1 //===- llvm/IR/Metadata.h - Metadata definitions ----------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// @file
10 /// This file contains the declarations for metadata subclasses.
11 /// They represent the different flavors of metadata that live in LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_IR_METADATA_H
16 #define LLVM_IR_METADATA_H
17 
18 #include "llvm/ADT/ArrayRef.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/DenseMapInfo.h"
21 #include "llvm/ADT/None.h"
22 #include "llvm/ADT/PointerUnion.h"
23 #include "llvm/ADT/STLExtras.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringMap.h"
26 #include "llvm/ADT/StringRef.h"
27 #include "llvm/ADT/ilist_node.h"
28 #include "llvm/ADT/iterator_range.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/LLVMContext.h"
31 #include "llvm/IR/Value.h"
32 #include "llvm/Support/CBindingWrapping.h"
33 #include "llvm/Support/Casting.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include <cassert>
36 #include <cstddef>
37 #include <cstdint>
38 #include <iterator>
39 #include <memory>
40 #include <string>
41 #include <type_traits>
42 #include <utility>
43 
44 namespace llvm {
45 
46 class Module;
47 class ModuleSlotTracker;
48 class raw_ostream;
49 class Type;
50 
51 enum LLVMConstants : uint32_t {
52   DEBUG_METADATA_VERSION = 3 // Current debug info version number.
53 };
54 
55 /// Magic number in the value profile metadata showing a target has been
56 /// promoted for the instruction and shouldn't be promoted again.
57 const uint64_t NOMORE_ICP_MAGICNUM = -1;
58 
59 /// Root of the metadata hierarchy.
60 ///
61 /// This is a root class for typeless data in the IR.
62 class Metadata {
63   friend class ReplaceableMetadataImpl;
64 
65   /// RTTI.
66   const unsigned char SubclassID;
67 
68 protected:
69   /// Active type of storage.
70   enum StorageType { Uniqued, Distinct, Temporary };
71 
72   /// Storage flag for non-uniqued, otherwise unowned, metadata.
73   unsigned char Storage : 7;
74 
75   unsigned char SubclassData1 : 1;
76   unsigned short SubclassData16 = 0;
77   unsigned SubclassData32 = 0;
78 
79 public:
80   enum MetadataKind {
81 #define HANDLE_METADATA_LEAF(CLASS) CLASS##Kind,
82 #include "llvm/IR/Metadata.def"
83   };
84 
85 protected:
Metadata(unsigned ID,StorageType Storage)86   Metadata(unsigned ID, StorageType Storage)
87       : SubclassID(ID), Storage(Storage), SubclassData1(false) {
88     static_assert(sizeof(*this) == 8, "Metadata fields poorly packed");
89   }
90 
91   ~Metadata() = default;
92 
93   /// Default handling of a changed operand, which asserts.
94   ///
95   /// If subclasses pass themselves in as owners to a tracking node reference,
96   /// they must provide an implementation of this method.
handleChangedOperand(void *,Metadata *)97   void handleChangedOperand(void *, Metadata *) {
98     llvm_unreachable("Unimplemented in Metadata subclass");
99   }
100 
101 public:
getMetadataID()102   unsigned getMetadataID() const { return SubclassID; }
103 
104   /// User-friendly dump.
105   ///
106   /// If \c M is provided, metadata nodes will be numbered canonically;
107   /// otherwise, pointer addresses are substituted.
108   ///
109   /// Note: this uses an explicit overload instead of default arguments so that
110   /// the nullptr version is easy to call from a debugger.
111   ///
112   /// @{
113   void dump() const;
114   void dump(const Module *M) const;
115   /// @}
116 
117   /// Print.
118   ///
119   /// Prints definition of \c this.
120   ///
121   /// If \c M is provided, metadata nodes will be numbered canonically;
122   /// otherwise, pointer addresses are substituted.
123   /// @{
124   void print(raw_ostream &OS, const Module *M = nullptr,
125              bool IsForDebug = false) const;
126   void print(raw_ostream &OS, ModuleSlotTracker &MST, const Module *M = nullptr,
127              bool IsForDebug = false) const;
128   /// @}
129 
130   /// Print as operand.
131   ///
132   /// Prints reference of \c this.
133   ///
134   /// If \c M is provided, metadata nodes will be numbered canonically;
135   /// otherwise, pointer addresses are substituted.
136   /// @{
137   void printAsOperand(raw_ostream &OS, const Module *M = nullptr) const;
138   void printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
139                       const Module *M = nullptr) const;
140   /// @}
141 };
142 
143 // Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata,LLVMMetadataRef)144 DEFINE_ISA_CONVERSION_FUNCTIONS(Metadata, LLVMMetadataRef)
145 
146 // Specialized opaque metadata conversions.
147 inline Metadata **unwrap(LLVMMetadataRef *MDs) {
148   return reinterpret_cast<Metadata**>(MDs);
149 }
150 
151 #define HANDLE_METADATA(CLASS) class CLASS;
152 #include "llvm/IR/Metadata.def"
153 
154 // Provide specializations of isa so that we don't need definitions of
155 // subclasses to see if the metadata is a subclass.
156 #define HANDLE_METADATA_LEAF(CLASS)                                            \
157   template <> struct isa_impl<CLASS, Metadata> {                               \
158     static inline bool doit(const Metadata &MD) {                              \
159       return MD.getMetadataID() == Metadata::CLASS##Kind;                      \
160     }                                                                          \
161   };
162 #include "llvm/IR/Metadata.def"
163 
164 inline raw_ostream &operator<<(raw_ostream &OS, const Metadata &MD) {
165   MD.print(OS);
166   return OS;
167 }
168 
169 /// Metadata wrapper in the Value hierarchy.
170 ///
171 /// A member of the \a Value hierarchy to represent a reference to metadata.
172 /// This allows, e.g., instrinsics to have metadata as operands.
173 ///
174 /// Notably, this is the only thing in either hierarchy that is allowed to
175 /// reference \a LocalAsMetadata.
176 class MetadataAsValue : public Value {
177   friend class ReplaceableMetadataImpl;
178   friend class LLVMContextImpl;
179 
180   Metadata *MD;
181 
182   MetadataAsValue(Type *Ty, Metadata *MD);
183 
184   /// Drop use of metadata (during teardown).
dropUse()185   void dropUse() { MD = nullptr; }
186 
187 public:
188   ~MetadataAsValue();
189 
190   static MetadataAsValue *get(LLVMContext &Context, Metadata *MD);
191   static MetadataAsValue *getIfExists(LLVMContext &Context, Metadata *MD);
192 
getMetadata()193   Metadata *getMetadata() const { return MD; }
194 
classof(const Value * V)195   static bool classof(const Value *V) {
196     return V->getValueID() == MetadataAsValueVal;
197   }
198 
199 private:
200   void handleChangedMetadata(Metadata *MD);
201   void track();
202   void untrack();
203 };
204 
205 /// API for tracking metadata references through RAUW and deletion.
206 ///
207 /// Shared API for updating \a Metadata pointers in subclasses that support
208 /// RAUW.
209 ///
210 /// This API is not meant to be used directly.  See \a TrackingMDRef for a
211 /// user-friendly tracking reference.
212 class MetadataTracking {
213 public:
214   /// Track the reference to metadata.
215   ///
216   /// Register \c MD with \c *MD, if the subclass supports tracking.  If \c *MD
217   /// gets RAUW'ed, \c MD will be updated to the new address.  If \c *MD gets
218   /// deleted, \c MD will be set to \c nullptr.
