1 /* Parser generator */
2 
3 /* For a description, see the comments at end of this file */
4 
5 #include "Python.h"
6 #include "pgenheaders.h"
7 #include "token.h"
8 #include "node.h"
9 #include "grammar.h"
10 #include "metagrammar.h"
11 #include "pgen.h"
12 
13 extern int Py_DebugFlag;
14 extern int Py_IgnoreEnvironmentFlag; /* needed by Py_GETENV */
15 
16 
17 /* PART ONE -- CONSTRUCT NFA -- Cf. Algorithm 3.2 from [Aho&Ullman 77] */
18 
19 typedef struct _nfaarc {
20     int         ar_label;
21     int         ar_arrow;
22 } nfaarc;
23 
24 typedef struct _nfastate {
25     int         st_narcs;
26     nfaarc      *st_arc;
27 } nfastate;
28 
29 typedef struct _nfa {
30     int                 nf_type;
31     char                *nf_name;
32     int                 nf_nstates;
33     nfastate            *nf_state;
34     int                 nf_start, nf_finish;
35 } nfa;
36 
37 /* Forward */
38 static void compile_rhs(labellist *ll,
39                         nfa *nf, node *n, int *pa, int *pb);
40 static void compile_alt(labellist *ll,
41                         nfa *nf, node *n, int *pa, int *pb);
42 static void compile_item(labellist *ll,
43                          nfa *nf, node *n, int *pa, int *pb);
44 static void compile_atom(labellist *ll,
45                          nfa *nf, node *n, int *pa, int *pb);
46 
47 static int
addnfastate(nfa * nf)48 addnfastate(nfa *nf)
49 {
50     nfastate *st;
51 
52     nf->nf_state = (nfastate *)PyObject_REALLOC(nf->nf_state,
53                                 sizeof(nfastate) * (nf->nf_nstates + 1));
54     if (nf->nf_state == NULL)
55         Py_FatalError("out of mem");
56     st = &nf->nf_state[nf->nf_nstates++];
57     st->st_narcs = 0;
58     st->st_arc = NULL;
59     return st - nf->nf_state;
60 }
61 
62 static void
addnfaarc(nfa * nf,int from,int to,int lbl)63 addnfaarc(nfa *nf, int from, int to, int lbl)
64 {
65     nfastate *st;
66     nfaarc *ar;
67 
68     st = &nf->nf_state[from];
69     st->st_arc = (nfaarc *)PyObject_REALLOC(st->st_arc,
70                                   sizeof(nfaarc) * (st->st_narcs + 1));
71     if (st->st_arc == NULL)
72         Py_FatalError("out of mem");
73     ar = &st->st_arc[st->st_narcs++];
74     ar->ar_label = lbl;
75     ar->ar_arrow = to;
76 }
77 
78 static nfa *
newnfa(char * name)79 newnfa(char *name)
80 {
81     nfa *nf;
82     static int type = NT_OFFSET; /* All types will be disjunct */
83 
84     nf = (nfa *)PyObject_MALLOC(sizeof(nfa));
85     if (nf == NULL)
86         Py_FatalError("no mem for new nfa");
87     nf->nf_type = type++;
88     nf->nf_name = name; /* XXX strdup(name) ??? */
89     nf->nf_nstates = 0;
90     nf->nf_state = NULL;
91     nf->nf_start = nf->nf_finish = -1;
92     return nf;
93 }
94 
95 typedef struct _nfagrammar {
96     int                 gr_nnfas;
97     nfa                 **gr_nfa;
98     labellist           gr_ll;
99 } nfagrammar;
100 
101 /* Forward */
102 static void compile_rule(nfagrammar *gr, node *n);
103 
104 static nfagrammar *
newnfagrammar(void)105 newnfagrammar(void)
106 {
107     nfagrammar *gr;
108 
109     gr = (nfagrammar *)PyObject_MALLOC(sizeof(nfagrammar));
110     if (gr == NULL)
111         Py_FatalError("no mem for new nfa grammar");
112     gr->gr_nnfas = 0;
113     gr->gr_nfa = NULL;
114     gr->gr_ll.ll_nlabels = 0;
115     gr->gr_ll.ll_label = NULL;
116     addlabel(&gr->gr_ll, ENDMARKER, "EMPTY");
117     return gr;
118 }
119 
120 static void
freenfagrammar(nfagrammar * gr)121 freenfagrammar(nfagrammar *gr)
122 {
123     for (int i = 0; i < gr->gr_nnfas; i++) {
124         PyObject_FREE(gr->gr_nfa[i]->nf_state);
125     }
126     PyObject_FREE(gr->gr_nfa);
