1 //===- InstCombineCompares.cpp --------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the visitICmp and visitFCmp functions.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "InstCombineInternal.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/SetVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/ConstantFolding.h"
18 #include "llvm/Analysis/InstructionSimplify.h"
19 #include "llvm/Analysis/TargetLibraryInfo.h"
20 #include "llvm/IR/ConstantRange.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/GetElementPtrTypeIterator.h"
23 #include "llvm/IR/IntrinsicInst.h"
24 #include "llvm/IR/PatternMatch.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/KnownBits.h"
27 #include "llvm/Transforms/InstCombine/InstCombiner.h"
28 
29 using namespace llvm;
30 using namespace PatternMatch;
31 
32 #define DEBUG_TYPE "instcombine"
33 
34 // How many times is a select replaced by one of its operands?
35 STATISTIC(NumSel, "Number of select opts");
36 
37 
38 /// Compute Result = In1+In2, returning true if the result overflowed for this
39 /// type.
addWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)40 static bool addWithOverflow(APInt &Result, const APInt &In1,
41                             const APInt &In2, bool IsSigned = false) {
42   bool Overflow;
43   if (IsSigned)
44     Result = In1.sadd_ov(In2, Overflow);
45   else
46     Result = In1.uadd_ov(In2, Overflow);
47 
48   return Overflow;
49 }
50 
51 /// Compute Result = In1-In2, returning true if the result overflowed for this
52 /// type.
subWithOverflow(APInt & Result,const APInt & In1,const APInt & In2,bool IsSigned=false)53 static bool subWithOverflow(APInt &Result, const APInt &In1,
54                             const APInt &In2, bool IsSigned = false) {
55   bool Overflow;
56   if (IsSigned)
57     Result = In1.ssub_ov(In2, Overflow);
58   else
59     Result = In1.usub_ov(In2, Overflow);
60 
61   return Overflow;
62 }
63 
64 /// Given an icmp instruction, return true if any use of this comparison is a
65 /// branch on sign bit comparison.
hasBranchUse(ICmpInst & I)66 static bool hasBranchUse(ICmpInst &I) {
67   for (auto *U : I.users())
68     if (isa<BranchInst>(U))
69       return true;
70   return false;
71 }
72 
73 /// Returns true if the exploded icmp can be expressed as a signed comparison
74 /// to zero and updates the predicate accordingly.
75 /// The signedness of the comparison is preserved.
76 /// TODO: Refactor with decomposeBitTestICmp()?
isSignTest(ICmpInst::Predicate & Pred,const APInt & C)77 static bool isSignTest(ICmpInst::Predicate &Pred, const APInt &C) {
78   if (!ICmpInst::isSigned(Pred))
79     return false;
80 
81   if (C.isNullValue())
82     return ICmpInst::isRelational(Pred);
83 
84   if (C.isOneValue()) {
85     if (Pred == ICmpInst::ICMP_SLT) {
86       Pred = ICmpInst::ICMP_SLE;
87       return true;
88     }
89   } else if (C.isAllOnesValue()) {
90     if (Pred == ICmpInst::ICMP_SGT) {
91       Pred = ICmpInst::ICMP_SGE;
92       return true;
93     }
94   }
95 
96   return false;
97 }
98 
99 /// This is called when we see this pattern:
100 ///   cmp pred (load (gep GV, ...)), cmpcst
101 /// where GV is a global variable with a constant initializer. Try to simplify
102 /// this into some simple computation that does not need the load. For example
103 /// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
104 ///
105 /// If AndCst is non-null, then the loaded value is masked with that constant
106 /// before doing the comparison. This handles cases like "A[i]&4 == 0".
107 Instruction *
foldCmpLoadFromIndexedGlobal(GetElementPtrInst * GEP,GlobalVariable * GV,CmpInst & ICI,ConstantInt * AndCst)108 InstCombinerImpl::foldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP,
109                                                GlobalVariable *GV, CmpInst &ICI,
110                                                ConstantInt *AndCst) {
111   Constant *Init = GV->getInitializer();
112   if (!isa<ConstantArray>(Init) && !isa<ConstantDataArray>(Init))
113     return nullptr;
114 
115   uint64_t ArrayElementCount = Init->getType()->getArrayNumElements();
116   // Don't blow up on huge arrays.
117   if (ArrayElementCount > MaxArraySizeForCombine)
118     return nullptr;
119 
120   // There are many forms of this optimization we can handle, for now, just do
121   // the simple index into a single-dimensional array.
122   //
123   // Require: GEP GV, 0, i {{, constant indices}}
124   if (GEP->getNumOperands() < 3 ||
125       !isa<ConstantInt>(GEP->getOperand(1)) ||
126       !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
127       isa<Constant>(GEP->getOperand(2)))
128     return nullptr;
129 
130   // Check that indices after the variable are constants and in-range for the
131   // type they index.  Collect the indices.  This is typically for arrays of
132   // structs.
133   SmallVector<unsigned, 4> LaterIndices;
134 
135   Type *EltTy = Init->getType()->getArrayElementType();
136   for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
137     ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
138     if (!Idx) return nullptr;  // Variable index.
139 
140     uint64_t IdxVal = Idx->getZExtValue();
141     if ((unsigned)IdxVal != IdxVal) return nullptr; // Too large array index.
142 
143     if (StructType *STy = dyn_cast<StructType>(EltTy))
144       EltTy = STy->getElementType(IdxVal);
145     else if (ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
146       if (IdxVal >= ATy->getNumElements()) return nullptr;
147       EltTy = ATy->getElementType();
148     } else {
149       return nullptr; // Unknown type.
150     }
151 
152     LaterIndices.push_back(IdxVal);
153   }
154 
155   enum { Overdefined = -3, Undefined = -2 };
156 
157   // Variables for our state machines.
158 
159   // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
160   // "i == 47 | i == 87", where 47 is the first index the condition is true for,
161   // and 87 is the second (and last) index.  FirstTrueElement is -2 when
162   // undefined, otherwise set to the first true element.  SecondTrueElement is
163   // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
164   int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
165 
166   // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
167   // form "i != 47 & i != 87".  Same state transitions as for true elements.
168   int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
169 
170   /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
171   /// define a state machine that triggers for ranges of values that the index
172   /// is true or false for.  This triggers on things like "abbbbc"[i] == 'b'.
173   /// This is -2 when undefined, -3 when overdefined, and otherwise the last
174   /// index in the range (inclusive).  We use -2 for undefined here because we
175   /// use relative comparisons and don't want 0-1 to match -1.
176   int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
177 
178   // MagicBitvector - This is a magic bitvector where we set a bit if the
179   // comparison is true for element 'i'.  If there are 64 elements or less in
180   // the array, this will fully represent all the comparison results.
181   uint64_t MagicBitvector = 0;
182 
183   // Scan the array and see if one of our patterns matches.
184   Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
185   for (unsigned i = 0, e = ArrayElementCount; i != e; ++i) {
186     Constant *Elt = Init->getAggregateElement(i);
187     if (!Elt) return nullptr;
188 
189     // If this is indexing an array of structures, get the structure element.
190     if (!LaterIndices.empty())
191       Elt = ConstantExpr::getExtractValue(Elt, LaterIndices);
192 
193     // If the element is masked, handle it.
194     if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
195 
196     // Find out if the comparison would be true or false for the i'th element.
197     Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
198                                                   CompareRHS, DL, &TLI);
199     // If the result is undef for this element, ignore it.
200     if (isa<UndefValue>(C)) {
201       // Extend range state machines to cover this element in case there is an
202       // undef in the middle of the range.
203       if (TrueRangeEnd == (int)i-1)
204         TrueRangeEnd = i;
205       if (FalseRangeEnd == (int)i-1)
206         FalseRangeEnd = i;
207       continue;
208     }
209 
210     // If we can't compute the result for any of the elements, we have to give
211     // up evaluating the entire conditional.
212     if (!isa<ConstantInt>(C)) return nullptr;
213 
214     // Otherwise, we know if the comparison is true or false for this element,
215     // update our state machines.
216     bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
217 
218     // State machine for single/double/range index comparison.
219     if (IsTrueForElt) {
220       // Update the TrueElement state machine.
221       if (FirstTrueElement == Undefined)
222         FirstTrueElement = TrueRangeEnd = i;  // First true element.
223       else {
224         // Update double-compare state machine.
225         if (SecondTrueElement == Undefined)
226           SecondTrueElement = i;
227         else
228           SecondTrueElement = Overdefined;
229 
230         // Update range state machine.
231         if (TrueRangeEnd == (int)i-1)
232           TrueRangeEnd = i;
233         else
234           TrueRangeEnd = Overdefined;
235       }
236     } else {
237       // Update the FalseElement state machine.
238       if (FirstFalseElement == Undefined)
239         FirstFalseElement = FalseRangeEnd = i; // First false element.
240       else {
241         // Update double-compare state machine.
242         if (SecondFalseElement == Undefined)
243           SecondFalseElement = i;
244         else
245           SecondFalseElement = Overdefined;
246 
247         // Update range state machine.
248         if (FalseRangeEnd == (int)i-1)
249           FalseRangeEnd = i;
250         else
251           FalseRangeEnd = Overdefined;
252       }
253     }
254 
255     // If this element is in range, update our magic bitvector.
256     if (i < 64 && IsTrueForElt)
257       MagicBitvector |= 1ULL << i;
258 
259     // If all of our states become overdefined, bail out early.  Since the
260     // predicate is expensive, only check it every 8 elements.  This is only
261     // really useful for really huge arrays.
262     if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
263         SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
264         FalseRangeEnd == Overdefined)
265       return nullptr;
266   }
267 
268   // Now that we've scanned the entire array, emit our new comparison(s).  We
269   // order the state machines in complexity of the generated code.
270   Value *Idx = GEP->getOperand(2);
271 
272   // If the index is larger than the pointer size of the target, truncate the
273   // index down like the GEP would do implicitly.  We don't have to do this for
274   // an inbounds GEP because the index can't be out of range.
275   if (!GEP->isInBounds()) {
276     Type *IntPtrTy = DL.getIntPtrType(GEP->getType());
277     unsigned PtrSize = IntPtrTy->getIntegerBitWidth();
278     if (Idx->getType()->getPrimitiveSizeInBits().getFixedSize() > PtrSize)
279       Idx = Builder.CreateTrunc(Idx, IntPtrTy);
280   }
281 
282   // If inbounds keyword is not present, Idx * ElementSize can overflow.
283   // Let's assume that ElementSize is 2 and the wanted value is at offset 0.
284   // Then, there are two possible values for Idx to match offset 0:
285   // 0x00..00, 0x80..00.
286   // Emitting 'icmp eq Idx, 0' isn't correct in this case because the
287   // comparison is false if Idx was 0x80..00.
288   // We need to erase the highest countTrailingZeros(ElementSize) bits of Idx.
289   unsigned ElementSize =
290       DL.getTypeAllocSize(Init->getType()->getArrayElementType());
291   auto MaskIdx = [&](Value* Idx){
292     if (!GEP->isInBounds() && countTrailingZeros(ElementSize) != 0) {
293       Value *Mask = ConstantInt::get(Idx->getType(), -1);
294       Mask = Builder.CreateLShr(Mask, countTrailingZeros(ElementSize));
295       Idx = Builder.CreateAnd(Idx, Mask);
296     }
297     return Idx;
298   };
299 
300   // If the comparison is only true for one or two elements, emit direct
301   // comparisons.
302   if (SecondTrueElement != Overdefined) {
303     Idx = MaskIdx(Idx);
304     // None true -> false.
305     if (FirstTrueElement == Undefined)
306       return replaceInstUsesWith(ICI, Builder.getFalse());
307 
308     Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
309 
310     // True for one element -> 'i == 47'.
311     if (SecondTrueElement == Undefined)
312       return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
313 
314     // True for two elements -> 'i == 47 | i == 72'.
315     Value *C1 = Builder.CreateICmpEQ(Idx, FirstTrueIdx);
316     Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
317     Value *C2 = Builder.CreateICmpEQ(Idx, SecondTrueIdx);
318     return BinaryOperator::CreateOr(C1, C2);
319   }
320 
321   // If the comparison is only false for one or two elements, emit direct
322   // comparisons.
323   if (SecondFalseElement != Overdefined) {
324     Idx = MaskIdx(Idx);
325     // None false -> true.
326     if (FirstFalseElement == Undefined)
327       return replaceInstUsesWith(ICI, Builder.getTrue());
328 
329     Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
330 
331     // False for one element -> 'i != 47'.
332     if (SecondFalseElement == Undefined)
333       return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
334 
335     // False for two elements -> 'i != 47 & i != 72'.
336     Value *C1 = Builder.CreateICmpNE(Idx, FirstFalseIdx);
337     Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
338     Value *C2 = Builder.CreateICmpNE(Idx, SecondFalseIdx);
339     return BinaryOperator::CreateAnd(C1, C2);
340   }
341 
342   // If the comparison can be replaced with a range comparison for the elements
343   // where it is true, emit the range check.
344   if (TrueRangeEnd != Overdefined) {
345     assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
346     Idx = MaskIdx(Idx);
347 
348     // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
349     if (FirstTrueElement) {
350       Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
351       Idx = Builder.CreateAdd(Idx, Offs);
352     }
353 
354     Value *End = ConstantInt::get(Idx->getType(),
355                                   TrueRangeEnd-FirstTrueElement+1);
356     return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
357   }
358 
359   // False range check.
360   if (FalseRangeEnd != Overdefined) {
361     assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
362     Idx = MaskIdx(Idx);
363     // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
364     if (FirstFalseElement) {
365       Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
366       Idx = Builder.CreateAdd(Idx, Offs);
367     }
368 
369     Value *End = ConstantInt::get(Idx->getType(),
370                                   FalseRangeEnd-FirstFalseElement);
371     return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
372   }
373 
374   // If a magic bitvector captures the entire comparison state
375   // of this load, replace it with computation that does:
376   //   ((magic_cst >> i) & 1) != 0
377   {
378     Type *Ty = nullptr;
379 
380     // Look for an appropriate type:
381     // - The type of Idx if the magic fits
382     // - The smallest fitting legal type
383     if (ArrayElementCount <= Idx->getType()->getIntegerBitWidth())
384       Ty = Idx->getType();
385     else
386       Ty = DL.getSmallestLegalIntType(Init->getContext(), ArrayElementCount);
387 
388     if (Ty) {
389       Idx = MaskIdx(Idx);
390       Value *V = Builder.CreateIntCast(Idx, Ty, false);
391       V = Builder.CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
392       V = Builder.CreateAnd(ConstantInt::get(Ty, 1), V);
393       return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
394     }
395   }
396 
397   return nullptr;
398 }
399 
400 /// Return a value that can be used to compare the *offset* implied by a GEP to
401 /// zero. For example, if we have &A[i], we want to return 'i' for
402 /// "icmp ne i, 0". Note that, in general, indices can be complex, and scales
403 /// are involved. The above expression would also be legal to codegen as
404 /// "icmp ne (i*4), 0" (assuming A is a pointer to i32).
