1# encoding: utf-8
2# frozen_string_literal: false
3#
4# = matrix.rb
5#
6# An implementation of Matrix and Vector classes.
7#
8# See classes Matrix and Vector for documentation.
9#
10# Current Maintainer:: Marc-André Lafortune
11# Original Author:: Keiju ISHITSUKA
12# Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly))
13##
14
15require "e2mmap"
16
17module ExceptionForMatrix # :nodoc:
18  extend Exception2MessageMapper
19  def_e2message(TypeError, "wrong argument type %s (expected %s)")
20  def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)")
21
22  def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch")
23  def_exception("ErrNotRegular", "Not Regular Matrix")
24  def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s")
25  def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s")
26end
27
28#
29# The +Matrix+ class represents a mathematical matrix. It provides methods for creating
30# matrices, operating on them arithmetically and algebraically,
31# and determining their mathematical properties such as trace, rank, inverse, determinant,
32# or eigensystem.
33#
34class Matrix
35  include Enumerable
36  include ExceptionForMatrix
37  autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition"
38  autoload :LUPDecomposition, "matrix/lup_decomposition"
39
40  # instance creations
41  private_class_method :new
42  attr_reader :rows
43  protected :rows
44
45  #
46  # Creates a matrix where each argument is a row.
47  #   Matrix[ [25, 93], [-1, 66] ]
48  #      =>  25 93
49  #          -1 66
50  #
51  def Matrix.[](*rows)
52    rows(rows, false)
53  end
54
55  #
56  # Creates a matrix where +rows+ is an array of arrays, each of which is a row
57  # of the matrix.  If the optional argument +copy+ is false, use the given
58  # arrays as the internal structure of the matrix without copying.
59  #   Matrix.rows([[25, 93], [-1, 66]])
60  #      =>  25 93
61  #          -1 66
62  #
63  def Matrix.rows(rows, copy = true)
64    rows = convert_to_array(rows, copy)
65    rows.map! do |row|
66      convert_to_array(row, copy)
67    end
68    size = (rows[0] || []).size
69    rows.each do |row|
70      raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size
71    end
72    new rows, size
73  end
74
75  #
76  # Creates a matrix using +columns+ as an array of column vectors.
77  #   Matrix.columns([[25, 93], [-1, 66]])
78  #      =>  25 -1
79  #          93 66
80  #
81  def Matrix.columns(columns)
82    rows(columns, false).transpose
83  end
84
85  #
86  # Creates a matrix of size +row_count+ x +column_count+.
87  # It fills the values by calling the given block,
88  # passing the current row and column.
89  # Returns an enumerator if no block is given.
90  #
91  #   m = Matrix.build(2, 4) {|row, col| col - row }
92  #     => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]]
93  #   m = Matrix.build(3) { rand }
94  #     => a 3x3 matrix with random elements
95  #
96  def Matrix.build(row_count, column_count = row_count)
97    row_count = CoercionHelper.coerce_to_int(row_count)
98    column_count = CoercionHelper.coerce_to_int(column_count)
99    raise ArgumentError if row_count < 0 || column_count < 0
100    return to_enum :build, row_count, column_count unless block_given?
101    rows = Array.new(row_count) do |i|
102      Array.new(column_count) do |j|
103        yield i, j
104      end
105    end
106    new rows, column_count
107  end
108
109  #
110  # Creates a matrix where the diagonal elements are composed of +values+.
111  #   Matrix.diagonal(9, 5, -3)
112  #     =>  9  0  0
113  #         0  5  0
114  #         0  0 -3
115  #
116  def Matrix.diagonal(*values)
117    size = values.size
118    return Matrix.empty if size == 0
119    rows = Array.new(size) {|j|
120      row = Array.new(size, 0)
121      row[j] = values[j]
122      row
123    }
124    new rows
125  end
126
127  #
128  # Creates an +n+ by +n+ diagonal matrix where each diagonal element is
129  # +value+.
130  #   Matrix.scalar(2, 5)
131  #     => 5 0
132  #        0 5
133  #
134  def Matrix.scalar(n, value)
135    diagonal(*Array.new(n, value))
136  end
137
138  #
139  # Creates an +n+ by +n+ identity matrix.
140  #   Matrix.identity(2)
141  #     => 1 0
142  #        0 1
143  #
144  def Matrix.identity(n)
145    scalar(n, 1)
146  end
147  class << Matrix
148    alias_method :unit, :identity
149    alias_method :I, :identity
150  end
151
152  #
153  # Creates a zero matrix.
154  #   Matrix.zero(2)
155  #     => 0 0
156  #        0 0
157  #
158  def Matrix.zero(row_count, column_count = row_count)
159    rows = Array.new(row_count){Array.new(column_count, 0)}
160    new rows, column_count
161  end
162
163  #
164  # Creates a single-row matrix where the values of that row are as given in
165  # +row+.
166  #   Matrix.row_vector([4,5,6])
167  #     => 4 5 6
168  #
169  def Matrix.row_vector(row)
170    row = convert_to_array(row)
171    new [row]
172  end
173
174  #
175  # Creates a single-column matrix where the values of that column are as given
176  # in +column+.
177  #   Matrix.column_vector([4,5,6])
178  #     => 4
179  #        5
180  #        6
181  #
182  def Matrix.column_vector(column)
183    column = convert_to_array(column)
184    new [column].transpose, 1
185  end
186
187  #
188  # Creates a empty matrix of +row_count+ x +column_count+.
189  # At least one of +row_count+ or +column_count+ must be 0.
190  #
191  #   m = Matrix.empty(2, 0)
192  #   m == Matrix[ [], [] ]
193  #     => true
194  #   n = Matrix.empty(0, 3)
195  #   n == Matrix.columns([ [], [], [] ])
196  #     => true
197  #   m * n
198  #     => Matrix[[0, 0, 0], [0, 0, 0]]
199  #
200  def Matrix.empty(row_count = 0, column_count = 0)
201    raise ArgumentError, "One size must be 0" if column_count != 0 && row_count != 0
202    raise ArgumentError, "Negative size" if column_count < 0 || row_count < 0
203
204    new([[]]*row_count, column_count)
205  end
206
207  #
208  # Create a matrix by stacking matrices vertically
209  #
210  #   x = Matrix[[1, 2], [3, 4]]
211  #   y = Matrix[[5, 6], [7, 8]]
212  #   Matrix.vstack(x, y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
213  #
214  def Matrix.vstack(x, *matrices)
215    x = CoercionHelper.coerce_to_matrix(x)
216    result = x.send(:rows).map(&:dup)
217    matrices.each do |m|
218      m = CoercionHelper.coerce_to_matrix(m)
219      if m.column_count != x.column_count
220        raise ErrDimensionMismatch, "The given matrices must have #{x.column_count} columns, but one has #{m.column_count}"
221      end
222      result.concat(m.send(:rows))
223    end
224    new result, x.column_count
225  end
226
227
228  #
229  # Create a matrix by stacking matrices horizontally
230  #
231  #   x = Matrix[[1, 2], [3, 4]]
232  #   y = Matrix[[5, 6], [7, 8]]
233  #   Matrix.hstack(x, y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
234  #
235  def Matrix.hstack(x, *matrices)
236    x = CoercionHelper.coerce_to_matrix(x)
237    result = x.send(:rows).map(&:dup)
238    total_column_count = x.column_count
239    matrices.each do |m|
240      m = CoercionHelper.coerce_to_matrix(m)
241      if m.row_count != x.row_count
242        raise ErrDimensionMismatch, "The given matrices must have #{x.row_count} rows, but one has #{m.row_count}"
243      end
244      result.each_with_index do |row, i|
245        row.concat m.send(:rows)[i]
246      end
247      total_column_count += m.column_count
248    end
249    new result, total_column_count
250  end
251
252  #
253  # Create a matrix by combining matrices entrywise, using the given block
254  #
255  #   x = Matrix[[6, 6], [4, 4]]
256  #   y = Matrix[[1, 2], [3, 4]]
257  #   Matrix.combine(x, y) {|a, b| a - b} # => Matrix[[5, 4], [1, 0]]
258  #
259  def Matrix.combine(*matrices)
260    return to_enum(__method__, *matrices) unless block_given?
261
262    return Matrix.empty if matrices.empty?
263    matrices.map!(&CoercionHelper.method(:coerce_to_matrix))
264    x = matrices.first
265    matrices.each do |m|
266      Matrix.Raise ErrDimensionMismatch unless x.row_count == m.row_count && x.column_count == m.column_count
267    end
268
269    rows = Array.new(x.row_count) do |i|
270      Array.new(x.column_count) do |j|
271        yield matrices.map{|m| m[i,j]}
272      end
273    end
274    new rows, x.column_count
275  end
276
277  def combine(*matrices, &block)
278    Matrix.combine(self, *matrices, &block)
279  end
280
281  #
282  # Matrix.new is private; use Matrix.rows, columns, [], etc... to create.