219   ///
220   /// If tracking isn't supported, \c *MD will not change.
221   ///
222   /// \return true iff tracking is supported by \c MD.
track(Metadata * & MD)223   static bool track(Metadata *&MD) {
224     return track(&MD, *MD, static_cast<Metadata *>(nullptr));
225   }
226 
227   /// Track the reference to metadata for \a Metadata.
228   ///
229   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
230   /// tell it that its operand changed.  This could trigger \c Owner being
231   /// re-uniqued.
track(void * Ref,Metadata & MD,Metadata & Owner)232   static bool track(void *Ref, Metadata &MD, Metadata &Owner) {
233     return track(Ref, MD, &Owner);
234   }
235 
236   /// Track the reference to metadata for \a MetadataAsValue.
237   ///
238   /// As \a track(Metadata*&), but with support for calling back to \c Owner to
239   /// tell it that its operand changed.  This could trigger \c Owner being
240   /// re-uniqued.
track(void * Ref,Metadata & MD,MetadataAsValue & Owner)241   static bool track(void *Ref, Metadata &MD, MetadataAsValue &Owner) {
242     return track(Ref, MD, &Owner);
243   }
244 
245   /// Stop tracking a reference to metadata.
246   ///
247   /// Stops \c *MD from tracking \c MD.
untrack(Metadata * & MD)248   static void untrack(Metadata *&MD) { untrack(&MD, *MD); }
249   static void untrack(void *Ref, Metadata &MD);
250 
251   /// Move tracking from one reference to another.
252   ///
253   /// Semantically equivalent to \c untrack(MD) followed by \c track(New),
254   /// except that ownership callbacks are maintained.
255   ///
256   /// Note: it is an error if \c *MD does not equal \c New.
257   ///
258   /// \return true iff tracking is supported by \c MD.
retrack(Metadata * & MD,Metadata * & New)259   static bool retrack(Metadata *&MD, Metadata *&New) {
260     return retrack(&MD, *MD, &New);
261   }
262   static bool retrack(void *Ref, Metadata &MD, void *New);
263 
264   /// Check whether metadata is replaceable.
265   static bool isReplaceable(const Metadata &MD);
266 
267   using OwnerTy = PointerUnion<MetadataAsValue *, Metadata *>;
268 
269 private:
270   /// Track a reference to metadata for an owner.
271   ///
272   /// Generalized version of tracking.
273   static bool track(void *Ref, Metadata &MD, OwnerTy Owner);
274 };
275 
276 /// Shared implementation of use-lists for replaceable metadata.
277 ///
278 /// Most metadata cannot be RAUW'ed.  This is a shared implementation of
279 /// use-lists and associated API for the two that support it (\a ValueAsMetadata
280 /// and \a TempMDNode).
281 class ReplaceableMetadataImpl {
282   friend class MetadataTracking;
283 
284 public:
285   using OwnerTy = MetadataTracking::OwnerTy;
286 
287 private:
288   LLVMContext &Context;
289   uint64_t NextIndex = 0;
290   SmallDenseMap<void *, std::pair<OwnerTy, uint64_t>, 4> UseMap;
291 
292 public:
ReplaceableMetadataImpl(LLVMContext & Context)293   ReplaceableMetadataImpl(LLVMContext &Context) : Context(Context) {}
294 
~ReplaceableMetadataImpl()295   ~ReplaceableMetadataImpl() {
296     assert(UseMap.empty() && "Cannot destroy in-use replaceable metadata");
297   }
298 
getContext()299   LLVMContext &getContext() const { return Context; }
300 
301   /// Replace all uses of this with MD.
302   ///
303   /// Replace all uses of this with \c MD, which is allowed to be null.
304   void replaceAllUsesWith(Metadata *MD);
305 
306   /// Returns the list of all DIArgList users of this.
307   SmallVector<Metadata *> getAllArgListUsers();
308 
309   /// Resolve all uses of this.
310   ///
311   /// Resolve all uses of this, turning off RAUW permanently.  If \c
312   /// ResolveUsers, call \a MDNode::resolve() on any users whose last operand
313   /// is resolved.
314   void resolveAllUses(bool ResolveUsers = true);
315 
316 private:
317   void addRef(void *Ref, OwnerTy Owner);
318   void dropRef(void *Ref);
319   void moveRef(void *Ref, void *New, const Metadata &MD);
320 
321   /// Lazily construct RAUW support on MD.
322   ///
323   /// If this is an unresolved MDNode, RAUW support will be created on-demand.
324   /// ValueAsMetadata always has RAUW support.
325   static ReplaceableMetadataImpl *getOrCreate(Metadata &MD);
326 
327   /// Get RAUW support on MD, if it exists.
328   static ReplaceableMetadataImpl *getIfExists(Metadata &MD);
329 
330   /// Check whether this node will support RAUW.
331   ///
332   /// Returns \c true unless getOrCreate() would return null.
333   static bool isReplaceable(const Metadata &MD);
334 };
335 
336 /// Value wrapper in the Metadata hierarchy.
337 ///
338 /// This is a custom value handle that allows other metadata to refer to
339 /// classes in the Value hierarchy.
340 ///
341 /// Because of full uniquing support, each value is only wrapped by a single \a
342 /// ValueAsMetadata object, so the lookup maps are far more efficient than
343 /// those using ValueHandleBase.
344 class ValueAsMetadata : public Metadata, ReplaceableMetadataImpl {
345   friend class ReplaceableMetadataImpl;
346   friend class LLVMContextImpl;
347 
348   Value *V;
349 
350   /// Drop users without RAUW (during teardown).
dropUsers()351   void dropUsers() {
352     ReplaceableMetadataImpl::resolveAllUses(/* ResolveUsers */ false);
353   }
354 
355 protected:
ValueAsMetadata(unsigned ID,Value * V)356   ValueAsMetadata(unsigned ID, Value *V)
357       : Metadata(ID, Uniqued), ReplaceableMetadataImpl(V->getContext()), V(V) {
358     assert(V && "Expected valid value");
359   }
360 
361   ~ValueAsMetadata() = default;
362 
363 public:
364   static ValueAsMetadata *get(Value *V);
365 
getConstant(Value * C)366   static ConstantAsMetadata *getConstant(Value *C) {
367     return cast<ConstantAsMetadata>(get(C));
368   }
369 
getLocal(Value * Local)370   static LocalAsMetadata *getLocal(Value *Local) {
371     return cast<LocalAsMetadata>(get(Local));
372   }
373 
374   static ValueAsMetadata *getIfExists(Value *V);
375 
getConstantIfExists(Value * C)376   static ConstantAsMetadata *getConstantIfExists(Value *C) {
377     return cast_or_null<ConstantAsMetadata>(getIfExists(C));
378   }
379 
getLocalIfExists(Value * Local)380   static LocalAsMetadata *getLocalIfExists(Value *Local) {
381     return cast_or_null<LocalAsMetadata>(getIfExists(Local));
382   }
383 
getValue()384   Value *getValue() const { return V; }
getType()385   Type *getType() const { return V->getType(); }
getContext()386   LLVMContext &getContext() const { return V->getContext(); }
387 
getAllArgListUsers()388   SmallVector<Metadata *> getAllArgListUsers() {
389     return ReplaceableMetadataImpl::getAllArgListUsers();
390   }
391 
392   static void handleDeletion(Value *V);
393   static void handleRAUW(Value *From, Value *To);
394 
395 protected:
396   /// Handle collisions after \a Value::replaceAllUsesWith().