127     PyObject_FREE(gr);
128 }
129 
130 static nfa *
addnfa(nfagrammar * gr,char * name)131 addnfa(nfagrammar *gr, char *name)
132 {
133     nfa *nf;
134 
135     nf = newnfa(name);
136     gr->gr_nfa = (nfa **)PyObject_REALLOC(gr->gr_nfa,
137                                   sizeof(nfa*) * (gr->gr_nnfas + 1));
138     if (gr->gr_nfa == NULL)
139         Py_FatalError("out of mem");
140     gr->gr_nfa[gr->gr_nnfas++] = nf;
141     addlabel(&gr->gr_ll, NAME, nf->nf_name);
142     return nf;
143 }
144 
145 #ifdef Py_DEBUG
146 
147 static const char REQNFMT[] = "metacompile: less than %d children\n";
148 
149 #define REQN(i, count) do { \
150     if (i < count) { \
151         fprintf(stderr, REQNFMT, count); \
152         Py_FatalError("REQN"); \
153     } \
154 } while (0)
155 
156 #else
157 #define REQN(i, count)  /* empty */
158 #endif
159 
160 static nfagrammar *
metacompile(node * n)161 metacompile(node *n)
162 {
163     nfagrammar *gr;
164     int i;
165 
166     if (Py_DebugFlag)
167         printf("Compiling (meta-) parse tree into NFA grammar\n");
168     gr = newnfagrammar();
169     REQ(n, MSTART);
170     i = n->n_nchildren - 1; /* Last child is ENDMARKER */
171     n = n->n_child;
172     for (; --i >= 0; n++) {
173         if (n->n_type != NEWLINE)
174             compile_rule(gr, n);
175     }
176     return gr;
177 }
178 
179 static void
compile_rule(nfagrammar * gr,node * n)180 compile_rule(nfagrammar *gr, node *n)
181 {
182     nfa *nf;
183 
184     REQ(n, RULE);
185     REQN(n->n_nchildren, 4);
186     n = n->n_child;
187     REQ(n, NAME);
188     nf = addnfa(gr, n->n_str);
189     n++;
190     REQ(n, COLON);
191     n++;
192     REQ(n, RHS);
193     compile_rhs(&gr->gr_ll, nf, n, &nf->nf_start, &nf->nf_finish);
194     n++;
195     REQ(n, NEWLINE);
196 }
197 
198 static void
compile_rhs(labellist * ll,nfa * nf,node * n,int * pa,int * pb)199 compile_rhs(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
200 {
201     int i;
202     int a, b;
203 
204     REQ(n, RHS);
205     i = n->n_nchildren;
206     REQN(i, 1);
207     n = n->n_child;
208     REQ(n, ALT);
209     compile_alt(ll, nf, n, pa, pb);
210     if (--i <= 0)
211         return;
212     n++;
213     a = *pa;
214     b = *pb;
215     *pa = addnfastate(nf);
216     *pb = addnfastate(nf);
217     addnfaarc(nf, *pa, a, EMPTY);
218     addnfaarc(nf, b, *pb, EMPTY);
219     for (; --i >= 0; n++) {
220         REQ(n, VBAR);
221         REQN(i, 1);
222         --i;
223         n++;
224         REQ(n, ALT);
225         compile_alt(ll, nf, n, &a, &b);
226         addnfaarc(nf, *pa, a, EMPTY);
227         addnfaarc(nf, b, *pb, EMPTY);
228     }
229 }
230 
231 static void
compile_alt(labellist * ll,nfa * nf,node * n,int * pa,int * pb)232 compile_alt(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
233 {
234     int i;
235     int a, b;
236 
237     REQ(n, ALT);
238     i = n->n_nchildren;
239     REQN(i, 1);
240     n = n->n_child;
241     REQ(n, ITEM);
242     compile_item(ll, nf, n, pa, pb);
243     --i;
244     n++;
245     for (; --i >= 0; n++) {
246         REQ(n, ITEM);
247         compile_item(ll, nf, n, &a, &b);
248         addnfaarc(nf, *pb, a, EMPTY);
249         *pb = b;
250     }
251 }
252 
253 static void
compile_item(labellist * ll,nfa * nf,node * n,int * pa,int * pb)254 compile_item(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
255 {
256     int i;
257     int a, b;
258 
259     REQ(n, ITEM);
260     i = n->n_nchildren;
261     REQN(i, 1);
262     n = n->n_child;
263     if (n->n_type == LSQB) {
264         REQN(i, 3);
265         n++;
266         REQ(n, RHS);
267         *pa = addnfastate(nf);
268         *pb = addnfastate(nf);