405 /// This latter form is less amenable to optimization though, and we are allowed
406 /// to generate the first by knowing that pointer arithmetic doesn't overflow.
407 ///
408 /// If we can't emit an optimized form for this expression, this returns null.
409 ///
evaluateGEPOffsetExpression(User * GEP,InstCombinerImpl & IC,const DataLayout & DL)410 static Value *evaluateGEPOffsetExpression(User *GEP, InstCombinerImpl &IC,
411                                           const DataLayout &DL) {
412   gep_type_iterator GTI = gep_type_begin(GEP);
413 
414   // Check to see if this gep only has a single variable index.  If so, and if
415   // any constant indices are a multiple of its scale, then we can compute this
416   // in terms of the scale of the variable index.  For example, if the GEP
417   // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
418   // because the expression will cross zero at the same point.
419   unsigned i, e = GEP->getNumOperands();
420   int64_t Offset = 0;
421   for (i = 1; i != e; ++i, ++GTI) {
422     if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
423       // Compute the aggregate offset of constant indices.
424       if (CI->isZero()) continue;
425 
426       // Handle a struct index, which adds its field offset to the pointer.
427       if (StructType *STy = GTI.getStructTypeOrNull()) {
428         Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
429       } else {
430         uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
431         Offset += Size*CI->getSExtValue();
432       }
433     } else {
434       // Found our variable index.
435       break;
436     }
437   }
438 
439   // If there are no variable indices, we must have a constant offset, just
440   // evaluate it the general way.
441   if (i == e) return nullptr;
442 
443   Value *VariableIdx = GEP->getOperand(i);
444   // Determine the scale factor of the variable element.  For example, this is
445   // 4 if the variable index is into an array of i32.
446   uint64_t VariableScale = DL.getTypeAllocSize(GTI.getIndexedType());
447 
448   // Verify that there are no other variable indices.  If so, emit the hard way.
449   for (++i, ++GTI; i != e; ++i, ++GTI) {
450     ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
451     if (!CI) return nullptr;
452 
453     // Compute the aggregate offset of constant indices.
454     if (CI->isZero()) continue;
455 
456     // Handle a struct index, which adds its field offset to the pointer.
457     if (StructType *STy = GTI.getStructTypeOrNull()) {
458       Offset += DL.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
459     } else {
460       uint64_t Size = DL.getTypeAllocSize(GTI.getIndexedType());
461       Offset += Size*CI->getSExtValue();
462     }
463   }
464 
465   // Okay, we know we have a single variable index, which must be a
466   // pointer/array/vector index.  If there is no offset, life is simple, return
467   // the index.
468   Type *IntPtrTy = DL.getIntPtrType(GEP->getOperand(0)->getType());
469   unsigned IntPtrWidth = IntPtrTy->getIntegerBitWidth();
470   if (Offset == 0) {
471     // Cast to intptrty in case a truncation occurs.  If an extension is needed,
472     // we don't need to bother extending: the extension won't affect where the
473     // computation crosses zero.
474     if (VariableIdx->getType()->getPrimitiveSizeInBits().getFixedSize() >
475         IntPtrWidth) {
476       VariableIdx = IC.Builder.CreateTrunc(VariableIdx, IntPtrTy);
477     }
478     return VariableIdx;
479   }
480 
481   // Otherwise, there is an index.  The computation we will do will be modulo
482   // the pointer size.
483   Offset = SignExtend64(Offset, IntPtrWidth);
484   VariableScale = SignExtend64(VariableScale, IntPtrWidth);
485 
486   // To do this transformation, any constant index must be a multiple of the
487   // variable scale factor.  For example, we can evaluate "12 + 4*i" as "3 + i",
488   // but we can't evaluate "10 + 3*i" in terms of i.  Check that the offset is a
489   // multiple of the variable scale.
490   int64_t NewOffs = Offset / (int64_t)VariableScale;
491   if (Offset != NewOffs*(int64_t)VariableScale)
492     return nullptr;
493 
494   // Okay, we can do this evaluation.  Start by converting the index to intptr.
495   if (VariableIdx->getType() != IntPtrTy)
496     VariableIdx = IC.Builder.CreateIntCast(VariableIdx, IntPtrTy,
497                                             true /*Signed*/);
498   Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
499   return IC.Builder.CreateAdd(VariableIdx, OffsetVal, "offset");
500 }
501 
502 /// Returns true if we can rewrite Start as a GEP with pointer Base
503 /// and some integer offset. The nodes that need to be re-written
504 /// for this transformation will be added to Explored.
canRewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)505 static bool canRewriteGEPAsOffset(Value *Start, Value *Base,
506                                   const DataLayout &DL,
507                                   SetVector<Value *> &Explored) {
508   SmallVector<Value *, 16> WorkList(1, Start);
509   Explored.insert(Base);
510 
511   // The following traversal gives us an order which can be used
512   // when doing the final transformation. Since in the final
513   // transformation we create the PHI replacement instructions first,
514   // we don't have to get them in any particular order.
515   //
516   // However, for other instructions we will have to traverse the
517   // operands of an instruction first, which means that we have to
518   // do a post-order traversal.
519   while (!WorkList.empty()) {
520     SetVector<PHINode *> PHIs;
521 
522     while (!WorkList.empty()) {
523       if (Explored.size() >= 100)
524         return false;
525 
526       Value *V = WorkList.back();
527 
528       if (Explored.contains(V)) {
529         WorkList.pop_back();
530         continue;
531       }
532 
533       if (!isa<IntToPtrInst>(V) && !isa<PtrToIntInst>(V) &&
534           !isa<GetElementPtrInst>(V) && !isa<PHINode>(V))
535         // We've found some value that we can't explore which is different from
536         // the base. Therefore we can't do this transformation.
537         return false;
538 
539       if (isa<IntToPtrInst>(V) || isa<PtrToIntInst>(V)) {
540         auto *CI = cast<CastInst>(V);
541         if (!CI->isNoopCast(DL))
542           return false;
543 
544         if (Explored.count(CI->getOperand(0)) == 0)
545           WorkList.push_back(CI->getOperand(0));
546       }
547 
548       if (auto *GEP = dyn_cast<GEPOperator>(V)) {
549         // We're limiting the GEP to having one index. This will preserve
550         // the original pointer type. We could handle more cases in the
551         // future.
552         if (GEP->getNumIndices() != 1 || !GEP->isInBounds() ||
553             GEP->getType() != Start->getType())
554           return false;
555 
556         if (Explored.count(GEP->getOperand(0)) == 0)
557           WorkList.push_back(GEP->getOperand(0));
558       }
559 
560       if (WorkList.back() == V) {
561         WorkList.pop_back();
562         // We've finished visiting this node, mark it as such.
563         Explored.insert(V);
564       }
565 
566       if (auto *PN = dyn_cast<PHINode>(V)) {
567         // We cannot transform PHIs on unsplittable basic blocks.
568         if (isa<CatchSwitchInst>(PN->getParent()->getTerminator()))
569           return false;
570         Explored.insert(PN);
571         PHIs.insert(PN);
572       }
573     }
574 
575     // Explore the PHI nodes further.
576     for (auto *PN : PHIs)
577       for (Value *Op : PN->incoming_values())
578         if (Explored.count(Op) == 0)
579           WorkList.push_back(Op);
580   }
581 
582   // Make sure that we can do this. Since we can't insert GEPs in a basic
583   // block before a PHI node, we can't easily do this transformation if
584   // we have PHI node users of transformed instructions.
585   for (Value *Val : Explored) {
586     for (Value *Use : Val->uses()) {
587 
588       auto *PHI = dyn_cast<PHINode>(Use);
589       auto *Inst = dyn_cast<Instruction>(Val);
590 
591       if (Inst == Base || Inst == PHI || !Inst || !PHI ||
592           Explored.count(PHI) == 0)
593         continue;
594 
595       if (PHI->getParent() == Inst->getParent())
596         return false;
597     }
598   }
599   return true;
600 }
601 
602 // Sets the appropriate insert point on Builder where we can add
603 // a replacement Instruction for V (if that is possible).
setInsertionPoint(IRBuilder<> & Builder,Value * V,bool Before=true)604 static void setInsertionPoint(IRBuilder<> &Builder, Value *V,
605                               bool Before = true) {
606   if (auto *PHI = dyn_cast<PHINode>(V)) {
607     Builder.SetInsertPoint(&*PHI->getParent()->getFirstInsertionPt());
608     return;
609   }
610   if (auto *I = dyn_cast<Instruction>(V)) {
611     if (!Before)
612       I = &*std::next(I->getIterator());
613     Builder.SetInsertPoint(I);
614     return;
615   }
616   if (auto *A = dyn_cast<Argument>(V)) {
617     // Set the insertion point in the entry block.
618     BasicBlock &Entry = A->getParent()->getEntryBlock();
619     Builder.SetInsertPoint(&*Entry.getFirstInsertionPt());
620     return;
621   }
622   // Otherwise, this is a constant and we don't need to set a new
623   // insertion point.
624   assert(isa<Constant>(V) && "Setting insertion point for unknown value!");
625 }
626 
627 /// Returns a re-written value of Start as an indexed GEP using Base as a
628 /// pointer.
rewriteGEPAsOffset(Value * Start,Value * Base,const DataLayout & DL,SetVector<Value * > & Explored)629 static Value *rewriteGEPAsOffset(Value *Start, Value *Base,
630                                  const DataLayout &DL,
631                                  SetVector<Value *> &Explored) {
632   // Perform all the substitutions. This is a bit tricky because we can
633   // have cycles in our use-def chains.
634   // 1. Create the PHI nodes without any incoming values.
635   // 2. Create all the other values.
636   // 3. Add the edges for the PHI nodes.
637   // 4. Emit GEPs to get the original pointers.
638   // 5. Remove the original instructions.
639   Type *IndexType = IntegerType::get(
640       Base->getContext(), DL.getIndexTypeSizeInBits(Start->getType()));
641 
642   DenseMap<Value *, Value *> NewInsts;
643   NewInsts[Base] = ConstantInt::getNullValue(IndexType);
644 
645   // Create the new PHI nodes, without adding any incoming values.
646   for (Value *Val : Explored) {
647     if (Val == Base)
648       continue;
649     // Create empty phi nodes. This avoids cyclic dependencies when creating
650     // the remaining instructions.
651     if (auto *PHI = dyn_cast<PHINode>(Val))
652       NewInsts[PHI] = PHINode::Create(IndexType, PHI->getNumIncomingValues(),
653                                       PHI->getName() + ".idx", PHI);
654   }
655   IRBuilder<> Builder(Base->getContext());
656 
657   // Create all the other instructions.
658   for (Value *Val : Explored) {
659 
660     if (NewInsts.find(Val) != NewInsts.end())
661       continue;
662 
663     if (auto *CI = dyn_cast<CastInst>(Val)) {
664       // Don't get rid of the intermediate variable here; the store can grow
665       // the map which will invalidate the reference to the input value.
666       Value *V = NewInsts[CI->getOperand(0)];
667       NewInsts[CI] = V;
668       continue;
669     }
670     if (auto *GEP = dyn_cast<GEPOperator>(Val)) {
671       Value *Index = NewInsts[GEP->getOperand(1)] ? NewInsts[GEP->getOperand(1)]
672                                                   : GEP->getOperand(1);
673       setInsertionPoint(Builder, GEP);
674       // Indices might need to be sign extended. GEPs will magically do
675       // this, but we need to do it ourselves here.
676       if (Index->getType()->getScalarSizeInBits() !=
677           NewInsts[GEP->getOperand(0)]->getType()->getScalarSizeInBits()) {
678         Index = Builder.CreateSExtOrTrunc(
679             Index, NewInsts[GEP->getOperand(0)]->getType(),
680             GEP->getOperand(0)->getName() + ".sext");
681       }
682 
683       auto *Op = NewInsts[GEP->getOperand(0)];
684       if (isa<ConstantInt>(Op) && cast<ConstantInt>(Op)->isZero())
685         NewInsts[GEP] = Index;
686       else
687         NewInsts[GEP] = Builder.CreateNSWAdd(
688             Op, Index, GEP->getOperand(0)->getName() + ".add");
689       continue;
690     }
691     if (isa<PHINode>(Val))
692       continue;
693 
694     llvm_unreachable("Unexpected instruction type");
695   }
696 
697   // Add the incoming values to the PHI nodes.
698   for (Value *Val : Explored) {
699     if (Val == Base)
700       continue;
701     // All the instructions have been created, we can now add edges to the
702     // phi nodes.
703     if (auto *PHI = dyn_cast<PHINode>(Val)) {
704       PHINode *NewPhi = static_cast<PHINode *>(NewInsts[PHI]);
705       for (unsigned I = 0, E = PHI->getNumIncomingValues(); I < E; ++I) {
706         Value *NewIncoming = PHI->getIncomingValue(I);
707 
708         if (NewInsts.find(NewIncoming) != NewInsts.end())
709           NewIncoming = NewInsts[NewIncoming];
710 
711         NewPhi->addIncoming(NewIncoming, PHI->getIncomingBlock(I));
712       }
713     }
714   }
715 
716   for (Value *Val : Explored) {
717     if (Val == Base)
718       continue;
719 
720     // Depending on the type, for external users we have to emit
721     // a GEP or a GEP + ptrtoint.
722     setInsertionPoint(Builder, Val, false);
723 
724     // If required, create an inttoptr instruction for Base.
725     Value *NewBase = Base;
726     if (!Base->getType()->isPointerTy())
727       NewBase = Builder.CreateBitOrPointerCast(Base, Start->getType(),
728                                                Start->getName() + "to.ptr");
729 
730     Value *GEP = Builder.CreateInBoundsGEP(
731         Start->getType()->getPointerElementType(), NewBase,
732         makeArrayRef(NewInsts[Val]), Val->getName() + ".ptr");
733 
734     if (!Val->getType()->isPointerTy()) {
735       Value *Cast = Builder.CreatePointerCast(GEP, Val->getType(),
736                                               Val->getName() + ".conv");
737       GEP = Cast;
738     }
739     Val->replaceAllUsesWith(GEP);
740   }
741 
742   return NewInsts[Start];
743 }
744 
745 /// Looks through GEPs, IntToPtrInsts and PtrToIntInsts in order to express
746 /// the input Value as a constant indexed GEP. Returns a pair containing
747 /// the GEPs Pointer and Index.