397   ///
398   /// RAUW isn't supported directly for \a ValueAsMetadata, but if the wrapped
399   /// \a Value gets RAUW'ed and the target already exists, this is used to
400   /// merge the two metadata nodes.
replaceAllUsesWith(Metadata * MD)401   void replaceAllUsesWith(Metadata *MD) {
402     ReplaceableMetadataImpl::replaceAllUsesWith(MD);
403   }
404 
405 public:
classof(const Metadata * MD)406   static bool classof(const Metadata *MD) {
407     return MD->getMetadataID() == LocalAsMetadataKind ||
408            MD->getMetadataID() == ConstantAsMetadataKind;
409   }
410 };
411 
412 class ConstantAsMetadata : public ValueAsMetadata {
413   friend class ValueAsMetadata;
414 
ConstantAsMetadata(Constant * C)415   ConstantAsMetadata(Constant *C)
416       : ValueAsMetadata(ConstantAsMetadataKind, C) {}
417 
418 public:
get(Constant * C)419   static ConstantAsMetadata *get(Constant *C) {
420     return ValueAsMetadata::getConstant(C);
421   }
422 
getIfExists(Constant * C)423   static ConstantAsMetadata *getIfExists(Constant *C) {
424     return ValueAsMetadata::getConstantIfExists(C);
425   }
426 
getValue()427   Constant *getValue() const {
428     return cast<Constant>(ValueAsMetadata::getValue());
429   }
430 
classof(const Metadata * MD)431   static bool classof(const Metadata *MD) {
432     return MD->getMetadataID() == ConstantAsMetadataKind;
433   }
434 };
435 
436 class LocalAsMetadata : public ValueAsMetadata {
437   friend class ValueAsMetadata;
438 
LocalAsMetadata(Value * Local)439   LocalAsMetadata(Value *Local)
440       : ValueAsMetadata(LocalAsMetadataKind, Local) {
441     assert(!isa<Constant>(Local) && "Expected local value");
442   }
443 
444 public:
get(Value * Local)445   static LocalAsMetadata *get(Value *Local) {
446     return ValueAsMetadata::getLocal(Local);
447   }
448 
getIfExists(Value * Local)449   static LocalAsMetadata *getIfExists(Value *Local) {
450     return ValueAsMetadata::getLocalIfExists(Local);
451   }
452 
classof(const Metadata * MD)453   static bool classof(const Metadata *MD) {
454     return MD->getMetadataID() == LocalAsMetadataKind;
455   }
456 };
457 
458 /// Transitional API for extracting constants from Metadata.
459 ///
460 /// This namespace contains transitional functions for metadata that points to
461 /// \a Constants.
462 ///
463 /// In prehistory -- when metadata was a subclass of \a Value -- \a MDNode
464 /// operands could refer to any \a Value.  There's was a lot of code like this:
465 ///
466 /// \code
467 ///     MDNode *N = ...;
468 ///     auto *CI = dyn_cast<ConstantInt>(N->getOperand(2));
469 /// \endcode
470 ///
471 /// Now that \a Value and \a Metadata are in separate hierarchies, maintaining
472 /// the semantics for \a isa(), \a cast(), \a dyn_cast() (etc.) requires three
473 /// steps: cast in the \a Metadata hierarchy, extraction of the \a Value, and
474 /// cast in the \a Value hierarchy.  Besides creating boiler-plate, this
475 /// requires subtle control flow changes.
476 ///
477 /// The end-goal is to create a new type of metadata, called (e.g.) \a MDInt,
478 /// so that metadata can refer to numbers without traversing a bridge to the \a
479 /// Value hierarchy.  In this final state, the code above would look like this:
480 ///
481 /// \code
482 ///     MDNode *N = ...;
483 ///     auto *MI = dyn_cast<MDInt>(N->getOperand(2));
484 /// \endcode
485 ///
486 /// The API in this namespace supports the transition.  \a MDInt doesn't exist
487 /// yet, and even once it does, changing each metadata schema to use it is its
488 /// own mini-project.  In the meantime this API prevents us from introducing
489 /// complex and bug-prone control flow that will disappear in the end.  In
490 /// particular, the above code looks like this:
491 ///
492 /// \code
493 ///     MDNode *N = ...;
494 ///     auto *CI = mdconst::dyn_extract<ConstantInt>(N->getOperand(2));
495 /// \endcode
496 ///
497 /// The full set of provided functions includes:
498 ///
499 ///   mdconst::hasa                <=> isa
500 ///   mdconst::extract             <=> cast
501 ///   mdconst::extract_or_null     <=> cast_or_null
502 ///   mdconst::dyn_extract         <=> dyn_cast
503 ///   mdconst::dyn_extract_or_null <=> dyn_cast_or_null
504 ///
505 /// The target of the cast must be a subclass of \a Constant.
506 namespace mdconst {
507 
508 namespace detail {
509 
510 template <class T> T &make();
511 template <class T, class Result> struct HasDereference {
512   using Yes = char[1];
513   using No = char[2];
514   template <size_t N> struct SFINAE {};
515 
516   template <class U, class V>
517   static Yes &hasDereference(SFINAE<sizeof(static_cast<V>(*make<U>()))> * = 0);
518   template <class U, class V> static No &hasDereference(...);
519 
520   static const bool value =
521       sizeof(hasDereference<T, Result>(nullptr)) == sizeof(Yes);
522 };
523 template <class V, class M> struct IsValidPointer {
524   static const bool value = std::is_base_of<Constant, V>::value &&
525                             HasDereference<M, const Metadata &>::value;
526 };
527 template <class V, class M> struct IsValidReference {
528   static const bool value = std::is_base_of<Constant, V>::value &&
529                             std::is_convertible<M, const Metadata &>::value;
530 };
531 
532 } // end namespace detail
533 
534 /// Check whether Metadata has a Value.
535 ///
536 /// As an analogue to \a isa(), check whether \c MD has an \a Value inside of
537 /// type \c X.
538 template <class X, class Y>
539 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, bool>
hasa(Y && MD)540 hasa(Y &&MD) {
541   assert(MD && "Null pointer sent into hasa");
542   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
543     return isa<X>(V->getValue());
544   return false;
545 }
546 template <class X, class Y>
547 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, bool>
hasa(Y & MD)548 hasa(Y &MD) {
549   return hasa(&MD);
550 }
551 
552 /// Extract a Value from Metadata.
553 ///
554 /// As an analogue to \a cast(), extract the \a Value subclass \c X from \c MD.
555 template <class X, class Y>
556 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract(Y && MD)557 extract(Y &&MD) {
558   return cast<X>(cast<ConstantAsMetadata>(MD)->getValue());
559 }
560 template <class X, class Y>
561 inline std::enable_if_t<detail::IsValidReference<X, Y &>::value, X *>
extract(Y & MD)562 extract(Y &MD) {
563   return extract(&MD);
564 }
565 
566 /// Extract a Value from Metadata, allowing null.
567 ///
568 /// As an analogue to \a cast_or_null(), extract the \a Value subclass \c X
569 /// from \c MD, allowing \c MD to be null.