283  #
284  def initialize(rows, column_count = rows[0].size)
285    # No checking is done at this point. rows must be an Array of Arrays.
286    # column_count must be the size of the first row, if there is one,
287    # otherwise it *must* be specified and can be any integer >= 0
288    @rows = rows
289    @column_count = column_count
290  end
291
292  private def new_matrix(rows, column_count = rows[0].size) # :nodoc:
293    self.class.send(:new, rows, column_count) # bypass privacy of Matrix.new
294  end
295
296  #
297  # Returns element (+i+,+j+) of the matrix.  That is: row +i+, column +j+.
298  #
299  def [](i, j)
300    @rows.fetch(i){return nil}[j]
301  end
302  alias element []
303  alias component []
304
305  #
306  # :call-seq:
307  #   matrix[range, range] = matrix/element
308  #   matrix[range, integer] = vector/column_matrix/element
309  #   matrix[integer, range] = vector/row_matrix/element
310  #   matrix[integer, integer] = element
311  #
312  # Set element or elements of matrix.
313  def []=(i, j, v)
314    raise FrozenError, "can't modify frozen Matrix" if frozen?
315    rows = check_range(i, :row) or row = check_int(i, :row)
316    columns = check_range(j, :column) or column = check_int(j, :column)
317    if rows && columns
318      set_row_and_col_range(rows, columns, v)
319    elsif rows
320      set_row_range(rows, column, v)
321    elsif columns
322      set_col_range(row, columns, v)
323    else
324      set_value(row, column, v)
325    end
326  end
327  alias set_element []=
328  alias set_component []=
329  private :set_element, :set_component
330
331  # Returns range or nil
332  private def check_range(val, direction)
333    return unless val.is_a?(Range)
334    count = direction == :row ? row_count : column_count
335    CoercionHelper.check_range(val, count, direction)
336  end
337
338  private def check_int(val, direction)
339    count = direction == :row ? row_count : column_count
340    CoercionHelper.check_int(val, count, direction)
341  end
342
343  private def set_value(row, col, value)
344    raise ErrDimensionMismatch, "Expected a a value, got a #{value.class}" if value.respond_to?(:to_matrix)
345
346    @rows[row][col] = value
347  end
348
349  private def set_row_and_col_range(row_range, col_range, value)
350    if value.is_a?(Matrix)
351      if row_range.size != value.row_count || col_range.size != value.column_count
352        raise ErrDimensionMismatch, [
353          'Expected a Matrix of dimensions',
354          "#{row_range.size}x#{col_range.size}",
355          'got',
356          "#{value.row_count}x#{value.column_count}",
357        ].join(' ')
358      end
359      source = value.instance_variable_get :@rows
360      row_range.each_with_index do |row, i|
361        @rows[row][col_range] = source[i]
362      end
363    elsif value.is_a?(Vector)
364      raise ErrDimensionMismatch, 'Expected a Matrix or a value, got a Vector'
365    else
366      value_to_set = Array.new(col_range.size, value)
367      row_range.each do |i|
368        @rows[i][col_range] = value_to_set
369      end
370    end
371  end
372
373  private def set_row_range(row_range, col, value)
374    if value.is_a?(Vector)
375      Matrix.Raise ErrDimensionMismatch unless row_range.size == value.size
376      set_column_vector(row_range, col, value)
377    elsif value.is_a?(Matrix)
378      Matrix.Raise ErrDimensionMismatch unless value.column_count == 1
379      value = value.column(0)
380      Matrix.Raise ErrDimensionMismatch unless row_range.size == value.size
381      set_column_vector(row_range, col, value)
382    else
383      @rows[row_range].each{|e| e[col] = value }
384    end
385  end
386
387  private def set_column_vector(row_range, col, value)
388    value.each_with_index do |e, index|
389      r = row_range.begin + index
390      @rows[r][col] = e
391    end
392  end
393
394  private def set_col_range(row, col_range, value)
395    value = if value.is_a?(Vector)
396      value.to_a
397    elsif value.is_a?(Matrix)
398      Matrix.Raise ErrDimensionMismatch unless value.row_count == 1
399      value.row(0).to_a
400    else
401      Array.new(col_range.size, value)
402    end
403    Matrix.Raise ErrDimensionMismatch unless col_range.size == value.size
404    @rows[row][col_range] = value
405  end
406
407  #
408  # Returns the number of rows.
409  #
410  def row_count
411    @rows.size
412  end
413
414  alias_method :row_size, :row_count
415  #
416  # Returns the number of columns.
417  #
418  attr_reader :column_count
419  alias_method :column_size, :column_count
420
421  #
422  # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like
423  # an array).  When a block is given, the elements of that vector are iterated.
424  #
425  def row(i, &block) # :yield: e
426    if block_given?
427      @rows.fetch(i){return self}.each(&block)
428      self
429    else
430      Vector.elements(@rows.fetch(i){return nil})
431    end
432  end
433
434  #
435  # Returns column vector number +j+ of the matrix as a Vector (starting at 0
436  # like an array).  When a block is given, the elements of that vector are
437  # iterated.
438  #
439  def column(j) # :yield: e
440    if block_given?
441      return self if j >= column_count || j < -column_count
442      row_count.times do |i|
443        yield @rows[i][j]
444      end
445      self
446    else
447      return nil if j >= column_count || j < -column_count
448      col = Array.new(row_count) {|i|
449        @rows[i][j]
450      }
451      Vector.elements(col, false)
452    end
453  end
454
455  #
456  # Returns a matrix that is the result of iteration of the given block over all
457  # elements of the matrix.
458  # Elements can be restricted by passing an argument:
459  # * :all (default): yields all elements
460  # * :diagonal: yields only elements on the diagonal
461  # * :off_diagonal: yields all elements except on the diagonal
462  # * :lower: yields only elements on or below the diagonal
463  # * :strict_lower: yields only elements below the diagonal
464  # * :strict_upper: yields only elements above the diagonal
465  # * :upper: yields only elements on or above the diagonal
466  #   Matrix[ [1,2], [3,4] ].collect { |e| e**2 }
467  #     => 1  4
468  #        9 16
469  #
470  def collect(which = :all, &block) # :yield: e
471    return to_enum(:collect, which) unless block_given?
472    dup.collect!(which, &block)
473  end
474  alias_method :map, :collect
475
476  #
477  # Invokes the given block for each element of matrix, replacing the element with the value
478  # returned by the block.
479  # Elements can be restricted by passing an argument:
480  # * :all (default): yields all elements
481  # * :diagonal: yields only elements on the diagonal
482  # * :off_diagonal: yields all elements except on the diagonal
483  # * :lower: yields only elements on or below the diagonal
484  # * :strict_lower: yields only elements below the diagonal
485  # * :strict_upper: yields only elements above the diagonal
486  # * :upper: yields only elements on or above the diagonal
487  #
488  def collect!(which = :all)
489    return to_enum(:collect!, which) unless block_given?
490    raise FrozenError, "can't modify frozen Matrix" if frozen?
491    each_with_index(which){ |e, row_index, col_index| @rows[row_index][col_index] = yield e }
492  end
493
494  alias map! collect!
495
496  def freeze
497    @rows.freeze
498    super
499  end
500
501  #
502  # Yields all elements of the matrix, starting with those of the first row,
503  # or returns an Enumerator if no block given.
504  # Elements can be restricted by passing an argument:
505  # * :all (default): yields all elements
506  # * :diagonal: yields only elements on the diagonal
507  # * :off_diagonal: yields all elements except on the diagonal
508  # * :lower: yields only elements on or below the diagonal
509  # * :strict_lower: yields only elements below the diagonal
510  # * :strict_upper: yields only elements above the diagonal
511  # * :upper: yields only elements on or above the diagonal
512  #
513  #   Matrix[ [1,2], [3,4] ].each { |e| puts e }
514  #     # => prints the numbers 1 to 4
515  #   Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3]
516  #
517  def each(which = :all) # :yield: e
518    return to_enum :each, which unless block_given?