748 static std::pair<Value *, Value *>
getAsConstantIndexedAddress(Value * V,const DataLayout & DL)749 getAsConstantIndexedAddress(Value *V, const DataLayout &DL) {
750   Type *IndexType = IntegerType::get(V->getContext(),
751                                      DL.getIndexTypeSizeInBits(V->getType()));
752 
753   Constant *Index = ConstantInt::getNullValue(IndexType);
754   while (true) {
755     if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
756       // We accept only inbouds GEPs here to exclude the possibility of
757       // overflow.
758       if (!GEP->isInBounds())
759         break;
760       if (GEP->hasAllConstantIndices() && GEP->getNumIndices() == 1 &&
761           GEP->getType() == V->getType()) {
762         V = GEP->getOperand(0);
763         Constant *GEPIndex = static_cast<Constant *>(GEP->getOperand(1));
764         Index = ConstantExpr::getAdd(
765             Index, ConstantExpr::getSExtOrBitCast(GEPIndex, IndexType));
766         continue;
767       }
768       break;
769     }
770     if (auto *CI = dyn_cast<IntToPtrInst>(V)) {
771       if (!CI->isNoopCast(DL))
772         break;
773       V = CI->getOperand(0);
774       continue;
775     }
776     if (auto *CI = dyn_cast<PtrToIntInst>(V)) {
777       if (!CI->isNoopCast(DL))
778         break;
779       V = CI->getOperand(0);
780       continue;
781     }
782     break;
783   }
784   return {V, Index};
785 }
786 
787 /// Converts (CMP GEPLHS, RHS) if this change would make RHS a constant.
788 /// We can look through PHIs, GEPs and casts in order to determine a common base
789 /// between GEPLHS and RHS.
transformToIndexedCompare(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,const DataLayout & DL)790 static Instruction *transformToIndexedCompare(GEPOperator *GEPLHS, Value *RHS,
791                                               ICmpInst::Predicate Cond,
792                                               const DataLayout &DL) {
793   // FIXME: Support vector of pointers.
794   if (GEPLHS->getType()->isVectorTy())
795     return nullptr;
796 
797   if (!GEPLHS->hasAllConstantIndices())
798     return nullptr;
799 
800   // Make sure the pointers have the same type.
801   if (GEPLHS->getType() != RHS->getType())
802     return nullptr;
803 
804   Value *PtrBase, *Index;
805   std::tie(PtrBase, Index) = getAsConstantIndexedAddress(GEPLHS, DL);
806 
807   // The set of nodes that will take part in this transformation.
808   SetVector<Value *> Nodes;
809 
810   if (!canRewriteGEPAsOffset(RHS, PtrBase, DL, Nodes))
811     return nullptr;
812 
813   // We know we can re-write this as
814   //  ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)
815   // Since we've only looked through inbouds GEPs we know that we
816   // can't have overflow on either side. We can therefore re-write
817   // this as:
818   //   OFFSET1 cmp OFFSET2
819   Value *NewRHS = rewriteGEPAsOffset(RHS, PtrBase, DL, Nodes);
820 
821   // RewriteGEPAsOffset has replaced RHS and all of its uses with a re-written
822   // GEP having PtrBase as the pointer base, and has returned in NewRHS the
823   // offset. Since Index is the offset of LHS to the base pointer, we will now
824   // compare the offsets instead of comparing the pointers.
825   return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Index, NewRHS);
826 }
827 
828 /// Fold comparisons between a GEP instruction and something else. At this point
829 /// we know that the GEP is on the LHS of the comparison.
foldGEPICmp(GEPOperator * GEPLHS,Value * RHS,ICmpInst::Predicate Cond,Instruction & I)830 Instruction *InstCombinerImpl::foldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
831                                            ICmpInst::Predicate Cond,
832                                            Instruction &I) {
833   // Don't transform signed compares of GEPs into index compares. Even if the
834   // GEP is inbounds, the final add of the base pointer can have signed overflow
835   // and would change the result of the icmp.
836   // e.g. "&foo[0] <s &foo[1]" can't be folded to "true" because "foo" could be
837   // the maximum signed value for the pointer type.
838   if (ICmpInst::isSigned(Cond))
839     return nullptr;
840 
841   // Look through bitcasts and addrspacecasts. We do not however want to remove
842   // 0 GEPs.
843   if (!isa<GetElementPtrInst>(RHS))
844     RHS = RHS->stripPointerCasts();
845 
846   Value *PtrBase = GEPLHS->getOperand(0);
847   // FIXME: Support vector pointer GEPs.
848   if (PtrBase == RHS && GEPLHS->isInBounds() &&
849       !GEPLHS->getType()->isVectorTy()) {
850     // ((gep Ptr, OFFSET) cmp Ptr)   ---> (OFFSET cmp 0).
851     // This transformation (ignoring the base and scales) is valid because we
852     // know pointers can't overflow since the gep is inbounds.  See if we can
853     // output an optimized form.
854     Value *Offset = evaluateGEPOffsetExpression(GEPLHS, *this, DL);
855 
856     // If not, synthesize the offset the hard way.
857     if (!Offset)
858       Offset = EmitGEPOffset(GEPLHS);
859     return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
860                         Constant::getNullValue(Offset->getType()));
861   }
862 
863   if (GEPLHS->isInBounds() && ICmpInst::isEquality(Cond) &&
864       isa<Constant>(RHS) && cast<Constant>(RHS)->isNullValue() &&
865       !NullPointerIsDefined(I.getFunction(),
866                             RHS->getType()->getPointerAddressSpace())) {
867     // For most address spaces, an allocation can't be placed at null, but null
868     // itself is treated as a 0 size allocation in the in bounds rules.  Thus,
869     // the only valid inbounds address derived from null, is null itself.
870     // Thus, we have four cases to consider:
871     // 1) Base == nullptr, Offset == 0 -> inbounds, null
872     // 2) Base == nullptr, Offset != 0 -> poison as the result is out of bounds
873     // 3) Base != nullptr, Offset == (-base) -> poison (crossing allocations)
874     // 4) Base != nullptr, Offset != (-base) -> nonnull (and possibly poison)
875     //
876     // (Note if we're indexing a type of size 0, that simply collapses into one
877     //  of the buckets above.)
878     //
879     // In general, we're allowed to make values less poison (i.e. remove
880     //   sources of full UB), so in this case, we just select between the two
881     //   non-poison cases (1 and 4 above).
882     //
883     // For vectors, we apply the same reasoning on a per-lane basis.
884     auto *Base = GEPLHS->getPointerOperand();
885     if (GEPLHS->getType()->isVectorTy() && Base->getType()->isPointerTy()) {
886       auto EC = cast<VectorType>(GEPLHS->getType())->getElementCount();
887       Base = Builder.CreateVectorSplat(EC, Base);
888     }
889     return new ICmpInst(Cond, Base,
890                         ConstantExpr::getPointerBitCastOrAddrSpaceCast(
891                             cast<Constant>(RHS), Base->getType()));
892   } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
893     // If the base pointers are different, but the indices are the same, just
894     // compare the base pointer.
895     if (PtrBase != GEPRHS->getOperand(0)) {
896       bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
897       IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
898                         GEPRHS->getOperand(0)->getType();
899       if (IndicesTheSame)
900         for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
901           if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
902             IndicesTheSame = false;
903             break;
904           }
905 
906       // If all indices are the same, just compare the base pointers.
907       Type *BaseType = GEPLHS->getOperand(0)->getType();
908       if (IndicesTheSame && CmpInst::makeCmpResultType(BaseType) == I.getType())
909         return new ICmpInst(Cond, GEPLHS->getOperand(0), GEPRHS->getOperand(0));
910 
911       // If we're comparing GEPs with two base pointers that only differ in type
912       // and both GEPs have only constant indices or just one use, then fold
913       // the compare with the adjusted indices.
914       // FIXME: Support vector of pointers.
915       if (GEPLHS->isInBounds() && GEPRHS->isInBounds() &&
916           (GEPLHS->hasAllConstantIndices() || GEPLHS->hasOneUse()) &&
917           (GEPRHS->hasAllConstantIndices() || GEPRHS->hasOneUse()) &&
918           PtrBase->stripPointerCasts() ==
919               GEPRHS->getOperand(0)->stripPointerCasts() &&
920           !GEPLHS->getType()->isVectorTy()) {
921         Value *LOffset = EmitGEPOffset(GEPLHS);
922         Value *ROffset = EmitGEPOffset(GEPRHS);
923 
924         // If we looked through an addrspacecast between different sized address
925         // spaces, the LHS and RHS pointers are different sized
926         // integers. Truncate to the smaller one.
927         Type *LHSIndexTy = LOffset->getType();
928         Type *RHSIndexTy = ROffset->getType();
929         if (LHSIndexTy != RHSIndexTy) {
930           if (LHSIndexTy->getPrimitiveSizeInBits().getFixedSize() <
931               RHSIndexTy->getPrimitiveSizeInBits().getFixedSize()) {
932             ROffset = Builder.CreateTrunc(ROffset, LHSIndexTy);
933           } else
934             LOffset = Builder.CreateTrunc(LOffset, RHSIndexTy);
935         }
936 
937         Value *Cmp = Builder.CreateICmp(ICmpInst::getSignedPredicate(Cond),
938                                         LOffset, ROffset);
939         return replaceInstUsesWith(I, Cmp);
940       }
941 
942       // Otherwise, the base pointers are different and the indices are
943       // different. Try convert this to an indexed compare by looking through
944       // PHIs/casts.
945       return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
946     }
947 
948     // If one of the GEPs has all zero indices, recurse.
949     // FIXME: Handle vector of pointers.
950     if (!GEPLHS->getType()->isVectorTy() && GEPLHS->hasAllZeroIndices())
951       return foldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
952                          ICmpInst::getSwappedPredicate(Cond), I);
953 
954     // If the other GEP has all zero indices, recurse.
955     // FIXME: Handle vector of pointers.
956     if (!GEPRHS->getType()->isVectorTy() && GEPRHS->hasAllZeroIndices())
957       return foldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
958 
959     bool GEPsInBounds = GEPLHS->isInBounds() && GEPRHS->isInBounds();
960     if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
961       // If the GEPs only differ by one index, compare it.
962       unsigned NumDifferences = 0;  // Keep track of # differences.
963       unsigned DiffOperand = 0;     // The operand that differs.
964       for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
965         if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
966           Type *LHSType = GEPLHS->getOperand(i)->getType();
967           Type *RHSType = GEPRHS->getOperand(i)->getType();
968           // FIXME: Better support for vector of pointers.
969           if (LHSType->getPrimitiveSizeInBits() !=
970                    RHSType->getPrimitiveSizeInBits() ||
971               (GEPLHS->getType()->isVectorTy() &&
972                (!LHSType->isVectorTy() || !RHSType->isVectorTy()))) {
973             // Irreconcilable differences.
974             NumDifferences = 2;
975             break;
976           }
977 
978           if (NumDifferences++) break;
979           DiffOperand = i;
980         }
981 
982       if (NumDifferences == 0)   // SAME GEP?
983         return replaceInstUsesWith(I, // No comparison is needed here.
984           ConstantInt::get(I.getType(), ICmpInst::isTrueWhenEqual(Cond)));
985 
986       else if (NumDifferences == 1 && GEPsInBounds) {
987         Value *LHSV = GEPLHS->getOperand(DiffOperand);
988         Value *RHSV = GEPRHS->getOperand(DiffOperand);
989         // Make sure we do a signed comparison here.
990         return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
991       }
992     }
993 
994     // Only lower this if the icmp is the only user of the GEP or if we expect
995     // the result to fold to a constant!
996     if (GEPsInBounds && (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
997         (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
998       // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2)  --->  (OFFSET1 cmp OFFSET2)
999       Value *L = EmitGEPOffset(GEPLHS);
1000       Value *R = EmitGEPOffset(GEPRHS);
1001       return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
1002     }
1003   }
1004 
1005   // Try convert this to an indexed compare by looking through PHIs/casts as a
1006   // last resort.
1007   return transformToIndexedCompare(GEPLHS, RHS, Cond, DL);
1008 }
1009 
foldAllocaCmp(ICmpInst & ICI,const AllocaInst * Alloca,const Value * Other)1010 Instruction *InstCombinerImpl::foldAllocaCmp(ICmpInst &ICI,
1011                                              const AllocaInst *Alloca,
1012                                              const Value *Other) {
1013   assert(ICI.isEquality() && "Cannot fold non-equality comparison.");
1014 
1015   // It would be tempting to fold away comparisons between allocas and any
1016   // pointer not based on that alloca (e.g. an argument). However, even
1017   // though such pointers cannot alias, they can still compare equal.
1018   //
1019   // But LLVM doesn't specify where allocas get their memory, so if the alloca
1020   // doesn't escape we can argue that it's impossible to guess its value, and we
1021   // can therefore act as if any such guesses are wrong.
1022   //
1023   // The code below checks that the alloca doesn't escape, and that it's only
1024   // used in a comparison once (the current instruction). The
1025   // single-comparison-use condition ensures that we're trivially folding all
1026   // comparisons against the alloca consistently, and avoids the risk of
1027   // erroneously folding a comparison of the pointer with itself.
1028 
1029   unsigned MaxIter = 32; // Break cycles and bound to constant-time.
1030 
1031   SmallVector<const Use *, 32> Worklist;
1032   for (const Use &U : Alloca->uses()) {
1033     if (Worklist.size() >= MaxIter)
1034       return nullptr;
1035     Worklist.push_back(&U);
1036   }
1037 
1038   unsigned NumCmps = 0;
1039   while (!Worklist.empty()) {
1040     assert(Worklist.size() <= MaxIter);
1041     const Use *U = Worklist.pop_back_val();
1042     const Value *V = U->getUser();
1043     --MaxIter;
1044 
1045     if (isa<BitCastInst>(V) || isa<GetElementPtrInst>(V) || isa<PHINode>(V) ||
1046         isa<SelectInst>(V)) {
1047       // Track the uses.
1048     } else if (isa<LoadInst>(V)) {
1049       // Loading from the pointer doesn't escape it.
1050       continue;
1051     } else if (const auto *SI = dyn_cast<StoreInst>(V)) {
1052       // Storing *to* the pointer is fine, but storing the pointer escapes it.
1053       if (SI->getValueOperand() == U->get())
1054         return nullptr;
1055       continue;
1056     } else if (isa<ICmpInst>(V)) {
1057       if (NumCmps++)
1058         return nullptr; // Found more than one cmp.
1059       continue;
1060     } else if (const auto *Intrin = dyn_cast<IntrinsicInst>(V)) {
1061       switch (Intrin->getIntrinsicID()) {
1062         // These intrinsics don't escape or compare the pointer. Memset is safe
1063         // because we don't allow ptrtoint. Memcpy and memmove are safe because
1064         // we don't allow stores, so src cannot point to V.