269         addnfaarc(nf, *pa, *pb, EMPTY);
270         compile_rhs(ll, nf, n, &a, &b);
271         addnfaarc(nf, *pa, a, EMPTY);
272         addnfaarc(nf, b, *pb, EMPTY);
273         REQN(i, 1);
274         n++;
275         REQ(n, RSQB);
276     }
277     else {
278         compile_atom(ll, nf, n, pa, pb);
279         if (--i <= 0)
280             return;
281         n++;
282         addnfaarc(nf, *pb, *pa, EMPTY);
283         if (n->n_type == STAR)
284             *pb = *pa;
285         else
286             REQ(n, PLUS);
287     }
288 }
289 
290 static void
compile_atom(labellist * ll,nfa * nf,node * n,int * pa,int * pb)291 compile_atom(labellist *ll, nfa *nf, node *n, int *pa, int *pb)
292 {
293     int i;
294 
295     REQ(n, ATOM);
296     i = n->n_nchildren;
297     (void)i; /* Don't warn about set but unused */
298     REQN(i, 1);
299     n = n->n_child;
300     if (n->n_type == LPAR) {
301         REQN(i, 3);
302         n++;
303         REQ(n, RHS);
304         compile_rhs(ll, nf, n, pa, pb);
305         n++;
306         REQ(n, RPAR);
307     }
308     else if (n->n_type == NAME || n->n_type == STRING) {
309         *pa = addnfastate(nf);
310         *pb = addnfastate(nf);
311         addnfaarc(nf, *pa, *pb, addlabel(ll, n->n_type, n->n_str));
312     }
313     else
314         REQ(n, NAME);
315 }
316 
317 static void
dumpstate(labellist * ll,nfa * nf,int istate)318 dumpstate(labellist *ll, nfa *nf, int istate)
319 {
320     nfastate *st;
321     int i;
322     nfaarc *ar;
323 
324     printf("%c%2d%c",
325         istate == nf->nf_start ? '*' : ' ',
326         istate,
327         istate == nf->nf_finish ? '.' : ' ');
328     st = &nf->nf_state[istate];
329     ar = st->st_arc;
330     for (i = 0; i < st->st_narcs; i++) {
331         if (i > 0)
332             printf("\n    ");
333         printf("-> %2d  %s", ar->ar_arrow,
334             PyGrammar_LabelRepr(&ll->ll_label[ar->ar_label]));
335         ar++;
336     }
337     printf("\n");
338 }
339 
340 static void
dumpnfa(labellist * ll,nfa * nf)341 dumpnfa(labellist *ll, nfa *nf)
342 {
343     int i;
344 
345     printf("NFA '%s' has %d states; start %d, finish %d\n",
346         nf->nf_name, nf->nf_nstates, nf->nf_start, nf->nf_finish);
347     for (i = 0; i < nf->nf_nstates; i++)
348         dumpstate(ll, nf, i);
349 }
350 
351 
352 /* PART TWO -- CONSTRUCT DFA -- Algorithm 3.1 from [Aho&Ullman 77] */
353 
354 static void
addclosure(bitset ss,nfa * nf,int istate)355 addclosure(bitset ss, nfa *nf, int istate)
356 {
357     if (addbit(ss, istate)) {
358         nfastate *st = &nf->nf_state[istate];
359         nfaarc *ar = st->st_arc;
360         int i;
361 
362         for (i = st->st_narcs; --i >= 0; ) {
363             if (ar->ar_label == EMPTY)
364                 addclosure(ss, nf, ar->ar_arrow);
365             ar++;
366         }
367     }
368 }
369 
370 typedef struct _ss_arc {
371     bitset      sa_bitset;
372     int         sa_arrow;
373     int         sa_label;
374 } ss_arc;
375 
376 typedef struct _ss_state {
377     bitset      ss_ss;
378     int         ss_narcs;
379     struct _ss_arc      *ss_arc;
380     int         ss_deleted;
381     int         ss_finish;
382     int         ss_rename;
383 } ss_state;
384 
385 typedef struct _ss_dfa {
386     int         sd_nstates;
387     ss_state *sd_state;
388 } ss_dfa;
389 
390 /* Forward */
391 static void printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
392                        labellist *ll, const char *msg);
393 static void simplify(int xx_nstates, ss_state *xx_state);
394 static void convert(dfa *d, int xx_nstates, ss_state *xx_state);
395 
396 static void