519    last = column_count - 1
520    case which
521    when :all
522      block = Proc.new
523      @rows.each do |row|
524        row.each(&block)
525      end
526    when :diagonal
527      @rows.each_with_index do |row, row_index|
528        yield row.fetch(row_index){return self}
529      end
530    when :off_diagonal
531      @rows.each_with_index do |row, row_index|
532        column_count.times do |col_index|
533          yield row[col_index] unless row_index == col_index
534        end
535      end
536    when :lower
537      @rows.each_with_index do |row, row_index|
538        0.upto([row_index, last].min) do |col_index|
539          yield row[col_index]
540        end
541      end
542    when :strict_lower
543      @rows.each_with_index do |row, row_index|
544        [row_index, column_count].min.times do |col_index|
545          yield row[col_index]
546        end
547      end
548    when :strict_upper
549      @rows.each_with_index do |row, row_index|
550        (row_index+1).upto(last) do |col_index|
551          yield row[col_index]
552        end
553      end
554    when :upper
555      @rows.each_with_index do |row, row_index|
556        row_index.upto(last) do |col_index|
557          yield row[col_index]
558        end
559      end
560    else
561      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
562    end
563    self
564  end
565
566  #
567  # Same as #each, but the row index and column index in addition to the element
568  #
569  #   Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col|
570  #     puts "#{e} at #{row}, #{col}"
571  #   end
572  #     # => Prints:
573  #     #    1 at 0, 0
574  #     #    2 at 0, 1
575  #     #    3 at 1, 0
576  #     #    4 at 1, 1
577  #
578  def each_with_index(which = :all) # :yield: e, row, column
579    return to_enum :each_with_index, which unless block_given?
580    last = column_count - 1
581    case which
582    when :all
583      @rows.each_with_index do |row, row_index|
584        row.each_with_index do |e, col_index|
585          yield e, row_index, col_index
586        end
587      end
588    when :diagonal
589      @rows.each_with_index do |row, row_index|
590        yield row.fetch(row_index){return self}, row_index, row_index
591      end
592    when :off_diagonal
593      @rows.each_with_index do |row, row_index|
594        column_count.times do |col_index|
595          yield row[col_index], row_index, col_index unless row_index == col_index
596        end
597      end
598    when :lower
599      @rows.each_with_index do |row, row_index|
600        0.upto([row_index, last].min) do |col_index|
601          yield row[col_index], row_index, col_index
602        end
603      end
604    when :strict_lower
605      @rows.each_with_index do |row, row_index|
606        [row_index, column_count].min.times do |col_index|
607          yield row[col_index], row_index, col_index
608        end
609      end
610    when :strict_upper
611      @rows.each_with_index do |row, row_index|
612        (row_index+1).upto(last) do |col_index|
613          yield row[col_index], row_index, col_index
614        end
615      end
616    when :upper
617      @rows.each_with_index do |row, row_index|
618        row_index.upto(last) do |col_index|
619          yield row[col_index], row_index, col_index
620        end
621      end
622    else
623      raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper"
624    end
625    self
626  end
627
628  SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze
629  #
630  # :call-seq:
631  #   index(value, selector = :all) -> [row, column]
632  #   index(selector = :all){ block } -> [row, column]
633  #   index(selector = :all) -> an_enumerator
634  #
635  # The index method is specialized to return the index as [row, column]
636  # It also accepts an optional +selector+ argument, see #each for details.
637  #
638  #   Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1]
639  #   Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0]
640  #
641  def index(*args)
642    raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2
643    which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all
644    return to_enum :find_index, which, *args unless block_given? || args.size == 1
645    if args.size == 1
646      value = args.first
647      each_with_index(which) do |e, row_index, col_index|
648        return row_index, col_index if e == value
649      end
650    else
651      each_with_index(which) do |e, row_index, col_index|
652        return row_index, col_index if yield e
653      end
654    end
655    nil
656  end
657  alias_method :find_index, :index
658
659  #
660  # Returns a section of the matrix.  The parameters are either:
661  # *  start_row, nrows, start_col, ncols; OR
662  # *  row_range, col_range
663  #
664  #   Matrix.diagonal(9, 5, -3).minor(0..1, 0..2)
665  #     => 9 0 0
666  #        0 5 0
667  #
668  # Like Array#[], negative indices count backward from the end of the
669  # row or column (-1 is the last element). Returns nil if the starting
670  # row or column is greater than row_count or column_count respectively.
671  #
672  def minor(*param)
673    case param.size
674    when 2
675      row_range, col_range = param
676      from_row = row_range.first
677      from_row += row_count if from_row < 0
678      to_row = row_range.end
679      to_row += row_count if to_row < 0
680      to_row += 1 unless row_range.exclude_end?
681      size_row = to_row - from_row
682
683      from_col = col_range.first
684      from_col += column_count if from_col < 0
685      to_col = col_range.end
686      to_col += column_count if to_col < 0
687      to_col += 1 unless col_range.exclude_end?
688      size_col = to_col - from_col
689    when 4
690      from_row, size_row, from_col, size_col = param
691      return nil if size_row < 0 || size_col < 0
692      from_row += row_count if from_row < 0
693      from_col += column_count if from_col < 0
694    else
695      raise ArgumentError, param.inspect
696    end
697
698    return nil if from_row > row_count || from_col > column_count || from_row < 0 || from_col < 0
699    rows = @rows[from_row, size_row].collect{|row|
700      row[from_col, size_col]
701    }
702    new_matrix rows, [column_count - from_col, size_col].min
703  end
704
705  #
706  # Returns the submatrix obtained by deleting the specified row and column.
707  #
708  #   Matrix.diagonal(9, 5, -3, 4).first_minor(1, 2)
709  #     => 9 0 0
710  #        0 0 0
711  #        0 0 4
712  #
713  def first_minor(row, column)
714    raise RuntimeError, "first_minor of empty matrix is not defined" if empty?
715
716    unless 0 <= row && row < row_count
717      raise ArgumentError, "invalid row (#{row.inspect} for 0..#{row_count - 1})"
718    end
719
720    unless 0 <= column && column < column_count
721      raise ArgumentError, "invalid column (#{column.inspect} for 0..#{column_count - 1})"
722    end
723
724    arrays = to_a
725    arrays.delete_at(row)
726    arrays.each do |array|
727      array.delete_at(column)
728    end
729
730    new_matrix arrays, column_count - 1
731  end
732
733  #
734  # Returns the (row, column) cofactor which is obtained by multiplying
735  # the first minor by (-1)**(row + column).
736  #
737  #   Matrix.diagonal(9, 5, -3, 4).cofactor(1, 1)
738  #     => -108
739  #
740  def cofactor(row, column)
741    raise RuntimeError, "cofactor of empty matrix is not defined" if empty?
742    Matrix.Raise ErrDimensionMismatch unless square?
743
744    det_of_minor = first_minor(row, column).determinant
745    det_of_minor * (-1) ** (row + column)
746  end
747
748  #
749  # Returns the adjugate of the matrix.
750  #
751  #   Matrix[ [7,6],[3,9] ].adjugate
752  #     => 9 -6
753  #        -3 7
754  #
755  def adjugate
756    Matrix.Raise ErrDimensionMismatch unless square?
757    Matrix.build(row_count, column_count) do |row, column|
758      cofactor(column, row)
759    end
760  end
761
762  #
763  # Returns the Laplace expansion along given row or column.
764  #
765  #    Matrix[[7,6], [3,9]].laplace_expansion(column: 1)
766  #     => 45
767  #
768  #    Matrix[[Vector[1, 0], Vector[0, 1]], [2, 3]].laplace_expansion(row: 0)
769  #     => Vector[3, -2]
770  #
771  #
772  def laplace_expansion(row: nil, column: nil)
773    num = row || column
774
775    if !num || (row && column)
776      raise ArgumentError, "exactly one the row or column arguments must be specified"
777    end
778
779    Matrix.Raise ErrDimensionMismatch unless square?
780    raise RuntimeError, "laplace_expansion of empty matrix is not defined" if empty?
781
782    unless 0 <= num && num < row_count
783      raise ArgumentError, "invalid num (#{num.inspect} for 0..#{row_count - 1})"
784    end
785
786    send(row ? :row : :column, num).map.with_index { |e, k|
787      e * cofactor(*(row ? [num, k] : [k,num]))
788    }.inject(:+)
789  end
790  alias_method :cofactor_expansion, :laplace_expansion
791
792
793  #--
794  # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
795  #++
796
797  #
798  # Returns +true+ if this is a diagonal matrix.
799  # Raises an error if matrix is not square.
800  #
801  def diagonal?
802    Matrix.Raise ErrDimensionMismatch unless square?
803    each(:off_diagonal).all?(&:zero?)
804  end
805
806  #
807  # Returns +true+ if this is an empty matrix, i.e. if the number of rows
808  # or the number of columns is 0.
809  #
810  def empty?
811    column_count == 0 || row_count == 0
812  end
813
814  #
815  # Returns +true+ if this is an hermitian matrix.
816  # Raises an error if matrix is not square.
817  #
818  def hermitian?
819    Matrix.Raise ErrDimensionMismatch unless square?
820    each_with_index(:upper).all? do |e, row, col|
821      e == rows[col][row].conj
822    end
823  end
824
825  #
826  # Returns +true+ if this is a lower triangular matrix.