1065         case Intrinsic::lifetime_start: case Intrinsic::lifetime_end:
1066         case Intrinsic::memcpy: case Intrinsic::memmove: case Intrinsic::memset:
1067           continue;
1068         default:
1069           return nullptr;
1070       }
1071     } else {
1072       return nullptr;
1073     }
1074     for (const Use &U : V->uses()) {
1075       if (Worklist.size() >= MaxIter)
1076         return nullptr;
1077       Worklist.push_back(&U);
1078     }
1079   }
1080 
1081   Type *CmpTy = CmpInst::makeCmpResultType(Other->getType());
1082   return replaceInstUsesWith(
1083       ICI,
1084       ConstantInt::get(CmpTy, !CmpInst::isTrueWhenEqual(ICI.getPredicate())));
1085 }
1086 
1087 /// Fold "icmp pred (X+C), X".
foldICmpAddOpConst(Value * X,const APInt & C,ICmpInst::Predicate Pred)1088 Instruction *InstCombinerImpl::foldICmpAddOpConst(Value *X, const APInt &C,
1089                                                   ICmpInst::Predicate Pred) {
1090   // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
1091   // so the values can never be equal.  Similarly for all other "or equals"
1092   // operators.
1093   assert(!!C && "C should not be zero!");
1094 
1095   // (X+1) <u X        --> X >u (MAXUINT-1)        --> X == 255
1096   // (X+2) <u X        --> X >u (MAXUINT-2)        --> X > 253
1097   // (X+MAXUINT) <u X  --> X >u (MAXUINT-MAXUINT)  --> X != 0
1098   if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
1099     Constant *R = ConstantInt::get(X->getType(),
1100                                    APInt::getMaxValue(C.getBitWidth()) - C);
1101     return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
1102   }
1103 
1104   // (X+1) >u X        --> X <u (0-1)        --> X != 255
1105   // (X+2) >u X        --> X <u (0-2)        --> X <u 254
1106   // (X+MAXUINT) >u X  --> X <u (0-MAXUINT)  --> X <u 1  --> X == 0
1107   if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE)
1108     return new ICmpInst(ICmpInst::ICMP_ULT, X,
1109                         ConstantInt::get(X->getType(), -C));
1110 
1111   APInt SMax = APInt::getSignedMaxValue(C.getBitWidth());
1112 
1113   // (X+ 1) <s X       --> X >s (MAXSINT-1)          --> X == 127
1114   // (X+ 2) <s X       --> X >s (MAXSINT-2)          --> X >s 125
1115   // (X+MAXSINT) <s X  --> X >s (MAXSINT-MAXSINT)    --> X >s 0
1116   // (X+MINSINT) <s X  --> X >s (MAXSINT-MINSINT)    --> X >s -1
1117   // (X+ -2) <s X      --> X >s (MAXSINT- -2)        --> X >s 126
1118   // (X+ -1) <s X      --> X >s (MAXSINT- -1)        --> X != 127
1119   if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
1120     return new ICmpInst(ICmpInst::ICMP_SGT, X,
1121                         ConstantInt::get(X->getType(), SMax - C));
1122 
1123   // (X+ 1) >s X       --> X <s (MAXSINT-(1-1))       --> X != 127
1124   // (X+ 2) >s X       --> X <s (MAXSINT-(2-1))       --> X <s 126
1125   // (X+MAXSINT) >s X  --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
1126   // (X+MINSINT) >s X  --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
1127   // (X+ -2) >s X      --> X <s (MAXSINT-(-2-1))      --> X <s -126
1128   // (X+ -1) >s X      --> X <s (MAXSINT-(-1-1))      --> X == -128
1129 
1130   assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
1131   return new ICmpInst(ICmpInst::ICMP_SLT, X,
1132                       ConstantInt::get(X->getType(), SMax - (C - 1)));
1133 }
1134 
1135 /// Handle "(icmp eq/ne (ashr/lshr AP2, A), AP1)" ->
1136 /// (icmp eq/ne A, Log2(AP2/AP1)) ->
1137 /// (icmp eq/ne A, Log2(AP2) - Log2(AP1)).
foldICmpShrConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1138 Instruction *InstCombinerImpl::foldICmpShrConstConst(ICmpInst &I, Value *A,
1139                                                      const APInt &AP1,
1140                                                      const APInt &AP2) {
1141   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1142 
1143   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1144     if (I.getPredicate() == I.ICMP_NE)
1145       Pred = CmpInst::getInversePredicate(Pred);
1146     return new ICmpInst(Pred, LHS, RHS);
1147   };
1148 
1149   // Don't bother doing any work for cases which InstSimplify handles.
1150   if (AP2.isNullValue())
1151     return nullptr;
1152 
1153   bool IsAShr = isa<AShrOperator>(I.getOperand(0));
1154   if (IsAShr) {
1155     if (AP2.isAllOnesValue())
1156       return nullptr;
1157     if (AP2.isNegative() != AP1.isNegative())
1158       return nullptr;
1159     if (AP2.sgt(AP1))
1160       return nullptr;
1161   }
1162 
1163   if (!AP1)
1164     // 'A' must be large enough to shift out the highest set bit.
1165     return getICmp(I.ICMP_UGT, A,
1166                    ConstantInt::get(A->getType(), AP2.logBase2()));
1167 
1168   if (AP1 == AP2)
1169     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1170 
1171   int Shift;
1172   if (IsAShr && AP1.isNegative())
1173     Shift = AP1.countLeadingOnes() - AP2.countLeadingOnes();
1174   else
1175     Shift = AP1.countLeadingZeros() - AP2.countLeadingZeros();
1176 
1177   if (Shift > 0) {
1178     if (IsAShr && AP1 == AP2.ashr(Shift)) {
1179       // There are multiple solutions if we are comparing against -1 and the LHS
1180       // of the ashr is not a power of two.
1181       if (AP1.isAllOnesValue() && !AP2.isPowerOf2())
1182         return getICmp(I.ICMP_UGE, A, ConstantInt::get(A->getType(), Shift));
1183       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1184     } else if (AP1 == AP2.lshr(Shift)) {
1185       return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1186     }
1187   }
1188 
1189   // Shifting const2 will never be equal to const1.
1190   // FIXME: This should always be handled by InstSimplify?
1191   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1192   return replaceInstUsesWith(I, TorF);
1193 }
1194 
1195 /// Handle "(icmp eq/ne (shl AP2, A), AP1)" ->
1196 /// (icmp eq/ne A, TrailingZeros(AP1) - TrailingZeros(AP2)).
foldICmpShlConstConst(ICmpInst & I,Value * A,const APInt & AP1,const APInt & AP2)1197 Instruction *InstCombinerImpl::foldICmpShlConstConst(ICmpInst &I, Value *A,
1198                                                      const APInt &AP1,
1199                                                      const APInt &AP2) {
1200   assert(I.isEquality() && "Cannot fold icmp gt/lt");
1201 
1202   auto getICmp = [&I](CmpInst::Predicate Pred, Value *LHS, Value *RHS) {
1203     if (I.getPredicate() == I.ICMP_NE)
1204       Pred = CmpInst::getInversePredicate(Pred);
1205     return new ICmpInst(Pred, LHS, RHS);
1206   };
1207 
1208   // Don't bother doing any work for cases which InstSimplify handles.
1209   if (AP2.isNullValue())
1210     return nullptr;
1211 
1212   unsigned AP2TrailingZeros = AP2.countTrailingZeros();
1213 
1214   if (!AP1 && AP2TrailingZeros != 0)
1215     return getICmp(
1216         I.ICMP_UGE, A,
1217         ConstantInt::get(A->getType(), AP2.getBitWidth() - AP2TrailingZeros));
1218 
1219   if (AP1 == AP2)
1220     return getICmp(I.ICMP_EQ, A, ConstantInt::getNullValue(A->getType()));
1221 
1222   // Get the distance between the lowest bits that are set.
1223   int Shift = AP1.countTrailingZeros() - AP2TrailingZeros;
1224 
1225   if (Shift > 0 && AP2.shl(Shift) == AP1)
1226     return getICmp(I.ICMP_EQ, A, ConstantInt::get(A->getType(), Shift));
1227 
1228   // Shifting const2 will never be equal to const1.
1229   // FIXME: This should always be handled by InstSimplify?
1230   auto *TorF = ConstantInt::get(I.getType(), I.getPredicate() == I.ICMP_NE);
1231   return replaceInstUsesWith(I, TorF);
1232 }
1233 
1234 /// The caller has matched a pattern of the form:
1235 ///   I = icmp ugt (add (add A, B), CI2), CI1
1236 /// If this is of the form:
1237 ///   sum = a + b
1238 ///   if (sum+128 >u 255)
1239 /// Then replace it with llvm.sadd.with.overflow.i8.
1240 ///
processUGT_ADDCST_ADD(ICmpInst & I,Value * A,Value * B,ConstantInt * CI2,ConstantInt * CI1,InstCombinerImpl & IC)1241 static Instruction *processUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1242                                           ConstantInt *CI2, ConstantInt *CI1,
1243                                           InstCombinerImpl &IC) {
1244   // The transformation we're trying to do here is to transform this into an
1245   // llvm.sadd.with.overflow.  To do this, we have to replace the original add
1246   // with a narrower add, and discard the add-with-constant that is part of the
1247   // range check (if we can't eliminate it, this isn't profitable).
1248 
1249   // In order to eliminate the add-with-constant, the compare can be its only
1250   // use.
1251   Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
1252   if (!AddWithCst->hasOneUse())
1253     return nullptr;
1254 
1255   // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1256   if (!CI2->getValue().isPowerOf2())
1257     return nullptr;
1258   unsigned NewWidth = CI2->getValue().countTrailingZeros();
1259   if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31)
1260     return nullptr;
1261 
1262   // The width of the new add formed is 1 more than the bias.
1263   ++NewWidth;
1264 
1265   // Check to see that CI1 is an all-ones value with NewWidth bits.
1266   if (CI1->getBitWidth() == NewWidth ||
1267       CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1268     return nullptr;
1269 
1270   // This is only really a signed overflow check if the inputs have been
1271   // sign-extended; check for that condition. For example, if CI2 is 2^31 and
1272   // the operands of the add are 64 bits wide, we need at least 33 sign bits.
1273   unsigned NeededSignBits = CI1->getBitWidth() - NewWidth + 1;
1274   if (IC.ComputeNumSignBits(A, 0, &I) < NeededSignBits ||
1275       IC.ComputeNumSignBits(B, 0, &I) < NeededSignBits)
1276     return nullptr;
1277 
1278   // In order to replace the original add with a narrower
1279   // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1280   // and truncates that discard the high bits of the add.  Verify that this is
1281   // the case.
1282   Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1283   for (User *U : OrigAdd->users()) {
1284     if (U == AddWithCst)
1285       continue;
1286 
1287     // Only accept truncates for now.  We would really like a nice recursive
1288     // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1289     // chain to see which bits of a value are actually demanded.  If the
1290     // original add had another add which was then immediately truncated, we
1291     // could still do the transformation.
1292     TruncInst *TI = dyn_cast<TruncInst>(U);
1293     if (!TI || TI->getType()->getPrimitiveSizeInBits() > NewWidth)
1294       return nullptr;
1295   }
1296 
1297   // If the pattern matches, truncate the inputs to the narrower type and
1298   // use the sadd_with_overflow intrinsic to efficiently compute both the
1299   // result and the overflow bit.
1300   Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1301   Function *F = Intrinsic::getDeclaration(
1302       I.getModule(), Intrinsic::sadd_with_overflow, NewType);
1303 
1304   InstCombiner::BuilderTy &Builder = IC.Builder;
1305 
1306   // Put the new code above the original add, in case there are any uses of the
1307   // add between the add and the compare.
1308   Builder.SetInsertPoint(OrigAdd);
1309 
1310   Value *TruncA = Builder.CreateTrunc(A, NewType, A->getName() + ".trunc");
1311   Value *TruncB = Builder.CreateTrunc(B, NewType, B->getName() + ".trunc");
1312   CallInst *Call = Builder.CreateCall(F, {TruncA, TruncB}, "sadd");
1313   Value *Add = Builder.CreateExtractValue(Call, 0, "sadd.result");
1314   Value *ZExt = Builder.CreateZExt(Add, OrigAdd->getType());
1315 
1316   // The inner add was the result of the narrow add, zero extended to the
1317   // wider type.  Replace it with the result computed by the intrinsic.
1318   IC.replaceInstUsesWith(*OrigAdd, ZExt);
1319   IC.eraseInstFromFunction(*OrigAdd);
1320 
1321   // The original icmp gets replaced with the overflow value.
1322   return ExtractValueInst::Create(Call, 1, "sadd.overflow");
1323 }
1324 
1325 /// If we have:
1326 ///   icmp eq/ne (urem/srem %x, %y), 0
1327 /// iff %y is a power-of-two, we can replace this with a bit test:
1328 ///   icmp eq/ne (and %x, (add %y, -1)), 0
foldIRemByPowerOfTwoToBitTest(ICmpInst & I)1329 Instruction *InstCombinerImpl::foldIRemByPowerOfTwoToBitTest(ICmpInst &I) {
1330   // This fold is only valid for equality predicates.
1331   if (!I.isEquality())
1332     return nullptr;
1333   ICmpInst::Predicate Pred;
1334   Value *X, *Y, *Zero;
1335   if (!match(&I, m_ICmp(Pred, m_OneUse(m_IRem(m_Value(X), m_Value(Y))),
1336                         m_CombineAnd(m_Zero(), m_Value(Zero)))))
1337     return nullptr;
1338   if (!isKnownToBeAPowerOfTwo(Y, /*OrZero*/ true, 0, &I))
1339     return nullptr;
1340   // This may increase instruction count, we don't enforce that Y is a constant.