makedfa(nfagrammar * gr,nfa * nf,dfa * d)397 makedfa(nfagrammar *gr, nfa *nf, dfa *d)
398 {
399     int nbits = nf->nf_nstates;
400     bitset ss;
401     int xx_nstates;
402     ss_state *xx_state, *yy;
403     ss_arc *zz;
404     int istate, jstate, iarc, jarc, ibit;
405     nfastate *st;
406     nfaarc *ar;
407 
408     ss = newbitset(nbits);
409     addclosure(ss, nf, nf->nf_start);
410     xx_state = (ss_state *)PyObject_MALLOC(sizeof(ss_state));
411     if (xx_state == NULL)
412         Py_FatalError("no mem for xx_state in makedfa");
413     xx_nstates = 1;
414     yy = &xx_state[0];
415     yy->ss_ss = ss;
416     yy->ss_narcs = 0;
417     yy->ss_arc = NULL;
418     yy->ss_deleted = 0;
419     yy->ss_finish = testbit(ss, nf->nf_finish);
420     if (yy->ss_finish)
421         printf("Error: nonterminal '%s' may produce empty.\n",
422             nf->nf_name);
423 
424     /* This algorithm is from a book written before
425        the invention of structured programming... */
426 
427     /* For each unmarked state... */
428     for (istate = 0; istate < xx_nstates; ++istate) {
429         size_t size;
430         yy = &xx_state[istate];
431         ss = yy->ss_ss;
432         /* For all its states... */
433         for (ibit = 0; ibit < nf->nf_nstates; ++ibit) {
434             if (!testbit(ss, ibit))
435                 continue;
436             st = &nf->nf_state[ibit];
437             /* For all non-empty arcs from this state... */
438             for (iarc = 0; iarc < st->st_narcs; iarc++) {
439                 ar = &st->st_arc[iarc];
440                 if (ar->ar_label == EMPTY)
441                     continue;
442                 /* Look up in list of arcs from this state */
443                 for (jarc = 0; jarc < yy->ss_narcs; ++jarc) {
444                     zz = &yy->ss_arc[jarc];
445                     if (ar->ar_label == zz->sa_label)
446                         goto found;
447                 }
448                 /* Add new arc for this state */
449                 size = sizeof(ss_arc) * (yy->ss_narcs + 1);
450                 yy->ss_arc = (ss_arc *)PyObject_REALLOC(
451                                             yy->ss_arc, size);
452                 if (yy->ss_arc == NULL)
453                     Py_FatalError("out of mem");
454                 zz = &yy->ss_arc[yy->ss_narcs++];
455                 zz->sa_label = ar->ar_label;
456                 zz->sa_bitset = newbitset(nbits);
457                 zz->sa_arrow = -1;
458              found:             ;
459                 /* Add destination */
460                 addclosure(zz->sa_bitset, nf, ar->ar_arrow);
461             }
462         }
463         /* Now look up all the arrow states */
464         for (jarc = 0; jarc < xx_state[istate].ss_narcs; jarc++) {
465             zz = &xx_state[istate].ss_arc[jarc];
466             for (jstate = 0; jstate < xx_nstates; jstate++) {
467                 if (samebitset(zz->sa_bitset,
468                     xx_state[jstate].ss_ss, nbits)) {
469                     zz->sa_arrow = jstate;
470                     goto done;
471                 }
472             }
473             size = sizeof(ss_state) * (xx_nstates + 1);
474             xx_state = (ss_state *)PyObject_REALLOC(xx_state,
475                                                         size);
476             if (xx_state == NULL)
477                 Py_FatalError("out of mem");
478             zz->sa_arrow = xx_nstates;
479             yy = &xx_state[xx_nstates++];
480             yy->ss_ss = zz->sa_bitset;
481             yy->ss_narcs = 0;
482             yy->ss_arc = NULL;
483             yy->ss_deleted = 0;
484             yy->ss_finish = testbit(yy->ss_ss, nf->nf_finish);