827  #
828  def lower_triangular?
829    each(:strict_upper).all?(&:zero?)
830  end
831
832  #
833  # Returns +true+ if this is a normal matrix.
834  # Raises an error if matrix is not square.
835  #
836  def normal?
837    Matrix.Raise ErrDimensionMismatch unless square?
838    rows.each_with_index do |row_i, i|
839      rows.each_with_index do |row_j, j|
840        s = 0
841        rows.each_with_index do |row_k, k|
842          s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j]
843        end
844        return false unless s == 0
845      end
846    end
847    true
848  end
849
850  #
851  # Returns +true+ if this is an orthogonal matrix
852  # Raises an error if matrix is not square.
853  #
854  def orthogonal?
855    Matrix.Raise ErrDimensionMismatch unless square?
856    rows.each_with_index do |row, i|
857      column_count.times do |j|
858        s = 0
859        row_count.times do |k|
860          s += row[k] * rows[k][j]
861        end
862        return false unless s == (i == j ? 1 : 0)
863      end
864    end
865    true
866  end
867
868  #
869  # Returns +true+ if this is a permutation matrix
870  # Raises an error if matrix is not square.
871  #
872  def permutation?
873    Matrix.Raise ErrDimensionMismatch unless square?
874    cols = Array.new(column_count)
875    rows.each_with_index do |row, i|
876      found = false
877      row.each_with_index do |e, j|
878        if e == 1
879          return false if found || cols[j]
880          found = cols[j] = true
881        elsif e != 0
882          return false
883        end
884      end
885      return false unless found
886    end
887    true
888  end
889
890  #
891  # Returns +true+ if all entries of the matrix are real.
892  #
893  def real?
894    all?(&:real?)
895  end
896
897  #
898  # Returns +true+ if this is a regular (i.e. non-singular) matrix.
899  #
900  def regular?
901    not singular?
902  end
903
904  #
905  # Returns +true+ if this is a singular matrix.
906  #
907  def singular?
908    determinant == 0
909  end
910
911  #
912  # Returns +true+ if this is a square matrix.
913  #
914  def square?
915    column_count == row_count
916  end
917
918  #
919  # Returns +true+ if this is a symmetric matrix.
920  # Raises an error if matrix is not square.
921  #
922  def symmetric?
923    Matrix.Raise ErrDimensionMismatch unless square?
924    each_with_index(:strict_upper) do |e, row, col|
925      return false if e != rows[col][row]
926    end
927    true
928  end
929
930  #
931  # Returns +true+ if this is an antisymmetric matrix.
932  # Raises an error if matrix is not square.
933  #
934  def antisymmetric?
935    Matrix.Raise ErrDimensionMismatch unless square?
936    each_with_index(:upper) do |e, row, col|
937      return false unless e == -rows[col][row]
938    end
939    true
940  end
941  alias_method :skew_symmetric?, :antisymmetric?
942
943  #
944  # Returns +true+ if this is a unitary matrix
945  # Raises an error if matrix is not square.
946  #
947  def unitary?
948    Matrix.Raise ErrDimensionMismatch unless square?
949    rows.each_with_index do |row, i|
950      column_count.times do |j|
951        s = 0
952        row_count.times do |k|
953          s += row[k].conj * rows[k][j]
954        end
955        return false unless s == (i == j ? 1 : 0)
956      end
957    end
958    true
959  end
960
961  #
962  # Returns +true+ if this is an upper triangular matrix.
963  #
964  def upper_triangular?
965    each(:strict_lower).all?(&:zero?)
966  end
967
968  #
969  # Returns +true+ if this is a matrix with only zero elements
970  #
971  def zero?
972    all?(&:zero?)
973  end
974
975  #--
976  # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
977  #++
978
979  #
980  # Returns +true+ if and only if the two matrices contain equal elements.
981  #
982  def ==(other)
983    return false unless Matrix === other &&
984                        column_count == other.column_count # necessary for empty matrices
985    rows == other.rows
986  end
987
988  def eql?(other)
989    return false unless Matrix === other &&
990                        column_count == other.column_count # necessary for empty matrices
991    rows.eql? other.rows
992  end
993
994  #
995  # Called for dup & clone.
996  #
997  private def initialize_copy(m)
998    super
999    @rows = @rows.map(&:dup) unless frozen?
1000  end
1001
1002  #
1003  # Returns a hash-code for the matrix.
1004  #
1005  def hash
1006    @rows.hash
1007  end
1008
1009  #--
1010  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1011  #++
1012
1013  #
1014  # Matrix multiplication.
1015  #   Matrix[[2,4], [6,8]] * Matrix.identity(2)
1016  #     => 2 4
1017  #        6 8
1018  #
1019  def *(m) # m is matrix or vector or number
1020    case(m)
1021    when Numeric
1022      rows = @rows.collect {|row|
1023        row.collect {|e| e * m }
1024      }
1025      return new_matrix rows, column_count
1026    when Vector
1027      m = self.class.column_vector(m)
1028      r = self * m
1029      return r.column(0)
1030    when Matrix
1031      Matrix.Raise ErrDimensionMismatch if column_count != m.row_count
1032
1033      rows = Array.new(row_count) {|i|
1034        Array.new(m.column_count) {|j|
1035          (0 ... column_count).inject(0) do |vij, k|
1036            vij + self[i, k] * m[k, j]
1037          end
1038        }
1039      }
1040      return new_matrix rows, m.column_count
1041    else
1042      return apply_through_coercion(m, __method__)
1043    end
1044  end
1045
1046  #
1047  # Matrix addition.
1048  #   Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]]
1049  #     =>  6  0
1050  #        -4 12
1051  #
1052  def +(m)
1053    case m
1054    when Numeric
1055      Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class
1056    when Vector
1057      m = self.class.column_vector(m)
1058    when Matrix
1059    else
1060      return apply_through_coercion(m, __method__)
1061    end
1062
1063    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
1064
1065    rows = Array.new(row_count) {|i|
1066      Array.new(column_count) {|j|
1067        self[i, j] + m[i, j]
1068      }
1069    }
1070    new_matrix rows, column_count
1071  end
1072
1073  #
1074  # Matrix subtraction.
1075  #   Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]]
1076  #     => -8  2
1077  #         8  1
1078  #
1079  def -(m)
1080    case m
1081    when Numeric
1082      Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class
1083    when Vector
1084      m = self.class.column_vector(m)
1085    when Matrix
1086    else
1087      return apply_through_coercion(m, __method__)
1088    end
1089
1090    Matrix.Raise ErrDimensionMismatch unless row_count == m.row_count && column_count == m.column_count
1091
1092    rows = Array.new(row_count) {|i|
1093      Array.new(column_count) {|j|
1094        self[i, j] - m[i, j]
1095      }
1096    }
1097    new_matrix rows, column_count
1098  end
1099
1100  #
1101  # Matrix division (multiplication by the inverse).
1102  #   Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]]
1103  #     => -7  1
1104  #        -3 -6
1105  #
1106  def /(other)
1107    case other
1108    when Numeric
1109      rows = @rows.collect {|row|
1110        row.collect {|e| e / other }
1111      }
1112      return new_matrix rows, column_count
1113    when Matrix
1114      return self * other.inverse
1115    else
1116      return apply_through_coercion(other, __method__)
1117    end
1118  end
1119
1120  #
1121  # Hadamard product
1122  #    Matrix[[1,2], [3,4]].hadamard_product(Matrix[[1,2], [3,2]])
1123  #      => 1  4
1124  #         9  8
1125  #
1126  def hadamard_product(m)
1127    combine(m){|a, b| a * b}
1128  end
1129  alias_method :entrywise_product, :hadamard_product
1130
1131  #
1132  # Returns the inverse of the matrix.
1133  #   Matrix[[-1, -1], [0, -1]].inverse
1134  #     => -1  1
1135  #         0 -1
1136  #
1137  def inverse
1138    Matrix.Raise ErrDimensionMismatch unless square?
1139    self.class.I(row_count).send(:inverse_from, self)
1140  end
1141  alias_method :inv, :inverse
1142
1143  private def inverse_from(src) # :nodoc:
1144    last = row_count - 1
1145    a = src.to_a
1146
1147    0.upto(last) do |k|
1148      i = k
1149      akk = a[k][k].abs
1150      (k+1).upto(last) do |j|
1151        v = a[j][k].abs
1152        if v > akk
1153          i = j
1154          akk = v
1155        end
1156      end
1157      Matrix.Raise ErrNotRegular if akk == 0
1158      if i != k
1159        a[i], a[k] = a[k], a[i]
1160        @rows[i], @rows[k] = @rows[k], @rows[i]
1161      end
1162      akk = a[k][k]
1163
1164      0.upto(last) do |ii|
1165        next if ii == k
1166        q = a[ii][k].quo(akk)
1167        a[ii][k] = 0
1168
1169        (k + 1).upto(last) do |j|
1170          a[ii][j] -= a[k][j] * q
1171        end
1172        0.upto(last) do |j|
1173          @rows[ii][j] -= @rows[k][j] * q
1174        end
1175      end
1176
1177      (k+1).upto(last) do |j|
1178        a[k][j] = a[k][j].quo(akk)
1179      end
1180      0.upto(last) do |j|
1181        @rows[k][j] = @rows[k][j].quo(akk)
1182      end
1183    end
1184    self
1185  end
1186
1187  #
1188  # Matrix exponentiation.