1341   Value *Mask = Builder.CreateAdd(Y, Constant::getAllOnesValue(Y->getType()));
1342   Value *Masked = Builder.CreateAnd(X, Mask);
1343   return ICmpInst::Create(Instruction::ICmp, Pred, Masked, Zero);
1344 }
1345 
1346 /// Fold equality-comparison between zero and any (maybe truncated) right-shift
1347 /// by one-less-than-bitwidth into a sign test on the original value.
foldSignBitTest(ICmpInst & I)1348 Instruction *InstCombinerImpl::foldSignBitTest(ICmpInst &I) {
1349   Instruction *Val;
1350   ICmpInst::Predicate Pred;
1351   if (!I.isEquality() || !match(&I, m_ICmp(Pred, m_Instruction(Val), m_Zero())))
1352     return nullptr;
1353 
1354   Value *X;
1355   Type *XTy;
1356 
1357   Constant *C;
1358   if (match(Val, m_TruncOrSelf(m_Shr(m_Value(X), m_Constant(C))))) {
1359     XTy = X->getType();
1360     unsigned XBitWidth = XTy->getScalarSizeInBits();
1361     if (!match(C, m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_EQ,
1362                                      APInt(XBitWidth, XBitWidth - 1))))
1363       return nullptr;
1364   } else if (isa<BinaryOperator>(Val) &&
1365              (X = reassociateShiftAmtsOfTwoSameDirectionShifts(
1366                   cast<BinaryOperator>(Val), SQ.getWithInstruction(Val),
1367                   /*AnalyzeForSignBitExtraction=*/true))) {
1368     XTy = X->getType();
1369   } else
1370     return nullptr;
1371 
1372   return ICmpInst::Create(Instruction::ICmp,
1373                           Pred == ICmpInst::ICMP_EQ ? ICmpInst::ICMP_SGE
1374                                                     : ICmpInst::ICMP_SLT,
1375                           X, ConstantInt::getNullValue(XTy));
1376 }
1377 
1378 // Handle  icmp pred X, 0
foldICmpWithZero(ICmpInst & Cmp)1379 Instruction *InstCombinerImpl::foldICmpWithZero(ICmpInst &Cmp) {
1380   CmpInst::Predicate Pred = Cmp.getPredicate();
1381   if (!match(Cmp.getOperand(1), m_Zero()))
1382     return nullptr;
1383 
1384   // (icmp sgt smin(PosA, B) 0) -> (icmp sgt B 0)
1385   if (Pred == ICmpInst::ICMP_SGT) {
1386     Value *A, *B;
1387     SelectPatternResult SPR = matchSelectPattern(Cmp.getOperand(0), A, B);
1388     if (SPR.Flavor == SPF_SMIN) {
1389       if (isKnownPositive(A, DL, 0, &AC, &Cmp, &DT))
1390         return new ICmpInst(Pred, B, Cmp.getOperand(1));
1391       if (isKnownPositive(B, DL, 0, &AC, &Cmp, &DT))
1392         return new ICmpInst(Pred, A, Cmp.getOperand(1));
1393     }
1394   }
1395 
1396   if (Instruction *New = foldIRemByPowerOfTwoToBitTest(Cmp))
1397     return New;
1398 
1399   // Given:
1400   //   icmp eq/ne (urem %x, %y), 0
1401   // Iff %x has 0 or 1 bits set, and %y has at least 2 bits set, omit 'urem':
1402   //   icmp eq/ne %x, 0
1403   Value *X, *Y;
1404   if (match(Cmp.getOperand(0), m_URem(m_Value(X), m_Value(Y))) &&
1405       ICmpInst::isEquality(Pred)) {
1406     KnownBits XKnown = computeKnownBits(X, 0, &Cmp);
1407     KnownBits YKnown = computeKnownBits(Y, 0, &Cmp);
1408     if (XKnown.countMaxPopulation() == 1 && YKnown.countMinPopulation() >= 2)
1409       return new ICmpInst(Pred, X, Cmp.getOperand(1));
1410   }
1411 
1412   return nullptr;
1413 }
1414 
1415 /// Fold icmp Pred X, C.
1416 /// TODO: This code structure does not make sense. The saturating add fold
1417 /// should be moved to some other helper and extended as noted below (it is also
1418 /// possible that code has been made unnecessary - do we canonicalize IR to
1419 /// overflow/saturating intrinsics or not?).
foldICmpWithConstant(ICmpInst & Cmp)1420 Instruction *InstCombinerImpl::foldICmpWithConstant(ICmpInst &Cmp) {
1421   // Match the following pattern, which is a common idiom when writing
1422   // overflow-safe integer arithmetic functions. The source performs an addition
1423   // in wider type and explicitly checks for overflow using comparisons against
1424   // INT_MIN and INT_MAX. Simplify by using the sadd_with_overflow intrinsic.
1425   //
1426   // TODO: This could probably be generalized to handle other overflow-safe
1427   // operations if we worked out the formulas to compute the appropriate magic
1428   // constants.
1429   //
1430   // sum = a + b
1431   // if (sum+128 >u 255)  ...  -> llvm.sadd.with.overflow.i8
1432   CmpInst::Predicate Pred = Cmp.getPredicate();
1433   Value *Op0 = Cmp.getOperand(0), *Op1 = Cmp.getOperand(1);
1434   Value *A, *B;
1435   ConstantInt *CI, *CI2; // I = icmp ugt (add (add A, B), CI2), CI
1436   if (Pred == ICmpInst::ICMP_UGT && match(Op1, m_ConstantInt(CI)) &&
1437       match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
1438     if (Instruction *Res = processUGT_ADDCST_ADD(Cmp, A, B, CI2, CI, *this))
1439       return Res;
1440 
1441   // icmp(phi(C1, C2, ...), C) -> phi(icmp(C1, C), icmp(C2, C), ...).
1442   Constant *C = dyn_cast<Constant>(Op1);
1443   if (!C || C->canTrap())
1444     return nullptr;
1445 
1446   if (auto *Phi = dyn_cast<PHINode>(Op0))
1447     if (all_of(Phi->operands(), [](Value *V) { return isa<Constant>(V); })) {
1448       Type *Ty = Cmp.getType();
1449       Builder.SetInsertPoint(Phi);
1450       PHINode *NewPhi =
1451           Builder.CreatePHI(Ty, Phi->getNumOperands());
1452       for (BasicBlock *Predecessor : predecessors(Phi->getParent())) {
1453         auto *Input =
1454             cast<Constant>(Phi->getIncomingValueForBlock(Predecessor));
1455         auto *BoolInput = ConstantExpr::getCompare(Pred, Input, C);
1456         NewPhi->addIncoming(BoolInput, Predecessor);
1457       }
1458       NewPhi->takeName(&Cmp);
1459       return replaceInstUsesWith(Cmp, NewPhi);
1460     }
1461 
1462   return nullptr;
1463 }
1464 
1465 /// Canonicalize icmp instructions based on dominating conditions.
foldICmpWithDominatingICmp(ICmpInst & Cmp)1466 Instruction *InstCombinerImpl::foldICmpWithDominatingICmp(ICmpInst &Cmp) {
1467   // This is a cheap/incomplete check for dominance - just match a single
1468   // predecessor with a conditional branch.
1469   BasicBlock *CmpBB = Cmp.getParent();
1470   BasicBlock *DomBB = CmpBB->getSinglePredecessor();
1471   if (!DomBB)
1472     return nullptr;
1473 
1474   Value *DomCond;
1475   BasicBlock *TrueBB, *FalseBB;
1476   if (!match(DomBB->getTerminator(), m_Br(m_Value(DomCond), TrueBB, FalseBB)))
1477     return nullptr;
1478 
1479   assert((TrueBB == CmpBB || FalseBB == CmpBB) &&
1480          "Predecessor block does not point to successor?");
1481 
1482   // The branch should get simplified. Don't bother simplifying this condition.
1483   if (TrueBB == FalseBB)
1484     return nullptr;
1485 
1486   // Try to simplify this compare to T/F based on the dominating condition.
1487   Optional<bool> Imp = isImpliedCondition(DomCond, &Cmp, DL, TrueBB == CmpBB);
1488   if (Imp)
1489     return replaceInstUsesWith(Cmp, ConstantInt::get(Cmp.getType(), *Imp));
1490 
1491   CmpInst::Predicate Pred = Cmp.getPredicate();
1492   Value *X = Cmp.getOperand(0), *Y = Cmp.getOperand(1);
1493   ICmpInst::Predicate DomPred;
1494   const APInt *C, *DomC;
1495   if (match(DomCond, m_ICmp(DomPred, m_Specific(X), m_APInt(DomC))) &&
1496       match(Y, m_APInt(C))) {
1497     // We have 2 compares of a variable with constants. Calculate the constant
1498     // ranges of those compares to see if we can transform the 2nd compare:
1499     // DomBB:
1500     //   DomCond = icmp DomPred X, DomC
1501     //   br DomCond, CmpBB, FalseBB
1502     // CmpBB:
1503     //   Cmp = icmp Pred X, C
1504     ConstantRange CR = ConstantRange::makeExactICmpRegion(Pred, *C);
1505     ConstantRange DominatingCR =
1506         (CmpBB == TrueBB) ? ConstantRange::makeExactICmpRegion(DomPred, *DomC)
1507                           : ConstantRange::makeExactICmpRegion(
1508                                 CmpInst::getInversePredicate(DomPred), *DomC);
1509     ConstantRange Intersection = DominatingCR.intersectWith(CR);
1510     ConstantRange Difference = DominatingCR.difference(CR);
1511     if (Intersection.isEmptySet())
1512       return replaceInstUsesWith(Cmp, Builder.getFalse());
1513     if (Difference.isEmptySet())
1514       return replaceInstUsesWith(Cmp, Builder.getTrue());
1515 
1516     // Canonicalizing a sign bit comparison that gets used in a branch,
1517     // pessimizes codegen by generating branch on zero instruction instead
1518     // of a test and branch. So we avoid canonicalizing in such situations
1519     // because test and branch instruction has better branch displacement
1520     // than compare and branch instruction.
1521     bool UnusedBit;
1522     bool IsSignBit = isSignBitCheck(Pred, *C, UnusedBit);
1523     if (Cmp.isEquality() || (IsSignBit && hasBranchUse(Cmp)))
1524       return nullptr;
1525 
1526     // Avoid an infinite loop with min/max canonicalization.
1527     // TODO: This will be unnecessary if we canonicalize to min/max intrinsics.
1528     if (Cmp.hasOneUse() &&
1529         match(Cmp.user_back(), m_MaxOrMin(m_Value(), m_Value())))
1530       return nullptr;
1531 
1532     if (const APInt *EqC = Intersection.getSingleElement())
1533       return new ICmpInst(ICmpInst::ICMP_EQ, X, Builder.getInt(*EqC));
1534     if (const APInt *NeC = Difference.getSingleElement())
1535       return new ICmpInst(ICmpInst::ICMP_NE, X, Builder.getInt(*NeC));
1536   }
1537 
1538   return nullptr;
1539 }
1540 
1541 /// Fold icmp (trunc X, Y), C.
foldICmpTruncConstant(ICmpInst & Cmp,TruncInst * Trunc,const APInt & C)1542 Instruction *InstCombinerImpl::foldICmpTruncConstant(ICmpInst &Cmp,
1543                                                      TruncInst *Trunc,
1544                                                      const APInt &C) {
1545   ICmpInst::Predicate Pred = Cmp.getPredicate();
1546   Value *X = Trunc->getOperand(0);
1547   if (C.isOneValue() && C.getBitWidth() > 1) {
1548     // icmp slt trunc(signum(V)) 1 --> icmp slt V, 1
1549     Value *V = nullptr;
1550     if (Pred == ICmpInst::ICMP_SLT && match(X, m_Signum(m_Value(V))))
1551       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1552                           ConstantInt::get(V->getType(), 1));
1553   }
1554 
1555   unsigned DstBits = Trunc->getType()->getScalarSizeInBits(),
1556            SrcBits = X->getType()->getScalarSizeInBits();
1557   if (Cmp.isEquality() && Trunc->hasOneUse()) {
1558     // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
1559     // of the high bits truncated out of x are known.
1560     KnownBits Known = computeKnownBits(X, 0, &Cmp);
1561 
1562     // If all the high bits are known, we can do this xform.
1563     if ((Known.Zero | Known.One).countLeadingOnes() >= SrcBits - DstBits) {
1564       // Pull in the high bits from known-ones set.
1565       APInt NewRHS = C.zext(SrcBits);
1566       NewRHS |= Known.One & APInt::getHighBitsSet(SrcBits, SrcBits - DstBits);
1567       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), NewRHS));
1568     }
1569   }
1570 
1571   // Look through truncated right-shift of the sign-bit for a sign-bit check:
1572   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] < 0  --> ShOp <  0
1573   // trunc iN (ShOp >> ShAmtC) to i[N - ShAmtC] > -1 --> ShOp > -1
1574   Value *ShOp;
1575   const APInt *ShAmtC;
1576   bool TrueIfSigned;
1577   if (isSignBitCheck(Pred, C, TrueIfSigned) &&
1578       match(X, m_Shr(m_Value(ShOp), m_APInt(ShAmtC))) &&
1579       DstBits == SrcBits - ShAmtC->getZExtValue()) {
1580     return TrueIfSigned
1581                ? new ICmpInst(ICmpInst::ICMP_SLT, ShOp,
1582                               ConstantInt::getNullValue(X->getType()))
1583                : new ICmpInst(ICmpInst::ICMP_SGT, ShOp,
1584                               ConstantInt::getAllOnesValue(X->getType()));
1585   }
1586 
1587   return nullptr;
1588 }
1589 
1590 /// Fold icmp (xor X, Y), C.
foldICmpXorConstant(ICmpInst & Cmp,BinaryOperator * Xor,const APInt & C)1591 Instruction *InstCombinerImpl::foldICmpXorConstant(ICmpInst &Cmp,
1592                                                    BinaryOperator *Xor,
1593                                                    const APInt &C) {
1594   Value *X = Xor->getOperand(0);
1595   Value *Y = Xor->getOperand(1);
1596   const APInt *XorC;
1597   if (!match(Y, m_APInt(XorC)))
1598     return nullptr;
1599 
1600   // If this is a comparison that tests the signbit (X < 0) or (x > -1),
1601   // fold the xor.
1602   ICmpInst::Predicate Pred = Cmp.getPredicate();
1603   bool TrueIfSigned = false;
1604   if (isSignBitCheck(Cmp.getPredicate(), C, TrueIfSigned)) {
1605 
1606     // If the sign bit of the XorCst is not set, there is no change to
1607     // the operation, just stop using the Xor.
1608     if (!XorC->isNegative())
1609       return replaceOperand(Cmp, 0, X);
1610 
1611     // Emit the opposite comparison.
1612     if (TrueIfSigned)
1613       return new ICmpInst(ICmpInst::ICMP_SGT, X,
1614                           ConstantInt::getAllOnesValue(X->getType()));
1615     else
1616       return new ICmpInst(ICmpInst::ICMP_SLT, X,
1617                           ConstantInt::getNullValue(X->getType()));
1618   }
1619 
1620   if (Xor->hasOneUse()) {
1621     // (icmp u/s (xor X SignMask), C) -> (icmp s/u X, (xor C SignMask))
1622     if (!Cmp.isEquality() && XorC->isSignMask()) {
1623       Pred = Cmp.getFlippedSignednessPredicate();
1624       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1625     }
1626 
1627     // (icmp u/s (xor X ~SignMask), C) -> (icmp s/u X, (xor C ~SignMask))
1628     if (!Cmp.isEquality() && XorC->isMaxSignedValue()) {
1629       Pred = Cmp.getFlippedSignednessPredicate();
1630       Pred = Cmp.getSwappedPredicate(Pred);
1631       return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), C ^ *XorC));
1632     }
1633   }
1634 
1635   // Mask constant magic can eliminate an 'xor' with unsigned compares.