485          done:          ;
486         }
487     }
488 
489     if (Py_DebugFlag)
490         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
491                                         "before minimizing");
492 
493     simplify(xx_nstates, xx_state);
494 
495     if (Py_DebugFlag)
496         printssdfa(xx_nstates, xx_state, nbits, &gr->gr_ll,
497                                         "after minimizing");
498 
499     convert(d, xx_nstates, xx_state);
500 
501     for (int i = 0; i < xx_nstates; i++) {
502         for (int j = 0; j < xx_state[i].ss_narcs; j++)
503             delbitset(xx_state[i].ss_arc[j].sa_bitset);
504         PyObject_FREE(xx_state[i].ss_arc);
505     }
506     PyObject_FREE(xx_state);
507 }
508 
509 static void
printssdfa(int xx_nstates,ss_state * xx_state,int nbits,labellist * ll,const char * msg)510 printssdfa(int xx_nstates, ss_state *xx_state, int nbits,
511            labellist *ll, const char *msg)
512 {
513     int i, ibit, iarc;
514     ss_state *yy;
515     ss_arc *zz;
516 
517     printf("Subset DFA %s\n", msg);
518     for (i = 0; i < xx_nstates; i++) {
519         yy = &xx_state[i];
520         if (yy->ss_deleted)
521             continue;
522         printf(" Subset %d", i);
523         if (yy->ss_finish)
524             printf(" (finish)");
525         printf(" { ");
526         for (ibit = 0; ibit < nbits; ibit++) {
527             if (testbit(yy->ss_ss, ibit))
528                 printf("%d ", ibit);
529         }
530         printf("}\n");
531         for (iarc = 0; iarc < yy->ss_narcs; iarc++) {
532             zz = &yy->ss_arc[iarc];
533             printf("  Arc to state %d, label %s\n",
534                 zz->sa_arrow,
535                 PyGrammar_LabelRepr(
536                     &ll->ll_label[zz->sa_label]));
537         }
538     }
539 }
540 
541 
542 /* PART THREE -- SIMPLIFY DFA */
543 
544 /* Simplify the DFA by repeatedly eliminating states that are
545    equivalent to another oner.  This is NOT Algorithm 3.3 from
546    [Aho&Ullman 77].  It does not always finds the minimal DFA,
547    but it does usually make a much smaller one...  (For an example
548    of sub-optimal behavior, try S: x a b+ | y a b+.)
549 */
550 
551 static int
samestate(ss_state * s1,ss_state * s2)552 samestate(ss_state *s1, ss_state *s2)
553 {
554     int i;
555 
556     if (s1->ss_narcs != s2->ss_narcs || s1->ss_finish != s2->ss_finish)
557         return 0;
558     for (i = 0; i < s1->ss_narcs; i++) {
559         if (s1->ss_arc[i].sa_arrow != s2->ss_arc[i].sa_arrow ||
560             s1->ss_arc[i].sa_label != s2->ss_arc[i].sa_label)
561             return 0;
562     }
563     return 1;
564 }
565 
566 static void
renamestates(int xx_nstates,ss_state * xx_state,int from,int to)567 renamestates(int xx_nstates, ss_state *xx_state, int from, int to)
568 {
569     int i, j;
570 
571     if (Py_DebugFlag)
572         printf("Rename state %d to %d.\n", from, to);
573     for (i = 0; i < xx_nstates; i++) {
574         if (xx_state[i].ss_deleted)
575             continue;
576         for (j = 0; j < xx_state[i].ss_narcs; j++) {
577             if (xx_state[i].ss_arc[j].sa_arrow == from)
578                 xx_state[i].ss_arc[j].sa_arrow = to;
579         }
580     }
581 }
582 
583 static void
simplify(int xx_nstates,ss_state * xx_state)584 simplify(int xx_nstates, ss_state *xx_state)
585 {
586     int changes;
587     int i, j;
588 
589     do {
590         changes = 0;
591         for (i = 1; i < xx_nstates; i++) {
592             if (xx_state[i].ss_deleted)
593                 continue;
594             for (j = 0; j < i; j++) {
595                 if (xx_state[j].ss_deleted)