1189  # Equivalent to multiplying the matrix by itself N times.
1190  # Non integer exponents will be handled by diagonalizing the matrix.
1191  #
1192  #   Matrix[[7,6], [3,9]] ** 2
1193  #     => 67 96
1194  #        48 99
1195  #
1196  def **(other)
1197    case other
1198    when Integer
1199      x = self
1200      if other <= 0
1201        x = self.inverse
1202        return self.class.identity(self.column_count) if other == 0
1203        other = -other
1204      end
1205      z = nil
1206      loop do
1207        z = z ? z * x : x if other[0] == 1
1208        return z if (other >>= 1).zero?
1209        x *= x
1210      end
1211    when Numeric
1212      v, d, v_inv = eigensystem
1213      v * self.class.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv
1214    else
1215      Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class
1216    end
1217  end
1218
1219  def +@
1220    self
1221  end
1222
1223  def -@
1224    collect {|e| -e }
1225  end
1226
1227  #--
1228  # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1229  #++
1230
1231  #
1232  # Returns the determinant of the matrix.
1233  #
1234  # Beware that using Float values can yield erroneous results
1235  # because of their lack of precision.
1236  # Consider using exact types like Rational or BigDecimal instead.
1237  #
1238  #   Matrix[[7,6], [3,9]].determinant
1239  #     => 45
1240  #
1241  def determinant
1242    Matrix.Raise ErrDimensionMismatch unless square?
1243    m = @rows
1244    case row_count
1245      # Up to 4x4, give result using Laplacian expansion by minors.
1246      # This will typically be faster, as well as giving good results
1247      # in case of Floats
1248    when 0
1249      +1
1250    when 1
1251      + m[0][0]
1252    when 2
1253      + m[0][0] * m[1][1] - m[0][1] * m[1][0]
1254    when 3
1255      m0, m1, m2 = m
1256      + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \
1257      - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \
1258      + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0]
1259    when 4
1260      m0, m1, m2, m3 = m
1261      + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \
1262      - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \
1263      + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \
1264      - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \
1265      + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \
1266      - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \
1267      + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \
1268      - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \
1269      + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \
1270      - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \
1271      + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \
1272      - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0]
1273    else
1274      # For bigger matrices, use an efficient and general algorithm.
1275      # Currently, we use the Gauss-Bareiss algorithm
1276      determinant_bareiss
1277    end
1278  end
1279  alias_method :det, :determinant
1280
1281  #
1282  # Private. Use Matrix#determinant
1283  #
1284  # Returns the determinant of the matrix, using
1285  # Bareiss' multistep integer-preserving gaussian elimination.
1286  # It has the same computational cost order O(n^3) as standard Gaussian elimination.
1287  # Intermediate results are fraction free and of lower complexity.
1288  # A matrix of Integers will have thus intermediate results that are also Integers,
1289  # with smaller bignums (if any), while a matrix of Float will usually have
1290  # intermediate results with better precision.
1291  #
1292  private def determinant_bareiss
1293    size = row_count
1294    last = size - 1
1295    a = to_a
1296    no_pivot = Proc.new{ return 0 }
1297    sign = +1
1298    pivot = 1
1299    size.times do |k|
1300      previous_pivot = pivot
1301      if (pivot = a[k][k]) == 0
1302        switch = (k+1 ... size).find(no_pivot) {|row|
1303          a[row][k] != 0
1304        }
1305        a[switch], a[k] = a[k], a[switch]
1306        pivot = a[k][k]
1307        sign = -sign
1308      end
1309      (k+1).upto(last) do |i|
1310        ai = a[i]
1311        (k+1).upto(last) do |j|
1312          ai[j] =  (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot
1313        end
1314      end
1315    end
1316    sign * pivot
1317  end
1318
1319  #
1320  # deprecated; use Matrix#determinant
1321  #
1322  def determinant_e
1323    warn "Matrix#determinant_e is deprecated; use #determinant", uplevel: 1
1324    determinant
1325  end
1326  alias_method :det_e, :determinant_e
1327
1328  #
1329  # Returns a new matrix resulting by stacking horizontally
1330  # the receiver with the given matrices
1331  #
1332  #   x = Matrix[[1, 2], [3, 4]]
1333  #   y = Matrix[[5, 6], [7, 8]]
1334  #   x.hstack(y) # => Matrix[[1, 2, 5, 6], [3, 4, 7, 8]]
1335  #
1336  def hstack(*matrices)
1337    self.class.hstack(self, *matrices)
1338  end
1339
1340  #
1341  # Returns the rank of the matrix.
1342  # Beware that using Float values can yield erroneous results
1343  # because of their lack of precision.
1344  # Consider using exact types like Rational or BigDecimal instead.
1345  #
1346  #   Matrix[[7,6], [3,9]].rank
1347  #     => 2
1348  #
1349  def rank
1350    # We currently use Bareiss' multistep integer-preserving gaussian elimination
1351    # (see comments on determinant)
1352    a = to_a
1353    last_column = column_count - 1
1354    last_row = row_count - 1
1355    pivot_row = 0
1356    previous_pivot = 1
1357    0.upto(last_column) do |k|
1358      switch_row = (pivot_row .. last_row).find {|row|
1359        a[row][k] != 0
1360      }
1361      if switch_row
1362        a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row
1363        pivot = a[pivot_row][k]
1364        (pivot_row+1).upto(last_row) do |i|
1365           ai = a[i]
1366           (k+1).upto(last_column) do |j|
1367             ai[j] =  (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot
1368           end
1369         end
1370        pivot_row += 1
1371        previous_pivot = pivot
1372      end
1373    end
1374    pivot_row
1375  end
1376
1377  #
1378  # deprecated; use Matrix#rank
1379  #
1380  def rank_e
1381    warn "Matrix#rank_e is deprecated; use #rank", uplevel: 1
1382    rank
1383  end
1384
1385  # Returns a matrix with entries rounded to the given precision
1386  # (see Float#round)
1387  #
1388  def round(ndigits=0)
1389    map{|e| e.round(ndigits)}
1390  end
1391
1392  #
1393  # Returns the trace (sum of diagonal elements) of the matrix.
1394  #   Matrix[[7,6], [3,9]].trace
1395  #     => 16
1396  #
1397  def trace
1398    Matrix.Raise ErrDimensionMismatch unless square?
1399    (0...column_count).inject(0) do |tr, i|
1400      tr + @rows[i][i]
1401    end
1402  end
1403  alias_method :tr, :trace
1404
1405  #
1406  # Returns the transpose of the matrix.
1407  #   Matrix[[1,2], [3,4], [5,6]]
1408  #     => 1 2
1409  #        3 4
1410  #        5 6
1411  #   Matrix[[1,2], [3,4], [5,6]].transpose
1412  #     => 1 3 5
1413  #        2 4 6
1414  #
1415  def transpose
1416    return self.class.empty(column_count, 0) if row_count.zero?
1417    new_matrix @rows.transpose, row_count
1418  end
1419  alias_method :t, :transpose
1420
1421  #
1422  # Returns a new matrix resulting by stacking vertically
1423  # the receiver with the given matrices
1424  #
1425  #   x = Matrix[[1, 2], [3, 4]]
1426  #   y = Matrix[[5, 6], [7, 8]]
1427  #   x.vstack(y) # => Matrix[[1, 2], [3, 4], [5, 6], [7, 8]]
1428  #
1429  def vstack(*matrices)
1430    self.class.vstack(self, *matrices)
1431  end
1432
1433  #--
1434  # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
1435  #++
1436
1437  #
1438  # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+.
1439  #   m = Matrix[[1, 2], [3, 4]]
1440  #   v, d, v_inv = m.eigensystem
1441  #   d.diagonal? # => true
1442  #   v.inv == v_inv # => true
1443  #   (v * d * v_inv).round(5) == m # => true
1444  #
1445  def eigensystem
1446    EigenvalueDecomposition.new(self)
1447  end
1448  alias_method :eigen, :eigensystem
1449
1450  #
1451  # Returns the LUP decomposition of the matrix; see +LUPDecomposition+.
