 
4280     if (l2) {
4281         g2 = (const U8*)s2 + l2;
4282     }
4283 
4284     /* Must have at least one goal */
4285     assert(g1 || g2);
4286 
4287     if (g1) {
4288 
4289         /* Will never match if goal is out-of-bounds */
4290         assert(! e1  || e1 >= g1);
4291 
4292         /* Here, there isn't an end pointer, or it is beyond the goal.  We
4293         * only go as far as the goal */
4294         e1 = g1;
4295     }
4296     else {
4297 	assert(e1);    /* Must have an end for looking at s1 */
4298     }
4299 
4300     /* Same for goal for s2 */
4301     if (g2) {
4302         assert(! e2  || e2 >= g2);
4303         e2 = g2;
4304     }
4305     else {
4306 	assert(e2);
4307     }
4308 
4309     /* If both operands are already folded, we could just do a memEQ on the
4310      * whole strings at once, but it would be better if the caller realized
4311      * this and didn't even call us */
4312 
4313     /* Look through both strings, a character at a time */
4314     while (p1 < e1 && p2 < e2) {
4315 
4316         /* If at the beginning of a new character in s1, get its fold to use
4317 	 * and the length of the fold. */
4318         if (n1 == 0) {
4319 	    if (flags & FOLDEQ_S1_ALREADY_FOLDED) {
4320 		f1 = (U8 *) p1;
4321                 assert(u1);
4322 		n1 = UTF8SKIP(f1);
4323 	    }
4324 	    else {
4325                 if (isASCII(*p1) && ! (flags & FOLDEQ_LOCALE)) {
4326 
4327                     /* We have to forbid mixing ASCII with non-ASCII if the
4328                      * flags so indicate.  And, we can short circuit having to
4329                      * call the general functions for this common ASCII case,
4330                      * all of whose non-locale folds are also ASCII, and hence
4331                      * UTF-8 invariants, so the UTF8ness of the strings is not
4332                      * relevant. */
4333                     if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p2)) {
4334                         return 0;
4335                     }
4336                     n1 = 1;
4337                     *foldbuf1 = toFOLD(*p1);
4338                 }
4339                 else if (u1) {
4340                     _toFOLD_utf8_flags(p1, e1, foldbuf1, &n1, flags_for_folder);
4341                 }
4342                 else {  /* Not UTF-8, get UTF-8 fold */
4343                     _to_uni_fold_flags(*p1, foldbuf1, &n1, flags_for_folder);
4344                 }
4345                 f1 = foldbuf1;
4346             }
4347         }
4348 
4349         if (n2 == 0) {    /* Same for s2 */
4350 	    if (flags & FOLDEQ_S2_ALREADY_FOLDED) {
4351 
4352                 /* Point to the already-folded character.  But for non-UTF-8
4353                  * variants, convert to UTF-8 for the algorithm below */
4354 		if (UTF8_IS_INVARIANT(*p2)) {
4355                     f2 = (U8 *) p2;
4356                     n2 = 1;
4357                 }
4358                 else if (u2) {
4359                     f2 = (U8 *) p2;
4360                     n2 = UTF8SKIP(f2);
4361                 }
4362                 else {
4363                     foldbuf2[0] = UTF8_EIGHT_BIT_HI(*p2);
4364                     foldbuf2[1] = UTF8_EIGHT_BIT_LO(*p2);
4365                     f2 = foldbuf2;
4366                     n2 = 2;
4367                 }
4368 	    }
4369 	    else {
4370                 if (isASCII(*p2) && ! (flags & FOLDEQ_LOCALE)) {
4371                     if ((flags & FOLDEQ_UTF8_NOMIX_ASCII) && ! isASCII(*p1)) {
4372                         return 0;
4373                     }
4374                     n2 = 1;
4375                     *foldbuf2 = toFOLD(*p2);
4376                 }
4377                 else if (u2) {
4378                     _toFOLD_utf8_flags(p2, e2, foldbuf2, &n2, flags_for_folder);
4379                 }
4380                 else {
4381                     _to_uni_fold_flags(*p2, foldbuf2, &n2, flags_for_folder);
4382                 }
4383                 f2 = foldbuf2;
4384 	    }
4385         }
4386 
4387 	/* Here f1 and f2 point to the beginning of the strings to compare.
4388 	 * These strings are the folds of the next character from each input
4389 	 * string, stored in UTF-8. */
4390 
4391         /* While there is more to look for in both folds, see if they
4392         * continue to match */
4393         while (n1 && n2) {
4394             U8 fold_length = UTF8SKIP(f1);
4395             if (fold_length != UTF8SKIP(f2)
4396                 || (fold_length == 1 && *f1 != *f2) /* Short circuit memNE
4397                                                        function call for single
4398                                                        byte */
4399                 || memNE((char*)f1, (char*)f2, fold_length))
4400             {
4401                 return 0; /* mismatch */
4402             }
4403 
4404             /* Here, they matched, advance past them */
4405             n1 -= fold_length;
4406             f1 += fold_length;
4407             n2 -= fold_length;
4408             f2 += fold_length;
4409         }
4410 
4411         /* When reach the end of any fold, advance the input past it */
4412         if (n1 == 0) {
4413             p1 += u1 ? UTF8SKIP(p1) : 1;
4414         }
4415         if (n2 == 0) {
4416             p2 += u2 ? UTF8SKIP(p2) : 1;
4417         }
4418     } /* End of loop through both strings */
4419 
4420     /* A match is defined by each scan that specified an explicit length
4421     * reaching its final goal, and the other not having matched a partial
4422     * character (which can happen when the fold of a character is more than one
4423     * character). */
4424     if (! ((g1 == 0 || p1 == g1) && (g2 == 0 || p2 == g2)) || n1 || n2) {
4425         return 0;
4426     }
4427 
4428     /* Successful match.  Set output pointers */
4429     if (pe1) {
4430         *pe1 = (char*)p1;
4431     }
4432     if (pe2) {
4433         *pe2 = (char*)p2;
4434     }
4435     return 1;
4436 }
4437 
4438 /*
4439  * ex: set ts=8 sts=4 sw=4 et:
4440  */
4441