570 template <class X, class Y>
571 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
extract_or_null(Y && MD)572 extract_or_null(Y &&MD) {
573   if (auto *V = cast_or_null<ConstantAsMetadata>(MD))
574     return cast<X>(V->getValue());
575   return nullptr;
576 }
577 
578 /// Extract a Value from Metadata, if any.
579 ///
580 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
581 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
582 /// Value it does contain is of the wrong subclass.
583 template <class X, class Y>
584 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract(Y && MD)585 dyn_extract(Y &&MD) {
586   if (auto *V = dyn_cast<ConstantAsMetadata>(MD))
587     return dyn_cast<X>(V->getValue());
588   return nullptr;
589 }
590 
591 /// Extract a Value from Metadata, if any, allowing null.
592 ///
593 /// As an analogue to \a dyn_cast_or_null(), extract the \a Value subclass \c X
594 /// from \c MD, return null if \c MD doesn't contain a \a Value or if the \a
595 /// Value it does contain is of the wrong subclass, allowing \c MD to be null.
596 template <class X, class Y>
597 inline std::enable_if_t<detail::IsValidPointer<X, Y>::value, X *>
dyn_extract_or_null(Y && MD)598 dyn_extract_or_null(Y &&MD) {
599   if (auto *V = dyn_cast_or_null<ConstantAsMetadata>(MD))
600     return dyn_cast<X>(V->getValue());
601   return nullptr;
602 }
603 
604 } // end namespace mdconst
605 
606 //===----------------------------------------------------------------------===//
607 /// A single uniqued string.
608 ///
609 /// These are used to efficiently contain a byte sequence for metadata.
610 /// MDString is always unnamed.
611 class MDString : public Metadata {
612   friend class StringMapEntryStorage<MDString>;
613 
614   StringMapEntry<MDString> *Entry = nullptr;
615 
MDString()616   MDString() : Metadata(MDStringKind, Uniqued) {}
617 
618 public:
619   MDString(const MDString &) = delete;
620   MDString &operator=(MDString &&) = delete;
621   MDString &operator=(const MDString &) = delete;
622 
623   static MDString *get(LLVMContext &Context, StringRef Str);
get(LLVMContext & Context,const char * Str)624   static MDString *get(LLVMContext &Context, const char *Str) {
625     return get(Context, Str ? StringRef(Str) : StringRef());
626   }
627 
628   StringRef getString() const;
629 
getLength()630   unsigned getLength() const { return (unsigned)getString().size(); }
631 
632   using iterator = StringRef::iterator;
633 
634   /// Pointer to the first byte of the string.
begin()635   iterator begin() const { return getString().begin(); }
636 
637   /// Pointer to one byte past the end of the string.
end()638   iterator end() const { return getString().end(); }
639 
bytes_begin()640   const unsigned char *bytes_begin() const { return getString().bytes_begin(); }
bytes_end()641   const unsigned char *bytes_end() const { return getString().bytes_end(); }
642 
643   /// Methods for support type inquiry through isa, cast, and dyn_cast.
classof(const Metadata * MD)644   static bool classof(const Metadata *MD) {
645     return MD->getMetadataID() == MDStringKind;
646   }
647 };
648 
649 /// A collection of metadata nodes that might be associated with a
650 /// memory access used by the alias-analysis infrastructure.
651 struct AAMDNodes {
652   explicit AAMDNodes() = default;
AAMDNodesAAMDNodes653   explicit AAMDNodes(MDNode *T, MDNode *TS, MDNode *S, MDNode *N)
654       : TBAA(T), TBAAStruct(TS), Scope(S), NoAlias(N) {}
655 
656   bool operator==(const AAMDNodes &A) const {
657     return TBAA == A.TBAA && TBAAStruct == A.TBAAStruct && Scope == A.Scope &&
658            NoAlias == A.NoAlias;
659   }
660 
661   bool operator!=(const AAMDNodes &A) const { return !(*this == A); }
662 
663   explicit operator bool() const {
664     return TBAA || TBAAStruct || Scope || NoAlias;
665   }
666 
667   /// The tag for type-based alias analysis.
668   MDNode *TBAA = nullptr;
669 
670   /// The tag for type-based alias analysis (tbaa struct).
671   MDNode *TBAAStruct = nullptr;
672 
673   /// The tag for alias scope specification (used with noalias).
674   MDNode *Scope = nullptr;
675 
676   /// The tag specifying the noalias scope.
677   MDNode *NoAlias = nullptr;
678 
679   // Shift tbaa Metadata node to start off bytes later
680   static MDNode *shiftTBAA(MDNode *M, size_t off);
681 
682   // Shift tbaa.struct Metadata node to start off bytes later
683   static MDNode *shiftTBAAStruct(MDNode *M, size_t off);
684 
685   /// Given two sets of AAMDNodes that apply to the same pointer,
686   /// give the best AAMDNodes that are compatible with both (i.e. a set of
687   /// nodes whose allowable aliasing conclusions are a subset of those
688   /// allowable by both of the inputs). However, for efficiency
689   /// reasons, do not create any new MDNodes.
intersectAAMDNodes690   AAMDNodes intersect(const AAMDNodes &Other) const {
691     AAMDNodes Result;
692     Result.TBAA = Other.TBAA == TBAA ? TBAA : nullptr;
693     Result.TBAAStruct = Other.TBAAStruct == TBAAStruct ? TBAAStruct : nullptr;
694     Result.Scope = Other.Scope == Scope ? Scope : nullptr;
695     Result.NoAlias = Other.NoAlias == NoAlias ? NoAlias : nullptr;
696     return Result;
697   }
698 
699   /// Create a new AAMDNode that describes this AAMDNode after applying a
700   /// constant offset to the start of the pointer.
shiftAAMDNodes701   AAMDNodes shift(size_t Offset) const {
702     AAMDNodes Result;
703     Result.TBAA = TBAA ? shiftTBAA(TBAA, Offset) : nullptr;
704     Result.TBAAStruct =
705         TBAAStruct ? shiftTBAAStruct(TBAAStruct, Offset) : nullptr;
706     Result.Scope = Scope;
707     Result.NoAlias = NoAlias;
708     return Result;
709   }
710 };
711 
712 // Specialize DenseMapInfo for AAMDNodes.
713 template<>
714 struct DenseMapInfo<AAMDNodes> {
715   static inline AAMDNodes getEmptyKey() {
716     return AAMDNodes(DenseMapInfo<MDNode *>::getEmptyKey(),
717                      nullptr, nullptr, nullptr);
718   }
719 
720   static inline AAMDNodes getTombstoneKey() {
721     return AAMDNodes(DenseMapInfo<MDNode *>::getTombstoneKey(),
722                      nullptr, nullptr, nullptr);
723   }
724 
725   static unsigned getHashValue(const AAMDNodes &Val) {
726     return DenseMapInfo<MDNode *>::getHashValue(Val.TBAA) ^
727            DenseMapInfo<MDNode *>::getHashValue(Val.TBAAStruct) ^
728            DenseMapInfo<MDNode *>::getHashValue(Val.Scope) ^
729            DenseMapInfo<MDNode *>::getHashValue(Val.NoAlias);
730   }
731 
732   static bool isEqual(const AAMDNodes &LHS, const AAMDNodes &RHS) {
733     return LHS == RHS;
734   }
735 };
736 
737 /// Tracking metadata reference owned by Metadata.
738 ///
739 /// Similar to \a TrackingMDRef, but it's expected to be owned by an instance
740 /// of \a Metadata, which has the option of registering itself for callbacks to
741 /// re-unique itself.