1452  #   a = Matrix[[1, 2], [3, 4]]
1453  #   l, u, p = a.lup
1454  #   l.lower_triangular? # => true
1455  #   u.upper_triangular? # => true
1456  #   p.permutation?      # => true
1457  #   l * u == p * a      # => true
1458  #   a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)]
1459  #
1460  def lup
1461    LUPDecomposition.new(self)
1462  end
1463  alias_method :lup_decomposition, :lup
1464
1465  #--
1466  # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
1467  #++
1468
1469  #
1470  # Returns the conjugate of the matrix.
1471  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1472  #     => 1+2i   i  0
1473  #           1   2  3
1474  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate
1475  #     => 1-2i  -i  0
1476  #           1   2  3
1477  #
1478  def conjugate
1479    collect(&:conjugate)
1480  end
1481  alias_method :conj, :conjugate
1482
1483  #
1484  # Returns the imaginary part of the matrix.
1485  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1486  #     => 1+2i  i  0
1487  #           1  2  3
1488  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary
1489  #     =>   2i  i  0
1490  #           0  0  0
1491  #
1492  def imaginary
1493    collect(&:imaginary)
1494  end
1495  alias_method :imag, :imaginary
1496
1497  #
1498  # Returns the real part of the matrix.
1499  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]]
1500  #     => 1+2i  i  0
1501  #           1  2  3
1502  #   Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real
1503  #     =>    1  0  0
1504  #           1  2  3
1505  #
1506  def real
1507    collect(&:real)
1508  end
1509
1510  #
1511  # Returns an array containing matrices corresponding to the real and imaginary
1512  # parts of the matrix
1513  #
1514  # m.rect == [m.real, m.imag]  # ==> true for all matrices m
1515  #
1516  def rect
1517    [real, imag]
1518  end
1519  alias_method :rectangular, :rect
1520
1521  #--
1522  # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1523  #++
1524
1525  #
1526  # The coerce method provides support for Ruby type coercion.
1527  # This coercion mechanism is used by Ruby to handle mixed-type
1528  # numeric operations: it is intended to find a compatible common
1529  # type between the two operands of the operator.
1530  # See also Numeric#coerce.
1531  #
1532  def coerce(other)
1533    case other
1534    when Numeric
1535      return Scalar.new(other), self
1536    else
1537      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
1538    end
1539  end
1540
1541  #
1542  # Returns an array of the row vectors of the matrix.  See Vector.
1543  #
1544  def row_vectors
1545    Array.new(row_count) {|i|
1546      row(i)
1547    }
1548  end
1549
1550  #
1551  # Returns an array of the column vectors of the matrix.  See Vector.
1552  #
1553  def column_vectors
1554    Array.new(column_count) {|i|
1555      column(i)
1556    }
1557  end
1558
1559  #
1560  # Explicit conversion to a Matrix. Returns self
1561  #
1562  def to_matrix
1563    self
1564  end
1565
1566  #
1567  # Returns an array of arrays that describe the rows of the matrix.
1568  #
1569  def to_a
1570    @rows.collect(&:dup)
1571  end
1572
1573  # Deprecated.
1574  #
1575  # Use map(&:to_f)
1576  def elements_to_f
1577    warn "Matrix#elements_to_f is deprecated, use map(&:to_f)", uplevel: 1
1578    map(&:to_f)
1579  end
1580
1581  # Deprecated.
1582  #
1583  # Use map(&:to_i)
1584  def elements_to_i
1585    warn "Matrix#elements_to_i is deprecated, use map(&:to_i)", uplevel: 1
1586    map(&:to_i)
1587  end
1588
1589  # Deprecated.
1590  #
1591  # Use map(&:to_r)
1592  def elements_to_r
1593    warn "Matrix#elements_to_r is deprecated, use map(&:to_r)", uplevel: 1
1594    map(&:to_r)
1595  end
1596
1597  #--
1598  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1599  #++
1600
1601  #
1602  # Overrides Object#to_s
1603  #
1604  def to_s
1605    if empty?
1606      "#{self.class}.empty(#{row_count}, #{column_count})"
1607    else
1608      "#{self.class}[" + @rows.collect{|row|
1609        "[" + row.collect{|e| e.to_s}.join(", ") + "]"
1610      }.join(", ")+"]"
1611    end
1612  end
1613
1614  #
1615  # Overrides Object#inspect
1616  #
1617  def inspect
1618    if empty?
1619      "#{self.class}.empty(#{row_count}, #{column_count})"
1620    else
1621      "#{self.class}#{@rows.inspect}"
1622    end
1623  end
1624
1625  # Private helper modules
1626
1627  module ConversionHelper # :nodoc:
1628    #
1629    # Converts the obj to an Array. If copy is set to true
1630    # a copy of obj will be made if necessary.
1631    #
1632    private def convert_to_array(obj, copy = false) # :nodoc:
1633      case obj
1634      when Array
1635        copy ? obj.dup : obj
1636      when Vector
1637        obj.to_a
1638      else
1639        begin
1640          converted = obj.to_ary
1641        rescue Exception => e
1642          raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})"
1643        end
1644        raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array
1645        converted
1646      end
1647    end
1648  end
1649
1650  extend ConversionHelper
1651
1652  module CoercionHelper # :nodoc:
1653    #
1654    # Applies the operator +oper+ with argument +obj+
1655    # through coercion of +obj+
1656    #
1657    private def apply_through_coercion(obj, oper)
1658      coercion = obj.coerce(self)
1659      raise TypeError unless coercion.is_a?(Array) && coercion.length == 2
1660      coercion[0].public_send(oper, coercion[1])
1661    rescue
1662      raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}"
1663    end
1664
1665    #
1666    # Helper method to coerce a value into a specific class.
1667    # Raises a TypeError if the coercion fails or the returned value
1668    # is not of the right class.
1669    # (from Rubinius)
1670    #
1671    def self.coerce_to(obj, cls, meth) # :nodoc:
1672      return obj if obj.kind_of?(cls)
1673      raise TypeError, "Expected a #{cls} but got a #{obj.class}" unless obj.respond_to? meth
1674      begin
1675        ret = obj.__send__(meth)
1676      rescue Exception => e
1677        raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \
1678                         "(#{e.message})"
1679      end
1680      raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls
1681      ret
1682    end
1683
1684    def self.coerce_to_int(obj)
1685      coerce_to(obj, Integer, :to_int)
1686    end
1687
1688    def self.coerce_to_matrix(obj)
1689      coerce_to(obj, Matrix, :to_matrix)
1690    end
1691
1692    # Returns `nil` for non Ranges
1693    # Checks range validity, return canonical range with 0 <= begin <= end < count
1694    def self.check_range(val, count, kind)
1695      canonical = (val.begin + (val.begin < 0 ? count : 0))..
1696                  (val.end ? val.end + (val.end < 0 ? count : 0) - (val.exclude_end? ? 1 : 0)
1697                           : count - 1)
1698      unless 0 <= canonical.begin && canonical.begin <= canonical.end && canonical.end < count
1699        raise IndexError, "given range #{val} is outside of #{kind} dimensions: 0...#{count}"
1700      end
1701      canonical
1702    end
1703
1704    def self.check_int(val, count, kind)
1705      val = CoercionHelper.coerce_to_int(val)
1706      if val >= count || val < -count
1707        raise IndexError, "given #{kind} #{val} is outside of #{-count}...#{count}"
1708      end
1709      val
1710    end
1711  end
1712
1713  include CoercionHelper
1714
1715  # Private CLASS
1716
1717  class Scalar < Numeric # :nodoc:
1718    include ExceptionForMatrix
1719    include CoercionHelper
1720
1721    def initialize(value)
1722      @value = value
1723    end
1724
1725    # ARITHMETIC
1726    def +(other)
1727      case other
1728      when Numeric
1729        Scalar.new(@value + other)
1730      when Vector, Matrix
1731        Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class
1732      else
1733        apply_through_coercion(other, __method__)
1734      end
1735    end
1736
1737    def -(other)
1738      case other
1739      when Numeric
1740        Scalar.new(@value - other)
1741      when Vector, Matrix
1742        Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class
1743      else
1744        apply_through_coercion(other, __method__)
1745      end
1746    end
1747
1748    def *(other)
1749      case other
1750      when Numeric
1751        Scalar.new(@value * other)
1752      when Vector, Matrix
1753        other.collect{|e| @value * e}
1754      else
1755        apply_through_coercion(other, __method__)
1756      end
1757    end
1758
1759    def /(other)
1760      case other
1761      when Numeric
1762        Scalar.new(@value / other)
1763      when Vector
1764        Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class
1765      when Matrix
1766        self * other.inverse
1767      else
1768        apply_through_coercion(other, __method__)
1769      end
1770    end
1771
1772    def **(other)
1773      case other
1774      when Numeric
1775        Scalar.new(@value ** other)
1776      when Vector
1777        Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class
1778      when Matrix
1779        #other.powered_by(self)
1780        Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class
1781      else
1782        apply_through_coercion(other, __method__)
1783      end
1784    end
1785  end
1786
1787end
1788
1789
1790#
1791# The +Vector+ class represents a mathematical vector, which is useful in its own right, and
1792# also constitutes a row or column of a Matrix.