1636   if (Pred == ICmpInst::ICMP_UGT) {
1637     // (xor X, ~C) >u C --> X <u ~C (when C+1 is a power of 2)
1638     if (*XorC == ~C && (C + 1).isPowerOf2())
1639       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
1640     // (xor X, C) >u C --> X >u C (when C+1 is a power of 2)
1641     if (*XorC == C && (C + 1).isPowerOf2())
1642       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
1643   }
1644   if (Pred == ICmpInst::ICMP_ULT) {
1645     // (xor X, -C) <u C --> X >u ~C (when C is a power of 2)
1646     if (*XorC == -C && C.isPowerOf2())
1647       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1648                           ConstantInt::get(X->getType(), ~C));
1649     // (xor X, C) <u C --> X >u ~C (when -C is a power of 2)
1650     if (*XorC == C && (-C).isPowerOf2())
1651       return new ICmpInst(ICmpInst::ICMP_UGT, X,
1652                           ConstantInt::get(X->getType(), ~C));
1653   }
1654   return nullptr;
1655 }
1656 
1657 /// Fold icmp (and (sh X, Y), C2), C1.
foldICmpAndShift(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1,const APInt & C2)1658 Instruction *InstCombinerImpl::foldICmpAndShift(ICmpInst &Cmp,
1659                                                 BinaryOperator *And,
1660                                                 const APInt &C1,
1661                                                 const APInt &C2) {
1662   BinaryOperator *Shift = dyn_cast<BinaryOperator>(And->getOperand(0));
1663   if (!Shift || !Shift->isShift())
1664     return nullptr;
1665 
1666   // If this is: (X >> C3) & C2 != C1 (where any shift and any compare could
1667   // exist), turn it into (X & (C2 << C3)) != (C1 << C3). This happens a LOT in
1668   // code produced by the clang front-end, for bitfield access.
1669   // This seemingly simple opportunity to fold away a shift turns out to be
1670   // rather complicated. See PR17827 for details.
1671   unsigned ShiftOpcode = Shift->getOpcode();
1672   bool IsShl = ShiftOpcode == Instruction::Shl;
1673   const APInt *C3;
1674   if (match(Shift->getOperand(1), m_APInt(C3))) {
1675     APInt NewAndCst, NewCmpCst;
1676     bool AnyCmpCstBitsShiftedOut;
1677     if (ShiftOpcode == Instruction::Shl) {
1678       // For a left shift, we can fold if the comparison is not signed. We can
1679       // also fold a signed comparison if the mask value and comparison value
1680       // are not negative. These constraints may not be obvious, but we can
1681       // prove that they are correct using an SMT solver.
1682       if (Cmp.isSigned() && (C2.isNegative() || C1.isNegative()))
1683         return nullptr;
1684 
1685       NewCmpCst = C1.lshr(*C3);
1686       NewAndCst = C2.lshr(*C3);
1687       AnyCmpCstBitsShiftedOut = NewCmpCst.shl(*C3) != C1;
1688     } else if (ShiftOpcode == Instruction::LShr) {
1689       // For a logical right shift, we can fold if the comparison is not signed.
1690       // We can also fold a signed comparison if the shifted mask value and the
1691       // shifted comparison value are not negative. These constraints may not be
1692       // obvious, but we can prove that they are correct using an SMT solver.
1693       NewCmpCst = C1.shl(*C3);
1694       NewAndCst = C2.shl(*C3);
1695       AnyCmpCstBitsShiftedOut = NewCmpCst.lshr(*C3) != C1;
1696       if (Cmp.isSigned() && (NewAndCst.isNegative() || NewCmpCst.isNegative()))
1697         return nullptr;
1698     } else {
1699       // For an arithmetic shift, check that both constants don't use (in a
1700       // signed sense) the top bits being shifted out.
1701       assert(ShiftOpcode == Instruction::AShr && "Unknown shift opcode");
1702       NewCmpCst = C1.shl(*C3);
1703       NewAndCst = C2.shl(*C3);
1704       AnyCmpCstBitsShiftedOut = NewCmpCst.ashr(*C3) != C1;
1705       if (NewAndCst.ashr(*C3) != C2)
1706         return nullptr;
1707     }
1708 
1709     if (AnyCmpCstBitsShiftedOut) {
1710       // If we shifted bits out, the fold is not going to work out. As a
1711       // special case, check to see if this means that the result is always
1712       // true or false now.
1713       if (Cmp.getPredicate() == ICmpInst::ICMP_EQ)
1714         return replaceInstUsesWith(Cmp, ConstantInt::getFalse(Cmp.getType()));
1715       if (Cmp.getPredicate() == ICmpInst::ICMP_NE)
1716         return replaceInstUsesWith(Cmp, ConstantInt::getTrue(Cmp.getType()));
1717     } else {
1718       Value *NewAnd = Builder.CreateAnd(
1719           Shift->getOperand(0), ConstantInt::get(And->getType(), NewAndCst));
1720       return new ICmpInst(Cmp.getPredicate(),
1721           NewAnd, ConstantInt::get(And->getType(), NewCmpCst));
1722     }
1723   }
1724 
1725   // Turn ((X >> Y) & C2) == 0  into  (X & (C2 << Y)) == 0.  The latter is
1726   // preferable because it allows the C2 << Y expression to be hoisted out of a
1727   // loop if Y is invariant and X is not.
1728   if (Shift->hasOneUse() && C1.isNullValue() && Cmp.isEquality() &&
1729       !Shift->isArithmeticShift() && !isa<Constant>(Shift->getOperand(0))) {
1730     // Compute C2 << Y.
1731     Value *NewShift =
1732         IsShl ? Builder.CreateLShr(And->getOperand(1), Shift->getOperand(1))
1733               : Builder.CreateShl(And->getOperand(1), Shift->getOperand(1));
1734 
1735     // Compute X & (C2 << Y).
1736     Value *NewAnd = Builder.CreateAnd(Shift->getOperand(0), NewShift);
1737     return replaceOperand(Cmp, 0, NewAnd);
1738   }
1739 
1740   return nullptr;
1741 }
1742 
1743 /// Fold icmp (and X, C2), C1.
foldICmpAndConstConst(ICmpInst & Cmp,BinaryOperator * And,const APInt & C1)1744 Instruction *InstCombinerImpl::foldICmpAndConstConst(ICmpInst &Cmp,
1745                                                      BinaryOperator *And,
1746                                                      const APInt &C1) {
1747   bool isICMP_NE = Cmp.getPredicate() == ICmpInst::ICMP_NE;
1748 
1749   // For vectors: icmp ne (and X, 1), 0 --> trunc X to N x i1
1750   // TODO: We canonicalize to the longer form for scalars because we have
1751   // better analysis/folds for icmp, and codegen may be better with icmp.
1752   if (isICMP_NE && Cmp.getType()->isVectorTy() && C1.isNullValue() &&
1753       match(And->getOperand(1), m_One()))
1754     return new TruncInst(And->getOperand(0), Cmp.getType());
1755 
1756   const APInt *C2;
1757   Value *X;
1758   if (!match(And, m_And(m_Value(X), m_APInt(C2))))
1759     return nullptr;
1760 
1761   // Don't perform the following transforms if the AND has multiple uses
1762   if (!And->hasOneUse())
1763     return nullptr;
1764 
1765   if (Cmp.isEquality() && C1.isNullValue()) {
1766     // Restrict this fold to single-use 'and' (PR10267).
1767     // Replace (and X, (1 << size(X)-1) != 0) with X s< 0
1768     if (C2->isSignMask()) {
1769       Constant *Zero = Constant::getNullValue(X->getType());
1770       auto NewPred = isICMP_NE ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1771       return new ICmpInst(NewPred, X, Zero);
1772     }
1773 
1774     // Restrict this fold only for single-use 'and' (PR10267).
1775     // ((%x & C) == 0) --> %x u< (-C)  iff (-C) is power of two.
1776     if ((~(*C2) + 1).isPowerOf2()) {
1777       Constant *NegBOC =
1778           ConstantExpr::getNeg(cast<Constant>(And->getOperand(1)));
1779       auto NewPred = isICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1780       return new ICmpInst(NewPred, X, NegBOC);
1781     }
1782   }
1783 
1784   // If the LHS is an 'and' of a truncate and we can widen the and/compare to
1785   // the input width without changing the value produced, eliminate the cast:
1786   //
1787   // icmp (and (trunc W), C2), C1 -> icmp (and W, C2'), C1'
1788   //
1789   // We can do this transformation if the constants do not have their sign bits
1790   // set or if it is an equality comparison. Extending a relational comparison
1791   // when we're checking the sign bit would not work.
1792   Value *W;
1793   if (match(And->getOperand(0), m_OneUse(m_Trunc(m_Value(W)))) &&
1794       (Cmp.isEquality() || (!C1.isNegative() && !C2->isNegative()))) {
1795     // TODO: Is this a good transform for vectors? Wider types may reduce
1796     // throughput. Should this transform be limited (even for scalars) by using
1797     // shouldChangeType()?
1798     if (!Cmp.getType()->isVectorTy()) {
1799       Type *WideType = W->getType();
1800       unsigned WideScalarBits = WideType->getScalarSizeInBits();
1801       Constant *ZextC1 = ConstantInt::get(WideType, C1.zext(WideScalarBits));
1802       Constant *ZextC2 = ConstantInt::get(WideType, C2->zext(WideScalarBits));
1803       Value *NewAnd = Builder.CreateAnd(W, ZextC2, And->getName());
1804       return new ICmpInst(Cmp.getPredicate(), NewAnd, ZextC1);
1805     }
1806   }
1807 
1808   if (Instruction *I = foldICmpAndShift(Cmp, And, C1, *C2))
1809     return I;
1810 
1811   // (icmp pred (and (or (lshr A, B), A), 1), 0) -->
1812   // (icmp pred (and A, (or (shl 1, B), 1), 0))
1813   //
1814   // iff pred isn't signed
1815   if (!Cmp.isSigned() && C1.isNullValue() && And->getOperand(0)->hasOneUse() &&
1816       match(And->getOperand(1), m_One())) {
1817     Constant *One = cast<Constant>(And->getOperand(1));
1818     Value *Or = And->getOperand(0);
1819     Value *A, *B, *LShr;
1820     if (match(Or, m_Or(m_Value(LShr), m_Value(A))) &&
1821         match(LShr, m_LShr(m_Specific(A), m_Value(B)))) {
1822       unsigned UsesRemoved = 0;
1823       if (And->hasOneUse())
1824         ++UsesRemoved;
1825       if (Or->hasOneUse())
1826         ++UsesRemoved;
1827       if (LShr->hasOneUse())
1828         ++UsesRemoved;
1829 
1830       // Compute A & ((1 << B) | 1)
1831       Value *NewOr = nullptr;
1832       if (auto *C = dyn_cast<Constant>(B)) {
1833         if (UsesRemoved >= 1)
1834           NewOr = ConstantExpr::getOr(ConstantExpr::getNUWShl(One, C), One);
1835       } else {
1836         if (UsesRemoved >= 3)
1837           NewOr = Builder.CreateOr(Builder.CreateShl(One, B, LShr->getName(),
1838                                                      /*HasNUW=*/true),
1839                                    One, Or->getName());
1840       }
1841       if (NewOr) {
1842         Value *NewAnd = Builder.CreateAnd(A, NewOr, And->getName());
1843         return replaceOperand(Cmp, 0, NewAnd);
1844       }
1845     }
1846   }
1847 
1848   return nullptr;
1849 }
1850 
1851 /// Fold icmp (and X, Y), C.
foldICmpAndConstant(ICmpInst & Cmp,BinaryOperator * And,const APInt & C)1852 Instruction *InstCombinerImpl::foldICmpAndConstant(ICmpInst &Cmp,
1853                                                    BinaryOperator *And,
1854                                                    const APInt &C) {
1855   if (Instruction *I = foldICmpAndConstConst(Cmp, And, C))
1856     return I;
1857 
1858   const ICmpInst::Predicate Pred = Cmp.getPredicate();
1859   bool TrueIfNeg;
1860   if (isSignBitCheck(Pred, C, TrueIfNeg)) {
1861     // ((X - 1) & ~X) <  0 --> X == 0
1862     // ((X - 1) & ~X) >= 0 --> X != 0
1863     Value *X;
1864     if (match(And->getOperand(0), m_Add(m_Value(X), m_AllOnes())) &&
1865         match(And->getOperand(1), m_Not(m_Specific(X)))) {
1866       auto NewPred = TrueIfNeg ? CmpInst::ICMP_EQ : CmpInst::ICMP_NE;
1867       return new ICmpInst(NewPred, X, ConstantInt::getNullValue(X->getType()));
1868     }
1869   }
1870 
1871   // TODO: These all require that Y is constant too, so refactor with the above.
1872 
1873   // Try to optimize things like "A[i] & 42 == 0" to index computations.
1874   Value *X = And->getOperand(0);
1875   Value *Y = And->getOperand(1);
1876   if (auto *LI = dyn_cast<LoadInst>(X))
1877     if (auto *GEP = dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1878       if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1879         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1880             !LI->isVolatile() && isa<ConstantInt>(Y)) {
1881           ConstantInt *C2 = cast<ConstantInt>(Y);
1882           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, Cmp, C2))
1883             return Res;
1884         }
1885 
1886   if (!Cmp.isEquality())
1887     return nullptr;
1888 
1889   // X & -C == -C -> X >  u ~C
1890   // X & -C != -C -> X <= u ~C
1891   //   iff C is a power of 2
1892   if (Cmp.getOperand(1) == Y && (-C).isPowerOf2()) {
1893     auto NewPred =
1894         Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGT : CmpInst::ICMP_ULE;
1895     return new ICmpInst(NewPred, X, SubOne(cast<Constant>(Cmp.getOperand(1))));
1896   }
1897 
1898   // (X & C2) == 0 -> (trunc X) >= 0
1899   // (X & C2) != 0 -> (trunc X) <  0
1900   //   iff C2 is a power of 2 and it masks the sign bit of a legal integer type.
