1 //! Windows SEH
2 //!
3 //! On Windows (currently only on MSVC), the default exception handling
4 //! mechanism is Structured Exception Handling (SEH). This is quite different
5 //! than Dwarf-based exception handling (e.g., what other unix platforms use) in
6 //! terms of compiler internals, so LLVM is required to have a good deal of
7 //! extra support for SEH.
8 //!
9 //! In a nutshell, what happens here is:
10 //!
11 //! 1. The `panic` function calls the standard Windows function
12 //!    `_CxxThrowException` to throw a C++-like exception, triggering the
13 //!    unwinding process.
14 //! 2. All landing pads generated by the compiler use the personality function
15 //!    `__CxxFrameHandler3`, a function in the CRT, and the unwinding code in
16 //!    Windows will use this personality function to execute all cleanup code on
17 //!    the stack.
18 //! 3. All compiler-generated calls to `invoke` have a landing pad set as a
19 //!    `cleanuppad` LLVM instruction, which indicates the start of the cleanup
20 //!    routine. The personality (in step 2, defined in the CRT) is responsible
21 //!    for running the cleanup routines.
22 //! 4. Eventually the "catch" code in the `try` intrinsic (generated by the
23 //!    compiler) is executed and indicates that control should come back to
24 //!    Rust. This is done via a `catchswitch` plus a `catchpad` instruction in
25 //!    LLVM IR terms, finally returning normal control to the program with a
26 //!    `catchret` instruction.
27 //!
28 //! Some specific differences from the gcc-based exception handling are:
29 //!
30 //! * Rust has no custom personality function, it is instead *always*
31 //!   `__CxxFrameHandler3`. Additionally, no extra filtering is performed, so we
32 //!   end up catching any C++ exceptions that happen to look like the kind we're
33 //!   throwing. Note that throwing an exception into Rust is undefined behavior
34 //!   anyway, so this should be fine.
35 //! * We've got some data to transmit across the unwinding boundary,
36 //!   specifically a `Box<dyn Any + Send>`. Like with Dwarf exceptions
37 //!   these two pointers are stored as a payload in the exception itself. On
38 //!   MSVC, however, there's no need for an extra heap allocation because the
39 //!   call stack is preserved while filter functions are being executed. This
40 //!   means that the pointers are passed directly to `_CxxThrowException` which
41 //!   are then recovered in the filter function to be written to the stack frame
42 //!   of the `try` intrinsic.
43 //!
44 //! [win64]: https://docs.microsoft.com/en-us/cpp/build/exception-handling-x64
45 //! [llvm]: https://llvm.org/docs/ExceptionHandling.html#background-on-windows-exceptions
46 
47 #![allow(nonstandard_style)]
48 
49 use alloc::boxed::Box;
50 use core::any::Any;
51 use core::mem::{self, ManuallyDrop};
52 use libc::{c_int, c_uint, c_void};
53 
54 struct Exception {
55     // This needs to be an Option because we catch the exception by reference
56     // and its destructor is executed by the C++ runtime. When we take the Box
57     // out of the exception, we need to leave the exception in a valid state
58     // for its destructor to run without double-dropping the Box.
59     data: Option<Box<dyn Any + Send>>,
60 }
61 
62 // First up, a whole bunch of type definitions. There's a few platform-specific
63 // oddities here, and a lot that's just blatantly copied from LLVM. The purpose
64 // of all this is to implement the `panic` function below through a call to
65 // `_CxxThrowException`.
66 //
67 // This function takes two arguments. The first is a pointer to the data we're
68 // passing in, which in this case is our trait object. Pretty easy to find! The
69 // next, however, is more complicated. This is a pointer to a `_ThrowInfo`
70 // structure, and it generally is just intended to just describe the exception
71 // being thrown.
72 //
73 // Currently the definition of this type [1] is a little hairy, and the main
74 // oddity (and difference from the online article) is that on 32-bit the
75 // pointers are pointers but on 64-bit the pointers are expressed as 32-bit
76 // offsets from the `__ImageBase` symbol. The `ptr_t` and `ptr!` macro in the
77 // modules below are used to express this.
78 //
79 // The maze of type definitions also closely follows what LLVM emits for this
80 // sort of operation. For example, if you compile this C++ code on MSVC and emit
81 // the LLVM IR:
82 //
83 //      #include <stdint.h>
84 //
85 //      struct rust_panic {
86 //          rust_panic(const rust_panic&);
87 //          ~rust_panic();
88 //
89 //          uint64_t x[2];
90 //      };
91 //
92 //      void foo() {
93 //          rust_panic a = {0, 1};
94 //          throw a;
95 //      }
96 //
97 // That's essentially what we're trying to emulate. Most of the constant values
98 // below were just copied from LLVM,
99 //
100 // In any case, these structures are all constructed in a similar manner, and
101 // it's just somewhat verbose for us.