1793#
1794# == Method Catalogue
1795#
1796# To create a Vector:
1797# * Vector.[](*array)
1798# * Vector.elements(array, copy = true)
1799# * Vector.basis(size: n, index: k)
1800# * Vector.zero(n)
1801#
1802# To access elements:
1803# * #[](i)
1804#
1805# To set elements:
1806# * #[]=(i, v)
1807#
1808# To enumerate the elements:
1809# * #each2(v)
1810# * #collect2(v)
1811#
1812# Properties of vectors:
1813# * #angle_with(v)
1814# * Vector.independent?(*vs)
1815# * #independent?(*vs)
1816# * #zero?
1817#
1818# Vector arithmetic:
1819# * #*(x) "is matrix or number"
1820# * #+(v)
1821# * #-(v)
1822# * #/(v)
1823# * #+@
1824# * #-@
1825#
1826# Vector functions:
1827# * #inner_product(v), dot(v)
1828# * #cross_product(v), cross(v)
1829# * #collect
1830# * #collect!
1831# * #magnitude
1832# * #map
1833# * #map!
1834# * #map2(v)
1835# * #norm
1836# * #normalize
1837# * #r
1838# * #round
1839# * #size
1840#
1841# Conversion to other data types:
1842# * #covector
1843# * #to_a
1844# * #coerce(other)
1845#
1846# String representations:
1847# * #to_s
1848# * #inspect
1849#
1850class Vector
1851  include ExceptionForMatrix
1852  include Enumerable
1853  include Matrix::CoercionHelper
1854  extend Matrix::ConversionHelper
1855  #INSTANCE CREATION
1856
1857  private_class_method :new
1858  attr_reader :elements
1859  protected :elements
1860
1861  #
1862  # Creates a Vector from a list of elements.
1863  #   Vector[7, 4, ...]
1864  #
1865  def Vector.[](*array)
1866    new convert_to_array(array, false)
1867  end
1868
1869  #
1870  # Creates a vector from an Array.  The optional second argument specifies
1871  # whether the array itself or a copy is used internally.
1872  #
1873  def Vector.elements(array, copy = true)
1874    new convert_to_array(array, copy)
1875  end
1876
1877  #
1878  # Returns a standard basis +n+-vector, where k is the index.
1879  #
1880  #    Vector.basis(size:, index:) # => Vector[0, 1, 0]
1881  #
1882  def Vector.basis(size:, index:)
1883    raise ArgumentError, "invalid size (#{size} for 1..)" if size < 1
1884    raise ArgumentError, "invalid index (#{index} for 0...#{size})" unless 0 <= index && index < size
1885    array = Array.new(size, 0)
1886    array[index] = 1
1887    new convert_to_array(array, false)
1888  end
1889
1890  #
1891  # Return a zero vector.
1892  #
1893  #    Vector.zero(3) => Vector[0, 0, 0]
1894  #
1895  def Vector.zero(size)
1896    raise ArgumentError, "invalid size (#{size} for 0..)" if size < 0
1897    array = Array.new(size, 0)
1898    new convert_to_array(array, false)
1899  end
1900
1901  #
1902  # Vector.new is private; use Vector[] or Vector.elements to create.
1903  #
1904  def initialize(array)
1905    # No checking is done at this point.
1906    @elements = array
1907  end
1908
1909  # ACCESSING
1910
1911  #
1912  # :call-seq:
1913  #   vector[range]
1914  #   vector[integer]
1915  #
1916  # Returns element or elements of the vector.
1917  #
1918  def [](i)
1919    @elements[i]
1920  end
1921  alias element []
1922  alias component []
1923
1924  #
1925  # :call-seq:
1926  #   vector[range] = new_vector
1927  #   vector[range] = row_matrix
1928  #   vector[range] = new_element
1929  #   vector[integer] = new_element
1930  #
1931  # Set element or elements of vector.
1932  #
1933  def []=(i, v)
1934    raise FrozenError, "can't modify frozen Vector" if frozen?
1935    if i.is_a?(Range)
1936      range = Matrix::CoercionHelper.check_range(i, size, :vector)
1937      set_range(range, v)
1938    else
1939      index = Matrix::CoercionHelper.check_int(i, size, :index)
1940      set_value(index, v)
1941    end
1942  end
1943  alias set_element []=
1944  alias set_component []=
1945  private :set_element, :set_component
1946
1947  private def set_value(index, value)
1948    @elements[index] = value
1949  end
1950
1951  private def set_range(range, value)
1952    if value.is_a?(Vector)
1953      raise ArgumentError, "vector to be set has wrong size" unless range.size == value.size
1954      @elements[range] = value.elements
1955    elsif value.is_a?(Matrix)
1956      Matrix.Raise ErrDimensionMismatch unless value.row_count == 1
1957      @elements[range] = value.row(0).elements
1958    else
1959      @elements[range] = Array.new(range.size, value)
1960    end
1961  end
1962
1963  # Returns a vector with entries rounded to the given precision
1964  # (see Float#round)
1965  #
1966  def round(ndigits=0)
1967    map{|e| e.round(ndigits)}
1968  end
1969
1970  #
1971  # Returns the number of elements in the vector.
1972  #
1973  def size
1974    @elements.size
1975  end
1976
1977  #--
1978  # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
1979  #++
1980
1981  #
1982  # Iterate over the elements of this vector
1983  #
1984  def each(&block)
1985    return to_enum(:each) unless block_given?
1986    @elements.each(&block)
1987    self
1988  end
1989
1990  #
1991  # Iterate over the elements of this vector and +v+ in conjunction.
1992  #
1993  def each2(v) # :yield: e1, e2
1994    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
1995    Vector.Raise ErrDimensionMismatch if size != v.size
1996    return to_enum(:each2, v) unless block_given?
1997    size.times do |i|
1998      yield @elements[i], v[i]
1999    end
2000    self
2001  end
2002
2003  #
2004  # Collects (as in Enumerable#collect) over the elements of this vector and +v+
2005  # in conjunction.
2006  #
2007  def collect2(v) # :yield: e1, e2
2008    raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer)
2009    Vector.Raise ErrDimensionMismatch if size != v.size
2010    return to_enum(:collect2, v) unless block_given?
2011    Array.new(size) do |i|
2012      yield @elements[i], v[i]
2013    end
2014  end
2015
2016  #--
2017  # PROPERTIES -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2018  #++
2019
2020  #
2021  # Returns +true+ iff all of vectors are linearly independent.
2022  #
2023  #   Vector.independent?(Vector[1,0], Vector[0,1])
2024  #     => true
2025  #
2026  #   Vector.independent?(Vector[1,2], Vector[2,4])
2027  #     => false
2028  #
2029  def Vector.independent?(*vs)
2030    vs.each do |v|
2031      raise TypeError, "expected Vector, got #{v.class}" unless v.is_a?(Vector)
2032      Vector.Raise ErrDimensionMismatch unless v.size == vs.first.size
2033    end
2034    return false if vs.count > vs.first.size
2035    Matrix[*vs].rank.eql?(vs.count)
2036  end
2037
2038  #
2039  # Returns +true+ iff all of vectors are linearly independent.
2040  #
2041  #   Vector[1,0].independent?(Vector[0,1])
2042  #     => true
2043  #
2044  #   Vector[1,2].independent?(Vector[2,4])
2045  #     => false
2046  #
2047  def independent?(*vs)
2048    self.class.independent?(self, *vs)
2049  end
2050
2051  #
2052  # Returns +true+ iff all elements are zero.
2053  #
2054  def zero?
2055    all?(&:zero?)
2056  end
2057
2058  def freeze
2059    @elements.freeze
2060    super
2061  end
2062
2063  #
2064  # Called for dup & clone.
2065  #
2066  private def initialize_copy(v)
2067    super
2068    @elements = @elements.dup unless frozen?
2069  end
2070
2071
2072  #--
2073  # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2074  #++
2075
2076  #
2077  # Returns +true+ iff the two vectors have the same elements in the same order.