596                     continue;
597                 if (samestate(&xx_state[i], &xx_state[j])) {
598                     xx_state[i].ss_deleted++;
599                     renamestates(xx_nstates, xx_state,
600                                  i, j);
601                     changes++;
602                     break;
603                 }
604             }
605         }
606     } while (changes);
607 }
608 
609 
610 /* PART FOUR -- GENERATE PARSING TABLES */
611 
612 /* Convert the DFA into a grammar that can be used by our parser */
613 
614 static void
convert(dfa * d,int xx_nstates,ss_state * xx_state)615 convert(dfa *d, int xx_nstates, ss_state *xx_state)
616 {
617     int i, j;
618     ss_state *yy;
619     ss_arc *zz;
620 
621     for (i = 0; i < xx_nstates; i++) {
622         yy = &xx_state[i];
623         if (yy->ss_deleted)
624             continue;
625         yy->ss_rename = addstate(d);
626     }
627 
628     for (i = 0; i < xx_nstates; i++) {
629         yy = &xx_state[i];
630         if (yy->ss_deleted)
631             continue;
632         for (j = 0; j < yy->ss_narcs; j++) {
633             zz = &yy->ss_arc[j];
634             addarc(d, yy->ss_rename,
635                 xx_state[zz->sa_arrow].ss_rename,
636                 zz->sa_label);
637         }
638         if (yy->ss_finish)
639             addarc(d, yy->ss_rename, yy->ss_rename, 0);
640     }
641 
642     d->d_initial = 0;
643 }
644 
645 
646 /* PART FIVE -- GLUE IT ALL TOGETHER */
647 
648 static grammar *
maketables(nfagrammar * gr)649 maketables(nfagrammar *gr)
650 {
651     int i;
652     nfa *nf;
653     dfa *d;
654     grammar *g;
655 
656     if (gr->gr_nnfas == 0)
657         return NULL;
658     g = newgrammar(gr->gr_nfa[0]->nf_type);
659                     /* XXX first rule must be start rule */
660     g->g_ll = gr->gr_ll;
661 
662     for (i = 0; i < gr->gr_nnfas; i++) {
663         nf = gr->gr_nfa[i];
664         if (Py_DebugFlag) {
665             printf("Dump of NFA for '%s' ...\n", nf->nf_name);
666             dumpnfa(&gr->gr_ll, nf);
667             printf("Making DFA for '%s' ...\n", nf->nf_name);
668         }
669         d = adddfa(g, nf->nf_type, nf->nf_name);
670         makedfa(gr, gr->gr_nfa[i], d);
671     }
672 
673     return g;
674 }
675 
676 grammar *
pgen(node * n)677 pgen(node *n)
678 {
679     nfagrammar *gr;
680     grammar *g;
681 
682     gr = metacompile(n);
683     g = maketables(gr);
684     translatelabels(g);
685     addfirstsets(g);
686     freenfagrammar(gr);
687     return g;
688 }
689 
690 grammar *
Py_pgen(node * n)691 Py_pgen(node *n)
692 {
693   return pgen(n);
694 }
695 
696 /*
697 
698 Description
699 -----------
700 
701 Input is a grammar in extended BNF (using * for repetition, + for
702 at-least-once repetition, [] for optional parts, | for alternatives and
703 () for grouping).  This has already been parsed and turned into a parse
704 tree.
705 
706 Each rule is considered as a regular expression in its own right.
707 It is turned into a Non-deterministic Finite Automaton (NFA), which
708 is then turned into a Deterministic Finite Automaton (DFA), which is then
709 optimized to reduce the number of states.  See [Aho&Ullman 77] chapter 3,
710 or similar compiler books (this technique is more often used for lexical
711 analyzers).
712 
713 The DFA's are used by the parser as parsing tables in a special way
714 that's probably unique.  Before they are usable, the FIRST sets of all
715 non-terminals are computed.
716 
717 Reference
718 ---------
719 
720 [Aho&Ullman 77]
721     Aho&Ullman, Principles of Compiler Design, Addison-Wesley 1977
722     (first edition)
723 
724 */
725