742 ///
743 /// In particular, this is used by \a MDNode.
744 class MDOperand {
745   Metadata *MD = nullptr;
746 
747 public:
748   MDOperand() = default;
749   MDOperand(MDOperand &&) = delete;
750   MDOperand(const MDOperand &) = delete;
751   MDOperand &operator=(MDOperand &&) = delete;
752   MDOperand &operator=(const MDOperand &) = delete;
753   ~MDOperand() { untrack(); }
754 
755   Metadata *get() const { return MD; }
756   operator Metadata *() const { return get(); }
757   Metadata *operator->() const { return get(); }
758   Metadata &operator*() const { return *get(); }
759 
760   void reset() {
761     untrack();
762     MD = nullptr;
763   }
764   void reset(Metadata *MD, Metadata *Owner) {
765     untrack();
766     this->MD = MD;
767     track(Owner);
768   }
769 
770 private:
771   void track(Metadata *Owner) {
772     if (MD) {
773       if (Owner)
774         MetadataTracking::track(this, *MD, *Owner);
775       else
776         MetadataTracking::track(MD);
777     }
778   }
779 
780   void untrack() {
781     assert(static_cast<void *>(this) == &MD && "Expected same address");
782     if (MD)
783       MetadataTracking::untrack(MD);
784   }
785 };
786 
787 template <> struct simplify_type<MDOperand> {
788   using SimpleType = Metadata *;
789 
790   static SimpleType getSimplifiedValue(MDOperand &MD) { return MD.get(); }
791 };
792 
793 template <> struct simplify_type<const MDOperand> {
794   using SimpleType = Metadata *;
795 
796   static SimpleType getSimplifiedValue(const MDOperand &MD) { return MD.get(); }
797 };
798 
799 /// Pointer to the context, with optional RAUW support.
800 ///
801 /// Either a raw (non-null) pointer to the \a LLVMContext, or an owned pointer
802 /// to \a ReplaceableMetadataImpl (which has a reference to \a LLVMContext).
803 class ContextAndReplaceableUses {
804   PointerUnion<LLVMContext *, ReplaceableMetadataImpl *> Ptr;
805 
806 public:
807   ContextAndReplaceableUses(LLVMContext &Context) : Ptr(&Context) {}
808   ContextAndReplaceableUses(
809       std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses)
810       : Ptr(ReplaceableUses.release()) {
811     assert(getReplaceableUses() && "Expected non-null replaceable uses");
812   }
813   ContextAndReplaceableUses() = delete;
814   ContextAndReplaceableUses(ContextAndReplaceableUses &&) = delete;
815   ContextAndReplaceableUses(const ContextAndReplaceableUses &) = delete;
816   ContextAndReplaceableUses &operator=(ContextAndReplaceableUses &&) = delete;
817   ContextAndReplaceableUses &
818   operator=(const ContextAndReplaceableUses &) = delete;
819   ~ContextAndReplaceableUses() { delete getReplaceableUses(); }
820 
821   operator LLVMContext &() { return getContext(); }
822 
823   /// Whether this contains RAUW support.
824   bool hasReplaceableUses() const {
825     return Ptr.is<ReplaceableMetadataImpl *>();
826   }
827 
828   LLVMContext &getContext() const {
829     if (hasReplaceableUses())
830       return getReplaceableUses()->getContext();
831     return *Ptr.get<LLVMContext *>();
832   }
833 
834   ReplaceableMetadataImpl *getReplaceableUses() const {
835     if (hasReplaceableUses())
836       return Ptr.get<ReplaceableMetadataImpl *>();
837     return nullptr;
838   }
839 
840   /// Ensure that this has RAUW support, and then return it.
841   ReplaceableMetadataImpl *getOrCreateReplaceableUses() {
842     if (!hasReplaceableUses())
843       makeReplaceable(std::make_unique<ReplaceableMetadataImpl>(getContext()));
844     return getReplaceableUses();
845   }
846 
847   /// Assign RAUW support to this.
848   ///
849   /// Make this replaceable, taking ownership of \c ReplaceableUses (which must
850   /// not be null).
851   void
852   makeReplaceable(std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses) {
853     assert(ReplaceableUses && "Expected non-null replaceable uses");
854     assert(&ReplaceableUses->getContext() == &getContext() &&
855            "Expected same context");
856     delete getReplaceableUses();
857     Ptr = ReplaceableUses.release();
858   }
859 
860   /// Drop RAUW support.
861   ///
862   /// Cede ownership of RAUW support, returning it.
863   std::unique_ptr<ReplaceableMetadataImpl> takeReplaceableUses() {
864     assert(hasReplaceableUses() && "Expected to own replaceable uses");
865     std::unique_ptr<ReplaceableMetadataImpl> ReplaceableUses(
866         getReplaceableUses());
867     Ptr = &ReplaceableUses->getContext();
868     return ReplaceableUses;
869   }
870 };
871 
872 struct TempMDNodeDeleter {
873   inline void operator()(MDNode *Node) const;
874 };
875 
876 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
877   using Temp##CLASS = std::unique_ptr<CLASS, TempMDNodeDeleter>;
878 #define HANDLE_MDNODE_BRANCH(CLASS) HANDLE_MDNODE_LEAF(CLASS)
879 #include "llvm/IR/Metadata.def"
880 
881 /// Metadata node.
882 ///
883 /// Metadata nodes can be uniqued, like constants, or distinct.  Temporary
884 /// metadata nodes (with full support for RAUW) can be used to delay uniquing
885 /// until forward references are known.  The basic metadata node is an \a
886 /// MDTuple.
887 ///
888 /// There is limited support for RAUW at construction time.  At construction
889 /// time, if any operand is a temporary node (or an unresolved uniqued node,
890 /// which indicates a transitive temporary operand), the node itself will be
891 /// unresolved.  As soon as all operands become resolved, it will drop RAUW
892 /// support permanently.
893 ///
894 /// If an unresolved node is part of a cycle, \a resolveCycles() needs
895 /// to be called on some member of the cycle once all temporary nodes have been
896 /// replaced.
897 class MDNode : public Metadata {
898   friend class ReplaceableMetadataImpl;
899   friend class LLVMContextImpl;
900   friend class DIArgList;
901 
902   unsigned NumOperands;
903   unsigned NumUnresolved;
904 
905   ContextAndReplaceableUses Context;
906 
907 protected:
908   MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
909          ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2 = None);
910   ~MDNode() = default;
911 
912   void *operator new(size_t Size, unsigned NumOps);
913   void operator delete(void *Mem);
914 
915   /// Required by std, but never called.
916   void operator delete(void *, unsigned) {
917     llvm_unreachable("Constructor throws?");
918   }
919 
920   /// Required by std, but never called.
921   void operator delete(void *, unsigned, bool) {
922     llvm_unreachable("Constructor throws?");
923   }
924 
925   void dropAllReferences();
926 
927   MDOperand *mutable_begin() { return mutable_end() - NumOperands; }
928   MDOperand *mutable_end() { return reinterpret_cast<MDOperand *>(this); }
929 
930   using mutable_op_range = iterator_range<MDOperand *>;
931 
932   mutable_op_range mutable_operands() {
933     return mutable_op_range(mutable_begin(), mutable_end());
934   }
935 
936 public:
937   MDNode(const MDNode &) = delete;
938   void operator=(const MDNode &) = delete;
939   void *operator new(size_t) = delete;
940 
941   static inline MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs);
942   static inline MDTuple *getIfExists(LLVMContext &Context,
943                                      ArrayRef<Metadata *> MDs);
944   static inline MDTuple *getDistinct(LLVMContext &Context,
945                                      ArrayRef<Metadata *> MDs);
946   static inline TempMDTuple getTemporary(LLVMContext &Context,
947                                          ArrayRef<Metadata *> MDs);
948 
949   /// Create a (temporary) clone of this.