1901   const APInt *C2;
1902   if (And->hasOneUse() && C.isNullValue() && match(Y, m_APInt(C2))) {
1903     int32_t ExactLogBase2 = C2->exactLogBase2();
1904     if (ExactLogBase2 != -1 && DL.isLegalInteger(ExactLogBase2 + 1)) {
1905       Type *NTy = IntegerType::get(Cmp.getContext(), ExactLogBase2 + 1);
1906       if (auto *AndVTy = dyn_cast<VectorType>(And->getType()))
1907         NTy = VectorType::get(NTy, AndVTy->getElementCount());
1908       Value *Trunc = Builder.CreateTrunc(X, NTy);
1909       auto NewPred =
1910           Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_SGE : CmpInst::ICMP_SLT;
1911       return new ICmpInst(NewPred, Trunc, Constant::getNullValue(NTy));
1912     }
1913   }
1914 
1915   return nullptr;
1916 }
1917 
1918 /// Fold icmp (or X, Y), C.
foldICmpOrConstant(ICmpInst & Cmp,BinaryOperator * Or,const APInt & C)1919 Instruction *InstCombinerImpl::foldICmpOrConstant(ICmpInst &Cmp,
1920                                                   BinaryOperator *Or,
1921                                                   const APInt &C) {
1922   ICmpInst::Predicate Pred = Cmp.getPredicate();
1923   if (C.isOneValue()) {
1924     // icmp slt signum(V) 1 --> icmp slt V, 1
1925     Value *V = nullptr;
1926     if (Pred == ICmpInst::ICMP_SLT && match(Or, m_Signum(m_Value(V))))
1927       return new ICmpInst(ICmpInst::ICMP_SLT, V,
1928                           ConstantInt::get(V->getType(), 1));
1929   }
1930 
1931   Value *OrOp0 = Or->getOperand(0), *OrOp1 = Or->getOperand(1);
1932   const APInt *MaskC;
1933   if (match(OrOp1, m_APInt(MaskC)) && Cmp.isEquality()) {
1934     if (*MaskC == C && (C + 1).isPowerOf2()) {
1935       // X | C == C --> X <=u C
1936       // X | C != C --> X  >u C
1937       //   iff C+1 is a power of 2 (C is a bitmask of the low bits)
1938       Pred = (Pred == CmpInst::ICMP_EQ) ? CmpInst::ICMP_ULE : CmpInst::ICMP_UGT;
1939       return new ICmpInst(Pred, OrOp0, OrOp1);
1940     }
1941 
1942     // More general: canonicalize 'equality with set bits mask' to
1943     // 'equality with clear bits mask'.
1944     // (X | MaskC) == C --> (X & ~MaskC) == C ^ MaskC
1945     // (X | MaskC) != C --> (X & ~MaskC) != C ^ MaskC
1946     if (Or->hasOneUse()) {
1947       Value *And = Builder.CreateAnd(OrOp0, ~(*MaskC));
1948       Constant *NewC = ConstantInt::get(Or->getType(), C ^ (*MaskC));
1949       return new ICmpInst(Pred, And, NewC);
1950     }
1951   }
1952 
1953   if (!Cmp.isEquality() || !C.isNullValue() || !Or->hasOneUse())
1954     return nullptr;
1955 
1956   Value *P, *Q;
1957   if (match(Or, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1958     // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1959     // -> and (icmp eq P, null), (icmp eq Q, null).
1960     Value *CmpP =
1961         Builder.CreateICmp(Pred, P, ConstantInt::getNullValue(P->getType()));
1962     Value *CmpQ =
1963         Builder.CreateICmp(Pred, Q, ConstantInt::getNullValue(Q->getType()));
1964     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1965     return BinaryOperator::Create(BOpc, CmpP, CmpQ);
1966   }
1967 
1968   // Are we using xors to bitwise check for a pair of (in)equalities? Convert to
1969   // a shorter form that has more potential to be folded even further.
1970   Value *X1, *X2, *X3, *X4;
1971   if (match(OrOp0, m_OneUse(m_Xor(m_Value(X1), m_Value(X2)))) &&
1972       match(OrOp1, m_OneUse(m_Xor(m_Value(X3), m_Value(X4))))) {
1973     // ((X1 ^ X2) || (X3 ^ X4)) == 0 --> (X1 == X2) && (X3 == X4)
1974     // ((X1 ^ X2) || (X3 ^ X4)) != 0 --> (X1 != X2) || (X3 != X4)
1975     Value *Cmp12 = Builder.CreateICmp(Pred, X1, X2);
1976     Value *Cmp34 = Builder.CreateICmp(Pred, X3, X4);
1977     auto BOpc = Pred == CmpInst::ICMP_EQ ? Instruction::And : Instruction::Or;
1978     return BinaryOperator::Create(BOpc, Cmp12, Cmp34);
1979   }
1980 
1981   return nullptr;
1982 }
1983 
1984 /// Fold icmp (mul X, Y), C.
foldICmpMulConstant(ICmpInst & Cmp,BinaryOperator * Mul,const APInt & C)1985 Instruction *InstCombinerImpl::foldICmpMulConstant(ICmpInst &Cmp,
1986                                                    BinaryOperator *Mul,
1987                                                    const APInt &C) {
1988   const APInt *MulC;
1989   if (!match(Mul->getOperand(1), m_APInt(MulC)))
1990     return nullptr;
1991 
1992   // If this is a test of the sign bit and the multiply is sign-preserving with
1993   // a constant operand, use the multiply LHS operand instead.
1994   ICmpInst::Predicate Pred = Cmp.getPredicate();
1995   if (isSignTest(Pred, C) && Mul->hasNoSignedWrap()) {
1996     if (MulC->isNegative())
1997       Pred = ICmpInst::getSwappedPredicate(Pred);
1998     return new ICmpInst(Pred, Mul->getOperand(0),
1999                         Constant::getNullValue(Mul->getType()));
2000   }
2001 
2002   // If the multiply does not wrap, try to divide the compare constant by the
2003   // multiplication factor.
2004   if (Cmp.isEquality() && !MulC->isNullValue()) {
2005     // (mul nsw X, MulC) == C --> X == C /s MulC
2006     if (Mul->hasNoSignedWrap() && C.srem(*MulC).isNullValue()) {
2007       Constant *NewC = ConstantInt::get(Mul->getType(), C.sdiv(*MulC));
2008       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2009     }
2010     // (mul nuw X, MulC) == C --> X == C /u MulC
2011     if (Mul->hasNoUnsignedWrap() && C.urem(*MulC).isNullValue()) {
2012       Constant *NewC = ConstantInt::get(Mul->getType(), C.udiv(*MulC));
2013       return new ICmpInst(Pred, Mul->getOperand(0), NewC);
2014     }
2015   }
2016 
2017   return nullptr;
2018 }
2019 
2020 /// Fold icmp (shl 1, Y), C.
foldICmpShlOne(ICmpInst & Cmp,Instruction * Shl,const APInt & C)2021 static Instruction *foldICmpShlOne(ICmpInst &Cmp, Instruction *Shl,
2022                                    const APInt &C) {
2023   Value *Y;
2024   if (!match(Shl, m_Shl(m_One(), m_Value(Y))))
2025     return nullptr;
2026 
2027   Type *ShiftType = Shl->getType();
2028   unsigned TypeBits = C.getBitWidth();
2029   bool CIsPowerOf2 = C.isPowerOf2();
2030   ICmpInst::Predicate Pred = Cmp.getPredicate();
2031   if (Cmp.isUnsigned()) {
2032     // (1 << Y) pred C -> Y pred Log2(C)
2033     if (!CIsPowerOf2) {
2034       // (1 << Y) <  30 -> Y <= 4
2035       // (1 << Y) <= 30 -> Y <= 4
2036       // (1 << Y) >= 30 -> Y >  4
2037       // (1 << Y) >  30 -> Y >  4
2038       if (Pred == ICmpInst::ICMP_ULT)
2039         Pred = ICmpInst::ICMP_ULE;
2040       else if (Pred == ICmpInst::ICMP_UGE)
2041         Pred = ICmpInst::ICMP_UGT;
2042     }
2043 
2044     // (1 << Y) >= 2147483648 -> Y >= 31 -> Y == 31
2045     // (1 << Y) <  2147483648 -> Y <  31 -> Y != 31
2046     unsigned CLog2 = C.logBase2();
2047     if (CLog2 == TypeBits - 1) {
2048       if (Pred == ICmpInst::ICMP_UGE)
2049         Pred = ICmpInst::ICMP_EQ;
2050       else if (Pred == ICmpInst::ICMP_ULT)
2051         Pred = ICmpInst::ICMP_NE;
2052     }
2053     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, CLog2));
2054   } else if (Cmp.isSigned()) {
2055     Constant *BitWidthMinusOne = ConstantInt::get(ShiftType, TypeBits - 1);
2056     if (C.isAllOnesValue()) {
2057       // (1 << Y) <= -1 -> Y == 31
2058       if (Pred == ICmpInst::ICMP_SLE)
2059         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2060 
2061       // (1 << Y) >  -1 -> Y != 31
2062       if (Pred == ICmpInst::ICMP_SGT)
2063         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2064     } else if (!C) {
2065       // (1 << Y) <  0 -> Y == 31
2066       // (1 << Y) <= 0 -> Y == 31
2067       if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE)
2068         return new ICmpInst(ICmpInst::ICMP_EQ, Y, BitWidthMinusOne);
2069 
2070       // (1 << Y) >= 0 -> Y != 31
2071       // (1 << Y) >  0 -> Y != 31
2072       if (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE)
2073         return new ICmpInst(ICmpInst::ICMP_NE, Y, BitWidthMinusOne);
2074     }
2075   } else if (Cmp.isEquality() && CIsPowerOf2) {
2076     return new ICmpInst(Pred, Y, ConstantInt::get(ShiftType, C.logBase2()));
2077   }
2078 
2079   return nullptr;
2080 }
2081 
2082 /// Fold icmp (shl X, Y), C.
foldICmpShlConstant(ICmpInst & Cmp,BinaryOperator * Shl,const APInt & C)2083 Instruction *InstCombinerImpl::foldICmpShlConstant(ICmpInst &Cmp,
2084                                                    BinaryOperator *Shl,
2085                                                    const APInt &C) {
2086   const APInt *ShiftVal;
2087   if (Cmp.isEquality() && match(Shl->getOperand(0), m_APInt(ShiftVal)))
2088     return foldICmpShlConstConst(Cmp, Shl->getOperand(1), C, *ShiftVal);
2089 
2090   const APInt *ShiftAmt;
2091   if (!match(Shl->getOperand(1), m_APInt(ShiftAmt)))
2092     return foldICmpShlOne(Cmp, Shl, C);
2093 
2094   // Check that the shift amount is in range. If not, don't perform undefined
2095   // shifts. When the shift is visited, it will be simplified.
2096   unsigned TypeBits = C.getBitWidth();
2097   if (ShiftAmt->uge(TypeBits))
2098     return nullptr;
2099 
2100   ICmpInst::Predicate Pred = Cmp.getPredicate();
2101   Value *X = Shl->getOperand(0);
2102   Type *ShType = Shl->getType();
2103 
2104   // NSW guarantees that we are only shifting out sign bits from the high bits,
2105   // so we can ASHR the compare constant without needing a mask and eliminate
2106   // the shift.
2107   if (Shl->hasNoSignedWrap()) {
2108     if (Pred == ICmpInst::ICMP_SGT) {
2109       // icmp Pred (shl nsw X, ShiftAmt), C --> icmp Pred X, (C >>s ShiftAmt)
2110       APInt ShiftedC = C.ashr(*ShiftAmt);
2111       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2112     }
2113     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2114         C.ashr(*ShiftAmt).shl(*ShiftAmt) == C) {
2115       APInt ShiftedC = C.ashr(*ShiftAmt);
2116       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2117     }
2118     if (Pred == ICmpInst::ICMP_SLT) {
2119       // SLE is the same as above, but SLE is canonicalized to SLT, so convert:
2120       // (X << S) <=s C is equiv to X <=s (C >> S) for all C
2121       // (X << S) <s (C + 1) is equiv to X <s (C >> S) + 1 if C <s SMAX
2122       // (X << S) <s C is equiv to X <s ((C - 1) >> S) + 1 if C >s SMIN
2123       assert(!C.isMinSignedValue() && "Unexpected icmp slt");
2124       APInt ShiftedC = (C - 1).ashr(*ShiftAmt) + 1;
2125       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2126     }
2127     // If this is a signed comparison to 0 and the shift is sign preserving,
2128     // use the shift LHS operand instead; isSignTest may change 'Pred', so only
2129     // do that if we're sure to not continue on in this function.
2130     if (isSignTest(Pred, C))
2131       return new ICmpInst(Pred, X, Constant::getNullValue(ShType));
2132   }
2133 
2134   // NUW guarantees that we are only shifting out zero bits from the high bits,
2135   // so we can LSHR the compare constant without needing a mask and eliminate
2136   // the shift.
2137   if (Shl->hasNoUnsignedWrap()) {
2138     if (Pred == ICmpInst::ICMP_UGT) {
2139       // icmp Pred (shl nuw X, ShiftAmt), C --> icmp Pred X, (C >>u ShiftAmt)
2140       APInt ShiftedC = C.lshr(*ShiftAmt);
2141       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2142     }
2143     if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_NE) &&
2144         C.lshr(*ShiftAmt).shl(*ShiftAmt) == C) {
2145       APInt ShiftedC = C.lshr(*ShiftAmt);
2146       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2147     }
2148     if (Pred == ICmpInst::ICMP_ULT) {
2149       // ULE is the same as above, but ULE is canonicalized to ULT, so convert:
2150       // (X << S) <=u C is equiv to X <=u (C >> S) for all C
2151       // (X << S) <u (C + 1) is equiv to X <u (C >> S) + 1 if C <u ~0u
2152       // (X << S) <u C is equiv to X <u ((C - 1) >> S) + 1 if C >u 0
2153       assert(C.ugt(0) && "ult 0 should have been eliminated");
2154       APInt ShiftedC = (C - 1).lshr(*ShiftAmt) + 1;
2155       return new ICmpInst(Pred, X, ConstantInt::get(ShType, ShiftedC));
2156     }
2157   }
2158 
2159   if (Cmp.isEquality() && Shl->hasOneUse()) {
2160     // Strength-reduce the shift into an 'and'.
2161     Constant *Mask = ConstantInt::get(
2162         ShType,
2163         APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt->getZExtValue()));
2164     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2165     Constant *LShrC = ConstantInt::get(ShType, C.lshr(*ShiftAmt));
2166     return new ICmpInst(Pred, And, LShrC);
2167   }
2168 
2169   // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
2170   bool TrueIfSigned = false;
2171   if (Shl->hasOneUse() && isSignBitCheck(Pred, C, TrueIfSigned)) {
2172     // (X << 31) <s 0  --> (X & 1) != 0
2173     Constant *Mask = ConstantInt::get(
2174         ShType,
2175         APInt::getOneBitSet(TypeBits, TypeBits - ShiftAmt->getZExtValue() - 1));
2176     Value *And = Builder.CreateAnd(X, Mask, Shl->getName() + ".mask");
2177     return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
2178                         And, Constant::getNullValue(ShType));
2179   }
2180 
2181   // Simplify 'shl' inequality test into 'and' equality test.