102 //
103 // [1]: https://www.geoffchappell.com/studies/msvc/language/predefined/
104 
105 #[cfg(target_arch = "x86")]
106 #[macro_use]
107 mod imp {
108     pub type ptr_t = *mut u8;
109 
110     macro_rules! ptr {
111         (0) => {
112             core::ptr::null_mut()
113         };
114         ($e:expr) => {
115             $e as *mut u8
116         };
117     }
118 }
119 
120 #[cfg(not(target_arch = "x86"))]
121 #[macro_use]
122 mod imp {
123     pub type ptr_t = u32;
124 
125     extern "C" {
126         pub static __ImageBase: u8;
127     }
128 
129     macro_rules! ptr {
130         (0) => (0);
131         ($e:expr) => {
132             (($e as usize) - (&imp::__ImageBase as *const _ as usize)) as u32
133         }
134     }
135 }
136 
137 #[repr(C)]
138 pub struct _ThrowInfo {
139     pub attributes: c_uint,
140     pub pmfnUnwind: imp::ptr_t,
141     pub pForwardCompat: imp::ptr_t,
142     pub pCatchableTypeArray: imp::ptr_t,
143 }
144 
145 #[repr(C)]
146 pub struct _CatchableTypeArray {
147     pub nCatchableTypes: c_int,
148     pub arrayOfCatchableTypes: [imp::ptr_t; 1],
149 }
150 
151 #[repr(C)]
152 pub struct _CatchableType {
153     pub properties: c_uint,
154     pub pType: imp::ptr_t,
155     pub thisDisplacement: _PMD,
156     pub sizeOrOffset: c_int,
157     pub copyFunction: imp::ptr_t,
158 }
159 
160 #[repr(C)]
161 pub struct _PMD {
162     pub mdisp: c_int,
163     pub pdisp: c_int,
164     pub vdisp: c_int,
165 }
166 
167 #[repr(C)]
168 pub struct _TypeDescriptor {
169     pub pVFTable: *const u8,
170     pub spare: *mut u8,
171     pub name: [u8; 11],
172 }
173 
174 // Note that we intentionally ignore name mangling rules here: we don't want C++
175 // to be able to catch Rust panics by simply declaring a `struct rust_panic`.
176 //
177 // When modifying, make sure that the type name string exactly matches
178 // the one used in `compiler/rustc_codegen_llvm/src/intrinsic.rs`.
179 const TYPE_NAME: [u8; 11] = *b"rust_panic\0";
180 
181 static mut THROW_INFO: _ThrowInfo = _ThrowInfo {
182     attributes: 0,
183     pmfnUnwind: ptr!(0),
184     pForwardCompat: ptr!(0),
185     pCatchableTypeArray: ptr!(0),
186 };
187 
188 static mut CATCHABLE_TYPE_ARRAY: _CatchableTypeArray =
189     _CatchableTypeArray { nCatchableTypes: 1, arrayOfCatchableTypes: [ptr!(0)] };
190 
191 static mut CATCHABLE_TYPE: _CatchableType = _CatchableType {
192     properties: 0,
193     pType: ptr!(0),
194     thisDisplacement: _PMD { mdisp: 0, pdisp: -1, vdisp: 0 },
195     sizeOrOffset: mem::size_of::<Exception>() as c_int,
196     copyFunction: ptr!(0),
197 };
198 
199 extern "C" {
200     // The leading `\x01` byte here is actually a magical signal to LLVM to
201     // *not* apply any other mangling like prefixing with a `_` character.
202     //
203     // This symbol is the vtable used by C++'s `std::type_info`. Objects of type
204     // `std::type_info`, type descriptors, have a pointer to this table. Type
205     // descriptors are referenced by the C++ EH structures defined above and
206     // that we construct below.
207     #[link_name = "\x01??_7type_info@@6B@"]
208     static TYPE_INFO_VTABLE: *const u8;
209 }
210 
211 // This type descriptor is only used when throwing an exception. The catch part
212 // is handled by the try intrinsic, which generates its own TypeDescriptor.
213 //
214 // This is fine since the MSVC runtime uses string comparison on the type name
215 // to match TypeDescriptors rather than pointer equality.
216 static mut TYPE_DESCRIPTOR: _TypeDescriptor = _TypeDescriptor {
217     pVFTable: unsafe { &TYPE_INFO_VTABLE } as *const _ as *const _,
218     spare: core::ptr::null_mut(),
219     name: TYPE_NAME,
220 };
221 
222 // Destructor used if the C++ code decides to capture the exception and drop it
223 // without propagating it. The catch part of the try intrinsic will set the
224 // first word of the exception object to 0 so that it is skipped by the
225 // destructor.
226 //
227 // Note that x86 Windows uses the "thiscall" calling convention for C++ member
228 // functions instead of the default "C" calling convention.