950   TempMDNode clone() const;
951 
952   /// Deallocate a node created by getTemporary.
953   ///
954   /// Calls \c replaceAllUsesWith(nullptr) before deleting, so any remaining
955   /// references will be reset.
956   static void deleteTemporary(MDNode *N);
957 
958   LLVMContext &getContext() const { return Context.getContext(); }
959 
960   /// Replace a specific operand.
961   void replaceOperandWith(unsigned I, Metadata *New);
962 
963   /// Check if node is fully resolved.
964   ///
965   /// If \a isTemporary(), this always returns \c false; if \a isDistinct(),
966   /// this always returns \c true.
967   ///
968   /// If \a isUniqued(), returns \c true if this has already dropped RAUW
969   /// support (because all operands are resolved).
970   ///
971   /// As forward declarations are resolved, their containers should get
972   /// resolved automatically.  However, if this (or one of its operands) is
973   /// involved in a cycle, \a resolveCycles() needs to be called explicitly.
974   bool isResolved() const { return !isTemporary() && !NumUnresolved; }
975 
976   bool isUniqued() const { return Storage == Uniqued; }
977   bool isDistinct() const { return Storage == Distinct; }
978   bool isTemporary() const { return Storage == Temporary; }
979 
980   /// RAUW a temporary.
981   ///
982   /// \pre \a isTemporary() must be \c true.
983   void replaceAllUsesWith(Metadata *MD) {
984     assert(isTemporary() && "Expected temporary node");
985     if (Context.hasReplaceableUses())
986       Context.getReplaceableUses()->replaceAllUsesWith(MD);
987   }
988 
989   /// Resolve cycles.
990   ///
991   /// Once all forward declarations have been resolved, force cycles to be
992   /// resolved.
993   ///
994   /// \pre No operands (or operands' operands, etc.) have \a isTemporary().
995   void resolveCycles();
996 
997   /// Resolve a unique, unresolved node.
998   void resolve();
999 
1000   /// Replace a temporary node with a permanent one.
1001   ///
1002   /// Try to create a uniqued version of \c N -- in place, if possible -- and
1003   /// return it.  If \c N cannot be uniqued, return a distinct node instead.
1004   template <class T>
1005   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1006   replaceWithPermanent(std::unique_ptr<T, TempMDNodeDeleter> N) {
1007     return cast<T>(N.release()->replaceWithPermanentImpl());
1008   }
1009 
1010   /// Replace a temporary node with a uniqued one.
1011   ///
1012   /// Create a uniqued version of \c N -- in place, if possible -- and return
1013   /// it.  Takes ownership of the temporary node.
1014   ///
1015   /// \pre N does not self-reference.
1016   template <class T>
1017   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1018   replaceWithUniqued(std::unique_ptr<T, TempMDNodeDeleter> N) {
1019     return cast<T>(N.release()->replaceWithUniquedImpl());
1020   }
1021 
1022   /// Replace a temporary node with a distinct one.
1023   ///
1024   /// Create a distinct version of \c N -- in place, if possible -- and return
1025   /// it.  Takes ownership of the temporary node.
1026   template <class T>
1027   static std::enable_if_t<std::is_base_of<MDNode, T>::value, T *>
1028   replaceWithDistinct(std::unique_ptr<T, TempMDNodeDeleter> N) {
1029     return cast<T>(N.release()->replaceWithDistinctImpl());
1030   }
1031 
1032 private:
1033   MDNode *replaceWithPermanentImpl();
1034   MDNode *replaceWithUniquedImpl();
1035   MDNode *replaceWithDistinctImpl();
1036 
1037 protected:
1038   /// Set an operand.
1039   ///
1040   /// Sets the operand directly, without worrying about uniquing.
1041   void setOperand(unsigned I, Metadata *New);
1042 
1043   void storeDistinctInContext();
1044   template <class T, class StoreT>
1045   static T *storeImpl(T *N, StorageType Storage, StoreT &Store);
1046   template <class T> static T *storeImpl(T *N, StorageType Storage);
1047 
1048 private:
1049   void handleChangedOperand(void *Ref, Metadata *New);
1050 
1051   /// Drop RAUW support, if any.
1052   void dropReplaceableUses();
1053 
1054   void resolveAfterOperandChange(Metadata *Old, Metadata *New);
1055   void decrementUnresolvedOperandCount();
1056   void countUnresolvedOperands();
1057 
1058   /// Mutate this to be "uniqued".
1059   ///
1060   /// Mutate this so that \a isUniqued().
1061   /// \pre \a isTemporary().
1062   /// \pre already added to uniquing set.
1063   void makeUniqued();
1064 
1065   /// Mutate this to be "distinct".
1066   ///
1067   /// Mutate this so that \a isDistinct().
1068   /// \pre \a isTemporary().
1069   void makeDistinct();
1070 
1071   void deleteAsSubclass();
1072   MDNode *uniquify();
1073   void eraseFromStore();
1074 
1075   template <class NodeTy> struct HasCachedHash;
1076   template <class NodeTy>
1077   static void dispatchRecalculateHash(NodeTy *N, std::true_type) {
1078     N->recalculateHash();
1079   }
1080   template <class NodeTy>
1081   static void dispatchRecalculateHash(NodeTy *, std::false_type) {}
1082   template <class NodeTy>
1083   static void dispatchResetHash(NodeTy *N, std::true_type) {
1084     N->setHash(0);
1085   }
1086   template <class NodeTy>
1087   static void dispatchResetHash(NodeTy *, std::false_type) {}
1088 
1089 public:
1090   using op_iterator = const MDOperand *;
1091   using op_range = iterator_range<op_iterator>;
1092 
1093   op_iterator op_begin() const {
1094     return const_cast<MDNode *>(this)->mutable_begin();
1095   }
1096 
1097   op_iterator op_end() const {
1098     return const_cast<MDNode *>(this)->mutable_end();
1099   }
1100 
1101   op_range operands() const { return op_range(op_begin(), op_end()); }
1102 
1103   const MDOperand &getOperand(unsigned I) const {
1104     assert(I < NumOperands && "Out of range");
1105     return op_begin()[I];
1106   }
1107 
1108   /// Return number of MDNode operands.
1109   unsigned getNumOperands() const { return NumOperands; }
1110 
1111   /// Methods for support type inquiry through isa, cast, and dyn_cast:
1112   static bool classof(const Metadata *MD) {
1113     switch (MD->getMetadataID()) {
1114     default:
1115       return false;
1116 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
1117   case CLASS##Kind:                                                            \
1118     return true;
1119 #include "llvm/IR/Metadata.def"
1120     }
1121   }
1122 
1123   /// Check whether MDNode is a vtable access.
1124   bool isTBAAVtableAccess() const;
1125 
1126   /// Methods for metadata merging.
