1 // RUN: %clang_cc1 -std=c++11 -fsyntax-only -verify %s
2 
3 // rdar://13784901
4 
5 struct S0 {
6   int x;
7   static const int test0 = __alignof__(x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
8   static const int test1 = __alignof__(S0::x); // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
9   auto test2() -> char(&)[__alignof__(x)]; // expected-error {{invalid application of 'alignof' to a field of a class still being defined}}
10 };
11 
12 struct S1; // expected-note 6 {{forward declaration}}
13 extern S1 s1;
14 const int test3 = __alignof__(s1); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
15 
16 struct S2 {
17   S2();
18   S1 &s;
19   int x;
20 
21   int test4 = __alignof__(x); // ok
22   int test5 = __alignof__(s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
23 };
24 
25 const int test6 = __alignof__(S2::x);
26 const int test7 = __alignof__(S2::s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
27 
28 // Arguably, these should fail like the S1 cases do: the alignment of
29 // 's2.x' should depend on the alignment of both x-within-S2 and
30 // s2-within-S3 and thus require 'S3' to be complete.  If we start
31 // doing the appropriate recursive walk to do that, we should make
32 // sure that these cases don't explode.
33 struct S3 {
34   S2 s2;
35 
36   static const int test8 = __alignof__(s2.x);
37   static const int test9 = __alignof__(s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
38   auto test10() -> char(&)[__alignof__(s2.x)];
39   static const int test11 = __alignof__(S3::s2.x);
40   static const int test12 = __alignof__(S3::s2.s); // expected-error {{invalid application of '__alignof' to an incomplete type 'S1'}}
41   auto test13() -> char(&)[__alignof__(s2.x)];
42 };
43 
44 // Same reasoning as S3.
45 struct S4 {
46   union {
47     int x;
48   };
49   static const int test0 = __alignof__(x);
50   static const int test1 = __alignof__(S0::x);
51   auto test2() -> char(&)[__alignof__(x)];
52 };
53 
54 // Regression test for asking for the alignment of a field within an invalid
55 // record.
56 struct S5 {
57   S1 s;  // expected-error {{incomplete type}}
58   int x;
59 };
60 const int test8 = __alignof__(S5::x);
61 
62 int test14[2];
63 
64 static_assert(alignof(test14) == 4, "foo"); // expected-warning {{'alignof' applied to an expression is a GNU extension}}
65 
66 // PR19992
67 static_assert(alignof(int[]) == alignof(int), ""); // ok
68 
69 namespace alignof_array_expr {
70   alignas(32) extern int n[];
71   static_assert(alignof(n) == 32, ""); // expected-warning {{GNU extension}}
72 
73   template<int> struct S {
74     static int a[];
75   };
76   template<int N> int S<N>::a[N];
77   // ok, does not complete type of S<-1>::a
78   static_assert(alignof(S<-1>::a) == alignof(int), ""); // expected-warning {{GNU extension}}
79 }
80 
n(T)81 template <typename T> void n(T) {
82   alignas(T) int T1;
83   char k[__alignof__(T1)];
84   static_assert(sizeof(k) == alignof(long long), "");
85 }
86 template void n(long long);
87 
88 namespace PR22042 {
89 template <typename T>
Fun(T A)90 void Fun(T A) {
91   typedef int __attribute__((__aligned__(A))) T1; // expected-error {{requested alignment is dependent but declaration is not dependent}}
92   int k1[__alignof__(T1)];
93 }
94 
95 template <int N>
96 struct S {
97   typedef __attribute__((aligned(N))) int Field[sizeof(N)]; // expected-error {{requested alignment is dependent but declaration is not dependent}}
98 };
99 }
100 
101 typedef int __attribute__((aligned(16))) aligned_int;
102 template <typename>
103 using template_alias = aligned_int;
104 static_assert(alignof(template_alias<void>) == 16, "Expected alignment of 16" );
105 
106 struct PR47138 {
107   invalid_type a; // expected-error {{unknown type}}
108 };
109 static_assert(__alignof__(PR47138) == 1, ""); // Don't crash.
110