229 //
230 // The exception_copy function is a bit special here: it is invoked by the MSVC
231 // runtime under a try/catch block and the panic that we generate here will be
232 // used as the result of the exception copy. This is used by the C++ runtime to
233 // support capturing exceptions with std::exception_ptr, which we can't support
234 // because Box<dyn Any> isn't clonable.
235 macro_rules! define_cleanup {
236     ($abi:tt $abi2:tt) => {
237         unsafe extern $abi fn exception_cleanup(e: *mut Exception) {
238             if let Exception { data: Some(b) } = e.read() {
239                 drop(b);
240                 super::__rust_drop_panic();
241             }
242         }
243         unsafe extern $abi2 fn exception_copy(_dest: *mut Exception,
244                                              _src: *mut Exception)
245                                              -> *mut Exception {
246             panic!("Rust panics cannot be copied");
247         }
248     }
249 }
250 cfg_if::cfg_if! {
251    if #[cfg(target_arch = "x86")] {
252        define_cleanup!("thiscall" "thiscall-unwind");
253    } else {
254        define_cleanup!("C" "C-unwind");
255    }
256 }
257 
panic(data: Box<dyn Any + Send>) -> u32258 pub unsafe fn panic(data: Box<dyn Any + Send>) -> u32 {
259     use core::intrinsics::atomic_store;
260 
261     // _CxxThrowException executes entirely on this stack frame, so there's no
262     // need to otherwise transfer `data` to the heap. We just pass a stack
263     // pointer to this function.
264     //
265     // The ManuallyDrop is needed here since we don't want Exception to be
266     // dropped when unwinding. Instead it will be dropped by exception_cleanup
267     // which is invoked by the C++ runtime.
268     let mut exception = ManuallyDrop::new(Exception { data: Some(data) });
269     let throw_ptr = &mut exception as *mut _ as *mut _;
270 
271     // This... may seems surprising, and justifiably so. On 32-bit MSVC the
272     // pointers between these structure are just that, pointers. On 64-bit MSVC,
273     // however, the pointers between structures are rather expressed as 32-bit
274     // offsets from `__ImageBase`.
275     //
276     // Consequently, on 32-bit MSVC we can declare all these pointers in the
277     // `static`s above. On 64-bit MSVC, we would have to express subtraction of
278     // pointers in statics, which Rust does not currently allow, so we can't
279     // actually do that.
280     //
281     // The next best thing, then is to fill in these structures at runtime
282     // (panicking is already the "slow path" anyway). So here we reinterpret all
283     // of these pointer fields as 32-bit integers and then store the
284     // relevant value into it (atomically, as concurrent panics may be
285     // happening). Technically the runtime will probably do a nonatomic read of
286     // these fields, but in theory they never read the *wrong* value so it
287     // shouldn't be too bad...
288     //
289     // In any case, we basically need to do something like this until we can
290     // express more operations in statics (and we may never be able to).
291     atomic_store(&mut THROW_INFO.pmfnUnwind as *mut _ as *mut u32, ptr!(exception_cleanup) as u32);
292     atomic_store(
293         &mut THROW_INFO.pCatchableTypeArray as *mut _ as *mut u32,
294         ptr!(&CATCHABLE_TYPE_ARRAY as *const _) as u32,
295     );
296     atomic_store(
297         &mut CATCHABLE_TYPE_ARRAY.arrayOfCatchableTypes[0] as *mut _ as *mut u32,
298         ptr!(&CATCHABLE_TYPE as *const _) as u32,
299     );
300     atomic_store(
301         &mut CATCHABLE_TYPE.pType as *mut _ as *mut u32,
302         ptr!(&TYPE_DESCRIPTOR as *const _) as u32,
303     );
304     atomic_store(
305         &mut CATCHABLE_TYPE.copyFunction as *mut _ as *mut u32,
306         ptr!(exception_copy) as u32,
307     );
308 
309     extern "system-unwind" {
310         fn _CxxThrowException(pExceptionObject: *mut c_void, pThrowInfo: *mut u8) -> !;
311     }
312 
313     _CxxThrowException(throw_ptr, &mut THROW_INFO as *mut _ as *mut _);
314 }
315 
cleanup(payload: *mut u8) -> Box<dyn Any + Send>316 pub unsafe fn cleanup(payload: *mut u8) -> Box<dyn Any + Send> {
317     // A null payload here means that we got here from the catch (...) of
318     // __rust_try. This happens when a non-Rust foreign exception is caught.
319     if payload.is_null() {
320         super::__rust_foreign_exception();
321     } else {
322         let exception = &mut *(payload as *mut Exception);
323         exception.data.take().unwrap()
324     }
325 }
326 
327 // This is required by the compiler to exist (e.g., it's a lang item), but
328 // it's never actually called by the compiler because __C_specific_handler
329 // or _except_handler3 is the personality function that is always used.
330 // Hence this is just an aborting stub.
331 #[lang = "eh_personality"]
332 #[cfg(not(test))]
rust_eh_personality()333 fn rust_eh_personality() {
334     core::intrinsics::abort()
335 }
336