2078  #
2079  def ==(other)
2080    return false unless Vector === other
2081    @elements == other.elements
2082  end
2083
2084  def eql?(other)
2085    return false unless Vector === other
2086    @elements.eql? other.elements
2087  end
2088
2089  #
2090  # Returns a hash-code for the vector.
2091  #
2092  def hash
2093    @elements.hash
2094  end
2095
2096  #--
2097  # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2098  #++
2099
2100  #
2101  # Multiplies the vector by +x+, where +x+ is a number or a matrix.
2102  #
2103  def *(x)
2104    case x
2105    when Numeric
2106      els = @elements.collect{|e| e * x}
2107      self.class.elements(els, false)
2108    when Matrix
2109      Matrix.column_vector(self) * x
2110    when Vector
2111      Vector.Raise ErrOperationNotDefined, "*", self.class, x.class
2112    else
2113      apply_through_coercion(x, __method__)
2114    end
2115  end
2116
2117  #
2118  # Vector addition.
2119  #
2120  def +(v)
2121    case v
2122    when Vector
2123      Vector.Raise ErrDimensionMismatch if size != v.size
2124      els = collect2(v) {|v1, v2|
2125        v1 + v2
2126      }
2127      self.class.elements(els, false)
2128    when Matrix
2129      Matrix.column_vector(self) + v
2130    else
2131      apply_through_coercion(v, __method__)
2132    end
2133  end
2134
2135  #
2136  # Vector subtraction.
2137  #
2138  def -(v)
2139    case v
2140    when Vector
2141      Vector.Raise ErrDimensionMismatch if size != v.size
2142      els = collect2(v) {|v1, v2|
2143        v1 - v2
2144      }
2145      self.class.elements(els, false)
2146    when Matrix
2147      Matrix.column_vector(self) - v
2148    else
2149      apply_through_coercion(v, __method__)
2150    end
2151  end
2152
2153  #
2154  # Vector division.
2155  #
2156  def /(x)
2157    case x
2158    when Numeric
2159      els = @elements.collect{|e| e / x}
2160      self.class.elements(els, false)
2161    when Matrix, Vector
2162      Vector.Raise ErrOperationNotDefined, "/", self.class, x.class
2163    else
2164      apply_through_coercion(x, __method__)
2165    end
2166  end
2167
2168  def +@
2169    self
2170  end
2171
2172  def -@
2173    collect {|e| -e }
2174  end
2175
2176  #--
2177  # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2178  #++
2179
2180  #
2181  # Returns the inner product of this vector with the other.
2182  #   Vector[4,7].inner_product Vector[10,1]  => 47
2183  #
2184  def inner_product(v)
2185    Vector.Raise ErrDimensionMismatch if size != v.size
2186
2187    p = 0
2188    each2(v) {|v1, v2|
2189      p += v1 * v2.conj
2190    }
2191    p
2192  end
2193  alias_method :dot, :inner_product
2194
2195  #
2196  # Returns the cross product of this vector with the others.
2197  #   Vector[1, 0, 0].cross_product Vector[0, 1, 0]   => Vector[0, 0, 1]
2198  #
2199  # It is generalized to other dimensions to return a vector perpendicular
2200  # to the arguments.
2201  #   Vector[1, 2].cross_product # => Vector[-2, 1]
2202  #   Vector[1, 0, 0, 0].cross_product(
2203  #      Vector[0, 1, 0, 0],
2204  #      Vector[0, 0, 1, 0]
2205  #   )  #=> Vector[0, 0, 0, 1]
2206  #
2207  def cross_product(*vs)
2208    raise ErrOperationNotDefined, "cross product is not defined on vectors of dimension #{size}" unless size >= 2
2209    raise ArgumentError, "wrong number of arguments (#{vs.size} for #{size - 2})" unless vs.size == size - 2
2210    vs.each do |v|
2211      raise TypeError, "expected Vector, got #{v.class}" unless v.is_a? Vector
2212      Vector.Raise ErrDimensionMismatch unless v.size == size
2213    end
2214    case size
2215    when 2
2216      Vector[-@elements[1], @elements[0]]
2217    when 3
2218      v = vs[0]
2219      Vector[ v[2]*@elements[1] - v[1]*@elements[2],
2220        v[0]*@elements[2] - v[2]*@elements[0],
2221        v[1]*@elements[0] - v[0]*@elements[1] ]
2222    else
2223      rows = self, *vs, Array.new(size) {|i| Vector.basis(size: size, index: i) }
2224      Matrix.rows(rows).laplace_expansion(row: size - 1)
2225    end
2226  end
2227  alias_method :cross, :cross_product
2228
2229  #
2230  # Like Array#collect.
2231  #
2232  def collect(&block) # :yield: e
2233    return to_enum(:collect) unless block_given?
2234    els = @elements.collect(&block)
2235    self.class.elements(els, false)
2236  end
2237  alias_method :map, :collect
2238
2239  #
2240  # Like Array#collect!
2241  #
2242  def collect!(&block)
2243    return to_enum(:collect!) unless block_given?
2244    raise FrozenError, "can't modify frozen Vector" if frozen?
2245    @elements.collect!(&block)
2246    self
2247  end
2248  alias map! collect!
2249
2250  #
2251  # Returns the modulus (Pythagorean distance) of the vector.
2252  #   Vector[5,8,2].r => 9.643650761
2253  #
2254  def magnitude
2255    Math.sqrt(@elements.inject(0) {|v, e| v + e.abs2})
2256  end
2257  alias_method :r, :magnitude
2258  alias_method :norm, :magnitude
2259
2260  #
2261  # Like Vector#collect2, but returns a Vector instead of an Array.
2262  #
2263  def map2(v, &block) # :yield: e1, e2
2264    return to_enum(:map2, v) unless block_given?
2265    els = collect2(v, &block)
2266    self.class.elements(els, false)
2267  end
2268
2269  class ZeroVectorError < StandardError
2270  end
2271  #
2272  # Returns a new vector with the same direction but with norm 1.
2273  #   v = Vector[5,8,2].normalize
2274  #   # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505]
2275  #   v.norm => 1.0
2276  #
2277  def normalize
2278    n = magnitude
2279    raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0
2280    self / n
2281  end
2282
2283  #
2284  # Returns an angle with another vector. Result is within the [0..Math::PI].
2285  #   Vector[1,0].angle_with(Vector[0,1])
2286  #   # => Math::PI / 2
2287  #
2288  def angle_with(v)
2289    raise TypeError, "Expected a Vector, got a #{v.class}" unless v.is_a?(Vector)
2290    Vector.Raise ErrDimensionMismatch if size != v.size
2291    prod = magnitude * v.magnitude
2292    raise ZeroVectorError, "Can't get angle of zero vector" if prod == 0
2293    dot = inner_product(v)
2294    if dot.abs >= prod
2295      dot.positive? ? 0 : Math::PI
2296    else
2297      Math.acos(dot / prod)
2298    end
2299  end
2300
2301  #--
2302  # CONVERTING
2303  #++
2304
2305  #
2306  # Creates a single-row matrix from this vector.
2307  #
2308  def covector
2309    Matrix.row_vector(self)
2310  end
2311
2312  #
2313  # Returns the elements of the vector in an array.
2314  #
2315  def to_a
2316    @elements.dup
2317  end
2318
2319  #
2320  # Return a single-column matrix from this vector
2321  #
2322  def to_matrix
2323    Matrix.column_vector(self)
2324  end
2325
2326  def elements_to_f
2327    warn "Vector#elements_to_f is deprecated", uplevel: 1
2328    map(&:to_f)
2329  end
2330
2331  def elements_to_i
2332    warn "Vector#elements_to_i is deprecated", uplevel: 1
2333    map(&:to_i)
2334  end
2335
2336  def elements_to_r
2337    warn "Vector#elements_to_r is deprecated", uplevel: 1
2338    map(&:to_r)
2339  end
2340
2341  #
2342  # The coerce method provides support for Ruby type coercion.
2343  # This coercion mechanism is used by Ruby to handle mixed-type
2344  # numeric operations: it is intended to find a compatible common
2345  # type between the two operands of the operator.
2346  # See also Numeric#coerce.
2347  #
2348  def coerce(other)
2349    case other
2350    when Numeric
2351      return Matrix::Scalar.new(other), self
2352    else
2353      raise TypeError, "#{self.class} can't be coerced into #{other.class}"
2354    end
2355  end
2356
2357  #--
2358  # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-
2359  #++
2360
2361  #
2362  # Overrides Object#to_s
2363  #
2364  def to_s
2365    "Vector[" + @elements.join(", ") + "]"
2366  end
2367
2368  #
2369  # Overrides Object#inspect
2370  #
2371  def inspect
2372    "Vector" + @elements.inspect
2373  end
2374end
2375