1127   static MDNode *concatenate(MDNode *A, MDNode *B);
1128   static MDNode *intersect(MDNode *A, MDNode *B);
1129   static MDNode *getMostGenericTBAA(MDNode *A, MDNode *B);
1130   static MDNode *getMostGenericFPMath(MDNode *A, MDNode *B);
1131   static MDNode *getMostGenericRange(MDNode *A, MDNode *B);
1132   static MDNode *getMostGenericAliasScope(MDNode *A, MDNode *B);
1133   static MDNode *getMostGenericAlignmentOrDereferenceable(MDNode *A, MDNode *B);
1134 };
1135 
1136 /// Tuple of metadata.
1137 ///
1138 /// This is the simple \a MDNode arbitrary tuple.  Nodes are uniqued by
1139 /// default based on their operands.
1140 class MDTuple : public MDNode {
1141   friend class LLVMContextImpl;
1142   friend class MDNode;
1143 
1144   MDTuple(LLVMContext &C, StorageType Storage, unsigned Hash,
1145           ArrayRef<Metadata *> Vals)
1146       : MDNode(C, MDTupleKind, Storage, Vals) {
1147     setHash(Hash);
1148   }
1149 
1150   ~MDTuple() { dropAllReferences(); }
1151 
1152   void setHash(unsigned Hash) { SubclassData32 = Hash; }
1153   void recalculateHash();
1154 
1155   static MDTuple *getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
1156                           StorageType Storage, bool ShouldCreate = true);
1157 
1158   TempMDTuple cloneImpl() const {
1159     return getTemporary(getContext(), SmallVector<Metadata *, 4>(operands()));
1160   }
1161 
1162 public:
1163   /// Get the hash, if any.
1164   unsigned getHash() const { return SubclassData32; }
1165 
1166   static MDTuple *get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1167     return getImpl(Context, MDs, Uniqued);
1168   }
1169 
1170   static MDTuple *getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1171     return getImpl(Context, MDs, Uniqued, /* ShouldCreate */ false);
1172   }
1173 
1174   /// Return a distinct node.
1175   ///
1176   /// Return a distinct node -- i.e., a node that is not uniqued.
1177   static MDTuple *getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1178     return getImpl(Context, MDs, Distinct);
1179   }
1180 
1181   /// Return a temporary node.
1182   ///
1183   /// For use in constructing cyclic MDNode structures. A temporary MDNode is
1184   /// not uniqued, may be RAUW'd, and must be manually deleted with
1185   /// deleteTemporary.
1186   static TempMDTuple getTemporary(LLVMContext &Context,
1187                                   ArrayRef<Metadata *> MDs) {
1188     return TempMDTuple(getImpl(Context, MDs, Temporary));
1189   }
1190 
1191   /// Return a (temporary) clone of this.
1192   TempMDTuple clone() const { return cloneImpl(); }
1193 
1194   static bool classof(const Metadata *MD) {
1195     return MD->getMetadataID() == MDTupleKind;
1196   }
1197 };
1198 
1199 MDTuple *MDNode::get(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1200   return MDTuple::get(Context, MDs);
1201 }
1202 
1203 MDTuple *MDNode::getIfExists(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1204   return MDTuple::getIfExists(Context, MDs);
1205 }
1206 
1207 MDTuple *MDNode::getDistinct(LLVMContext &Context, ArrayRef<Metadata *> MDs) {
1208   return MDTuple::getDistinct(Context, MDs);
1209 }
1210 
1211 TempMDTuple MDNode::getTemporary(LLVMContext &Context,
1212                                  ArrayRef<Metadata *> MDs) {
1213   return MDTuple::getTemporary(Context, MDs);
1214 }
1215 
1216 void TempMDNodeDeleter::operator()(MDNode *Node) const {
1217   MDNode::deleteTemporary(Node);
1218 }
1219 
1220 /// This is a simple wrapper around an MDNode which provides a higher-level
1221 /// interface by hiding the details of how alias analysis information is encoded
1222 /// in its operands.
1223 class AliasScopeNode {
1224   const MDNode *Node = nullptr;
1225 
1226 public:
1227   AliasScopeNode() = default;
1228   explicit AliasScopeNode(const MDNode *N) : Node(N) {}
1229 
1230   /// Get the MDNode for this AliasScopeNode.
1231   const MDNode *getNode() const { return Node; }
1232 
1233   /// Get the MDNode for this AliasScopeNode's domain.
1234   const MDNode *getDomain() const {
1235     if (Node->getNumOperands() < 2)
1236       return nullptr;
1237     return dyn_cast_or_null<MDNode>(Node->getOperand(1));
1238   }
1239   StringRef getName() const {
1240     if (Node->getNumOperands() > 2)
1241       if (MDString *N = dyn_cast_or_null<MDString>(Node->getOperand(2)))
1242         return N->getString();
1243     return StringRef();
1244   }
1245 };
1246 
1247 /// Typed iterator through MDNode operands.
1248 ///
1249 /// An iterator that transforms an \a MDNode::iterator into an iterator over a
1250 /// particular Metadata subclass.
1251 template <class T> class TypedMDOperandIterator {
1252   MDNode::op_iterator I = nullptr;
1253 
1254 public:
1255   using iterator_category = std::input_iterator_tag;
1256   using value_type = T *;
1257   using difference_type = std::ptrdiff_t;
1258   using pointer = void;
1259   using reference = T *;
1260 
1261   TypedMDOperandIterator() = default;
1262   explicit TypedMDOperandIterator(MDNode::op_iterator I) : I(I) {}
1263 
1264   T *operator*() const { return cast_or_null<T>(*I); }
1265 
1266   TypedMDOperandIterator &operator++() {
1267     ++I;
1268     return *this;
1269   }
1270 
1271   TypedMDOperandIterator operator++(int) {
1272     TypedMDOperandIterator Temp(*this);
1273     ++I;
1274     return Temp;
1275   }
1276 
1277   bool operator==(const TypedMDOperandIterator &X) const { return I == X.I; }
1278   bool operator!=(const TypedMDOperandIterator &X) const { return I != X.I; }
1279 };
1280 
1281 /// Typed, array-like tuple of metadata.
1282 ///
1283 /// This is a wrapper for \a MDTuple that makes it act like an array holding a
1284 /// particular type of metadata.
1285 template <class T> class MDTupleTypedArrayWrapper {
1286   const MDTuple *N = nullptr;
1287 
1288 public:
1289   MDTupleTypedArrayWrapper() = default;
1290   MDTupleTypedArrayWrapper(const MDTuple *N) : N(N) {}
1291 
1292   template <class U>
1293   MDTupleTypedArrayWrapper(
1294       const MDTupleTypedArrayWrapper<U> &Other,
1295       std::enable_if_t<std::is_convertible<U *, T *>::value> * = nullptr)
1296       : N(Other.get()) {}
1297 
1298   template <class U>
1299   explicit MDTupleTypedArrayWrapper(
1300       const MDTupleTypedArrayWrapper<U> &Other,
1301       std::enable_if_t<!std::is_convertible<U *, T *>::value> * = nullptr)
1302       : N(Other.get()) {}
1303 
1304   explicit operator bool() const { return get(); }
1305   explicit operator MDTuple *() const { return get(); }
1306 
1307   MDTuple *get() const { return const_cast<MDTuple *>(N); }
1308   MDTuple *operator->() const { return get(); }
1309   MDTuple &operator*() const { return *get(); }
1310 
1311   // FIXME: Fix callers and remove condition on N.
1312   unsigned size() const { return N ? N->getNumOperands() : 0u; }
1313   bool empty() const { return N ? N->getNumOperands() == 0 : true; }
1314   T *operator[](unsigned I) const { return cast_or_null<T>(N->getOperand(I)); }
1315 
1316   // FIXME: Fix callers and remove condition on N.
1317   using iterator = TypedMDOperandIterator<T>;
1318 
1319   iterator begin() const { return N ? iterator(N->op_begin()) : iterator(); }
1320   iterator end() const { return N ? iterator(N->op_end()) : iterator(); }
1321 };
1322 
1323 #define HANDLE_METADATA(CLASS)                                                 \
1324   using CLASS##Array = MDTupleTypedArrayWrapper<CLASS>;
1325 #include "llvm/IR/Metadata.def"
1326 
1327 /// Placeholder metadata for operands of distinct MDNodes.
1328 ///
1329 /// This is a lightweight placeholder for an operand of a distinct node.  It's
1330 /// purpose is to help track forward references when creating a distinct node.
1331 /// This allows distinct nodes involved in a cycle to be constructed before
1332 /// their operands without requiring a heavyweight temporary node with
1333 /// full-blown RAUW support.
1334 ///
1335 /// Each placeholder supports only a single MDNode user.  Clients should pass
1336 /// an ID, retrieved via \a getID(), to indicate the "real" operand that this
1337 /// should be replaced with.
1338 ///
1339 /// While it would be possible to implement move operators, they would be
1340 /// fairly expensive.  Leave them unimplemented to discourage their use
1341 /// (clients can use std::deque, std::list, BumpPtrAllocator, etc.).
1342 class DistinctMDOperandPlaceholder : public Metadata {
1343   friend class MetadataTracking;
1344 
1345   Metadata **Use = nullptr;
1346 
1347 public:
1348   explicit DistinctMDOperandPlaceholder(unsigned ID)
1349       : Metadata(DistinctMDOperandPlaceholderKind, Distinct) {
1350     SubclassData32 = ID;
1351   }
1352 
1353   DistinctMDOperandPlaceholder() = delete;
1354   DistinctMDOperandPlaceholder(DistinctMDOperandPlaceholder &&) = delete;
1355   DistinctMDOperandPlaceholder(const DistinctMDOperandPlaceholder &) = delete;
1356 
1357   ~DistinctMDOperandPlaceholder() {
1358     if (Use)
1359       *Use = nullptr;
1360   }
1361 
1362   unsigned getID() const { return SubclassData32; }
1363 
1364   /// Replace the use of this with MD.
1365   void replaceUseWith(Metadata *MD) {
1366     if (!Use)
1367       return;
1368     *Use = MD;
1369 
1370     if (*Use)
1371       MetadataTracking::track(*Use);
1372 
1373     Metadata *T = cast<Metadata>(this);
1374     MetadataTracking::untrack(T);
1375     assert(!Use && "Use is still being tracked despite being untracked!");
1376   }
1377 };
1378 
1379 //===----------------------------------------------------------------------===//
1380 /// A tuple of MDNodes.
1381 ///
1382 /// Despite its name, a NamedMDNode isn't itself an MDNode.
1383 ///
1384 /// NamedMDNodes are named module-level entities that contain lists of MDNodes.
1385 ///
1386 /// It is illegal for a NamedMDNode to appear as an operand of an MDNode.
1387 class NamedMDNode : public ilist_node<NamedMDNode> {
1388   friend class LLVMContextImpl;
1389   friend class Module;
1390 
1391   std::string Name;
1392   Module *Parent = nullptr;
1393   void *Operands; // SmallVector<TrackingMDRef, 4>
1394 
1395   void setParent(Module *M) { Parent = M; }
1396 
1397   explicit NamedMDNode(const Twine &N);
1398 
1399   template <class T1, class T2> class op_iterator_impl {
1400     friend class NamedMDNode;
1401 
1402     const NamedMDNode *Node = nullptr;
1403     unsigned Idx = 0;
1404 
1405     op_iterator_impl(const NamedMDNode *N, unsigned i) : Node(N), Idx(i) {}
1406 
1407   public:
1408     using iterator_category = std::bidirectional_iterator_tag;
1409     using value_type = T2;
1410     using difference_type = std::ptrdiff_t;
1411     using pointer = value_type *;
1412     using reference = value_type &;
1413 
1414     op_iterator_impl() = default;
1415 
1416     bool operator==(const op_iterator_impl &o) const { return Idx == o.Idx; }
1417     bool operator!=(const op_iterator_impl &o) const { return Idx != o.Idx; }
1418 
1419     op_iterator_impl &operator++() {
1420       ++Idx;
1421       return *this;
1422     }
1423 
1424     op_iterator_impl operator++(int) {
1425       op_iterator_impl tmp(*this);
1426       operator++();
1427       return tmp;
1428     }
1429 
1430     op_iterator_impl &operator--() {
1431       --Idx;
1432       return *this;
1433     }
1434 
1435     op_iterator_impl operator--(int) {
1436       op_iterator_impl tmp(*this);
1437       operator--();
1438       return tmp;
1439     }
1440 
1441     T1 operator*() const { return Node->getOperand(Idx); }
1442   };
1443 
1444 public:
1445   NamedMDNode(const NamedMDNode &) = delete;
1446   ~NamedMDNode();
1447 
1448   /// Drop all references and remove the node from parent module.
1449   void eraseFromParent();
1450 
1451   /// Remove all uses and clear node vector.
1452   void dropAllReferences() { clearOperands(); }
1453   /// Drop all references to this node's operands.
1454   void clearOperands();
1455 
1456   /// Get the module that holds this named metadata collection.
1457   inline Module *getParent() { return Parent; }
1458   inline const Module *getParent() const { return Parent; }
1459 
1460   MDNode *getOperand(unsigned i) const;
1461   unsigned getNumOperands() const;
1462   void addOperand(MDNode *M);
1463   void setOperand(unsigned I, MDNode *New);
1464   StringRef getName() const;
1465   void print(raw_ostream &ROS, bool IsForDebug = false) const;
1466   void print(raw_ostream &ROS, ModuleSlotTracker &MST,
1467              bool IsForDebug = false) const;
1468   void dump() const;
1469 
1470   // ---------------------------------------------------------------------------
1471   // Operand Iterator interface...
1472   //
1473   using op_iterator = op_iterator_impl<MDNode *, MDNode>;
1474 
1475   op_iterator op_begin() { return op_iterator(this, 0); }
1476   op_iterator op_end()   { return op_iterator(this, getNumOperands()); }
1477 
1478   using const_op_iterator = op_iterator_impl<const MDNode *, MDNode>;
1479 
1480   const_op_iterator op_begin() const { return const_op_iterator(this, 0); }
1481   const_op_iterator op_end()   const { return const_op_iterator(this, getNumOperands()); }
1482 
1483   inline iterator_range<op_iterator>  operands() {
1484     return make_range(op_begin(), op_end());
1485   }
1486   inline iterator_range<const_op_iterator> operands() const {
1487     return make_range(op_begin(), op_end());
1488   }
1489 };
1490 
1491 // Create wrappers for C Binding types (see CBindingWrapping.h).
1492 DEFINE_ISA_CONVERSION_FUNCTIONS(NamedMDNode, LLVMNamedMDNodeRef)
1493 
1494 } // end namespace llvm
1495 
1496 #endif // LLVM_IR_METADATA_H
1497