2182   if (Cmp.isUnsigned() && Shl->hasOneUse()) {
2183     // (X l<< C2) u<=/u> C1 iff C1+1 is power of two -> X & (~C1 l>> C2) ==/!= 0
2184     if ((C + 1).isPowerOf2() &&
2185         (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT)) {
2186       Value *And = Builder.CreateAnd(X, (~C).lshr(ShiftAmt->getZExtValue()));
2187       return new ICmpInst(Pred == ICmpInst::ICMP_ULE ? ICmpInst::ICMP_EQ
2188                                                      : ICmpInst::ICMP_NE,
2189                           And, Constant::getNullValue(ShType));
2190     }
2191     // (X l<< C2) u</u>= C1 iff C1 is power of two -> X & (-C1 l>> C2) ==/!= 0
2192     if (C.isPowerOf2() &&
2193         (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE)) {
2194       Value *And =
2195           Builder.CreateAnd(X, (~(C - 1)).lshr(ShiftAmt->getZExtValue()));
2196       return new ICmpInst(Pred == ICmpInst::ICMP_ULT ? ICmpInst::ICMP_EQ
2197                                                      : ICmpInst::ICMP_NE,
2198                           And, Constant::getNullValue(ShType));
2199     }
2200   }
2201 
2202   // Transform (icmp pred iM (shl iM %v, N), C)
2203   // -> (icmp pred i(M-N) (trunc %v iM to i(M-N)), (trunc (C>>N))
2204   // Transform the shl to a trunc if (trunc (C>>N)) has no loss and M-N.
2205   // This enables us to get rid of the shift in favor of a trunc that may be
2206   // free on the target. It has the additional benefit of comparing to a
2207   // smaller constant that may be more target-friendly.
2208   unsigned Amt = ShiftAmt->getLimitedValue(TypeBits - 1);
2209   if (Shl->hasOneUse() && Amt != 0 && C.countTrailingZeros() >= Amt &&
2210       DL.isLegalInteger(TypeBits - Amt)) {
2211     Type *TruncTy = IntegerType::get(Cmp.getContext(), TypeBits - Amt);
2212     if (auto *ShVTy = dyn_cast<VectorType>(ShType))
2213       TruncTy = VectorType::get(TruncTy, ShVTy->getElementCount());
2214     Constant *NewC =
2215         ConstantInt::get(TruncTy, C.ashr(*ShiftAmt).trunc(TypeBits - Amt));
2216     return new ICmpInst(Pred, Builder.CreateTrunc(X, TruncTy), NewC);
2217   }
2218 
2219   return nullptr;
2220 }
2221 
2222 /// Fold icmp ({al}shr X, Y), C.
foldICmpShrConstant(ICmpInst & Cmp,BinaryOperator * Shr,const APInt & C)2223 Instruction *InstCombinerImpl::foldICmpShrConstant(ICmpInst &Cmp,
2224                                                    BinaryOperator *Shr,
2225                                                    const APInt &C) {
2226   // An exact shr only shifts out zero bits, so:
2227   // icmp eq/ne (shr X, Y), 0 --> icmp eq/ne X, 0
2228   Value *X = Shr->getOperand(0);
2229   CmpInst::Predicate Pred = Cmp.getPredicate();
2230   if (Cmp.isEquality() && Shr->isExact() && Shr->hasOneUse() &&
2231       C.isNullValue())
2232     return new ICmpInst(Pred, X, Cmp.getOperand(1));
2233 
2234   const APInt *ShiftVal;
2235   if (Cmp.isEquality() && match(Shr->getOperand(0), m_APInt(ShiftVal)))
2236     return foldICmpShrConstConst(Cmp, Shr->getOperand(1), C, *ShiftVal);
2237 
2238   const APInt *ShiftAmt;
2239   if (!match(Shr->getOperand(1), m_APInt(ShiftAmt)))
2240     return nullptr;
2241 
2242   // Check that the shift amount is in range. If not, don't perform undefined
2243   // shifts. When the shift is visited it will be simplified.
2244   unsigned TypeBits = C.getBitWidth();
2245   unsigned ShAmtVal = ShiftAmt->getLimitedValue(TypeBits);
2246   if (ShAmtVal >= TypeBits || ShAmtVal == 0)
2247     return nullptr;
2248 
2249   bool IsAShr = Shr->getOpcode() == Instruction::AShr;
2250   bool IsExact = Shr->isExact();
2251   Type *ShrTy = Shr->getType();
2252   // TODO: If we could guarantee that InstSimplify would handle all of the
2253   // constant-value-based preconditions in the folds below, then we could assert
2254   // those conditions rather than checking them. This is difficult because of
2255   // undef/poison (PR34838).
2256   if (IsAShr) {
2257     if (Pred == CmpInst::ICMP_SLT || (Pred == CmpInst::ICMP_SGT && IsExact)) {
2258       // icmp slt (ashr X, ShAmtC), C --> icmp slt X, (C << ShAmtC)
2259       // icmp sgt (ashr exact X, ShAmtC), C --> icmp sgt X, (C << ShAmtC)
2260       APInt ShiftedC = C.shl(ShAmtVal);
2261       if (ShiftedC.ashr(ShAmtVal) == C)
2262         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2263     }
2264     if (Pred == CmpInst::ICMP_SGT) {
2265       // icmp sgt (ashr X, ShAmtC), C --> icmp sgt X, ((C + 1) << ShAmtC) - 1
2266       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2267       if (!C.isMaxSignedValue() && !(C + 1).shl(ShAmtVal).isMinSignedValue() &&
2268           (ShiftedC + 1).ashr(ShAmtVal) == (C + 1))
2269         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2270     }
2271 
2272     // If the compare constant has significant bits above the lowest sign-bit,
2273     // then convert an unsigned cmp to a test of the sign-bit:
2274     // (ashr X, ShiftC) u> C --> X s< 0
2275     // (ashr X, ShiftC) u< C --> X s> -1
2276     if (C.getBitWidth() > 2 && C.getNumSignBits() <= ShAmtVal) {
2277       if (Pred == CmpInst::ICMP_UGT) {
2278         return new ICmpInst(CmpInst::ICMP_SLT, X,
2279                             ConstantInt::getNullValue(ShrTy));
2280       }
2281       if (Pred == CmpInst::ICMP_ULT) {
2282         return new ICmpInst(CmpInst::ICMP_SGT, X,
2283                             ConstantInt::getAllOnesValue(ShrTy));
2284       }
2285     }
2286   } else {
2287     if (Pred == CmpInst::ICMP_ULT || (Pred == CmpInst::ICMP_UGT && IsExact)) {
2288       // icmp ult (lshr X, ShAmtC), C --> icmp ult X, (C << ShAmtC)
2289       // icmp ugt (lshr exact X, ShAmtC), C --> icmp ugt X, (C << ShAmtC)
2290       APInt ShiftedC = C.shl(ShAmtVal);
2291       if (ShiftedC.lshr(ShAmtVal) == C)
2292         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2293     }
2294     if (Pred == CmpInst::ICMP_UGT) {
2295       // icmp ugt (lshr X, ShAmtC), C --> icmp ugt X, ((C + 1) << ShAmtC) - 1
2296       APInt ShiftedC = (C + 1).shl(ShAmtVal) - 1;
2297       if ((ShiftedC + 1).lshr(ShAmtVal) == (C + 1))
2298         return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, ShiftedC));
2299     }
2300   }
2301 
2302   if (!Cmp.isEquality())
2303     return nullptr;
2304 
2305   // Handle equality comparisons of shift-by-constant.
2306 
2307   // If the comparison constant changes with the shift, the comparison cannot
2308   // succeed (bits of the comparison constant cannot match the shifted value).
2309   // This should be known by InstSimplify and already be folded to true/false.
2310   assert(((IsAShr && C.shl(ShAmtVal).ashr(ShAmtVal) == C) ||
2311           (!IsAShr && C.shl(ShAmtVal).lshr(ShAmtVal) == C)) &&
2312          "Expected icmp+shr simplify did not occur.");
2313 
2314   // If the bits shifted out are known zero, compare the unshifted value:
2315   //  (X & 4) >> 1 == 2  --> (X & 4) == 4.
2316   if (Shr->isExact())
2317     return new ICmpInst(Pred, X, ConstantInt::get(ShrTy, C << ShAmtVal));
2318 
2319   if (C.isNullValue()) {
2320     // == 0 is u< 1.
2321     if (Pred == CmpInst::ICMP_EQ)
2322       return new ICmpInst(CmpInst::ICMP_ULT, X,
2323                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal)));
2324     else
2325       return new ICmpInst(CmpInst::ICMP_UGT, X,
2326                           ConstantInt::get(ShrTy, (C + 1).shl(ShAmtVal) - 1));
2327   }
2328 
2329   if (Shr->hasOneUse()) {
2330     // Canonicalize the shift into an 'and':
2331     // icmp eq/ne (shr X, ShAmt), C --> icmp eq/ne (and X, HiMask), (C << ShAmt)
2332     APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
2333     Constant *Mask = ConstantInt::get(ShrTy, Val);
2334     Value *And = Builder.CreateAnd(X, Mask, Shr->getName() + ".mask");
2335     return new ICmpInst(Pred, And, ConstantInt::get(ShrTy, C << ShAmtVal));
2336   }
2337 
2338   return nullptr;
2339 }
2340 
foldICmpSRemConstant(ICmpInst & Cmp,BinaryOperator * SRem,const APInt & C)2341 Instruction *InstCombinerImpl::foldICmpSRemConstant(ICmpInst &Cmp,
2342                                                     BinaryOperator *SRem,
2343                                                     const APInt &C) {
2344   // Match an 'is positive' or 'is negative' comparison of remainder by a
2345   // constant power-of-2 value:
2346   // (X % pow2C) sgt/slt 0
2347   const ICmpInst::Predicate Pred = Cmp.getPredicate();
2348   if (Pred != ICmpInst::ICMP_SGT && Pred != ICmpInst::ICMP_SLT)
2349     return nullptr;
2350 
2351   // TODO: The one-use check is standard because we do not typically want to
2352   //       create longer instruction sequences, but this might be a special-case
2353   //       because srem is not good for analysis or codegen.
2354   if (!SRem->hasOneUse())
2355     return nullptr;
2356 
2357   const APInt *DivisorC;
2358   if (!C.isNullValue() || !match(SRem->getOperand(1), m_Power2(DivisorC)))
2359     return nullptr;
2360 
2361   // Mask off the sign bit and the modulo bits (low-bits).
2362   Type *Ty = SRem->getType();
2363   APInt SignMask = APInt::getSignMask(Ty->getScalarSizeInBits());
2364   Constant *MaskC = ConstantInt::get(Ty, SignMask | (*DivisorC - 1));
2365   Value *And = Builder.CreateAnd(SRem->getOperand(0), MaskC);
2366 
2367   // For 'is positive?' check that the sign-bit is clear and at least 1 masked
2368   // bit is set. Example:
2369   // (i8 X % 32) s> 0 --> (X & 159) s> 0
2370   if (Pred == ICmpInst::ICMP_SGT)
2371     return new ICmpInst(ICmpInst::ICMP_SGT, And, ConstantInt::getNullValue(Ty));
2372 
2373   // For 'is negative?' check that the sign-bit is set and at least 1 masked
2374   // bit is set. Example:
2375   // (i16 X % 4) s< 0 --> (X & 32771) u> 32768
2376   return new ICmpInst(ICmpInst::ICMP_UGT, And, ConstantInt::get(Ty, SignMask));
2377 }
2378 
2379 /// Fold icmp (udiv X, Y), C.
foldICmpUDivConstant(ICmpInst & Cmp,BinaryOperator * UDiv,const APInt & C)2380 Instruction *InstCombinerImpl::foldICmpUDivConstant(ICmpInst &Cmp,
2381                                                     BinaryOperator *UDiv,
2382                                                     const APInt &C) {
2383   const APInt *C2;
2384   if (!match(UDiv->getOperand(0), m_APInt(C2)))
2385     return nullptr;
2386 
2387   assert(*C2 != 0 && "udiv 0, X should have been simplified already.");
2388 
2389   // (icmp ugt (udiv C2, Y), C) -> (icmp ule Y, C2/(C+1))
2390   Value *Y = UDiv->getOperand(1);
2391   if (Cmp.getPredicate() == ICmpInst::ICMP_UGT) {
2392     assert(!C.isMaxValue() &&
2393            "icmp ugt X, UINT_MAX should have been simplified already.");
2394     return new ICmpInst(ICmpInst::ICMP_ULE, Y,
2395                         ConstantInt::get(Y->getType(), C2->udiv(C + 1)));
2396   }
2397 
2398   // (icmp ult (udiv C2, Y), C) -> (icmp ugt Y, C2/C)
2399   if (Cmp.getPredicate() == ICmpInst::ICMP_ULT) {
2400     assert(C != 0 && "icmp ult X, 0 should have been simplified already.");
2401     return new ICmpInst(ICmpInst::ICMP_UGT, Y,
2402                         ConstantInt::get(Y->getType(), C2->udiv(C)));
2403   }
2404 
2405   return nullptr;
2406 }
2407 
2408 /// Fold icmp ({su}div X, Y), C.
foldICmpDivConstant(ICmpInst & Cmp,BinaryOperator * Div,const APInt & C)2409 Instruction *InstCombinerImpl::foldICmpDivConstant(ICmpInst &Cmp,
2410                                                    BinaryOperator *Div,
2411                                                    const APInt &C) {
2412   // Fold: icmp pred ([us]div X, C2), C -> range test
2413   // Fold this div into the comparison, producing a range check.
2414   // Determine, based on the divide type, what the range is being
2415   // checked.  If there is an overflow on the low or high side, remember
2416   // it, otherwise compute the range [low, hi) bounding the new value.
2417   // See: InsertRangeTest above for the kinds of replacements possible.
2418   const APInt *C2;
2419   if (!match(Div->getOperand(1), m_APInt(C2)))
2420     return nullptr;
2421 
2422   // FIXME: If the operand types don't match the type of the divide
2423   // then don't attempt this transform. The code below doesn't have the
2424   // logic to deal with a signed divide and an unsigned compare (and
2425   // vice versa). This is because (x /s C2) <s C  produces different
2426   // results than (x /s C2) <u C or (x /u C2) <s C or even
2427   // (x /u C2) <u C.  Simply casting the operands and result won't
2428   // work. :(  The if statement below tests that condition and bails
2429   // if it finds it.
2430   bool DivIsSigned = Div->getOpcode() == Instruction::SDiv;
2431   if (!Cmp.isEquality() && DivIsSigned != Cmp.isSigned())
2432     return nullptr;
2433 
2434   // The ProdOV computation fails on divide by 0 and divide by -1. Cases with
2435   // INT_MIN will also fail if the divisor is 1. Although folds of all these
2436   // division-by-constant cases should be present, we can not assert that they
2437   // have happened before we reach this icmp instruction.
2438   if (C2->isNullValue() || C2->isOneValue() ||
2439       (DivIsSigned && C2->isAllOnesValue()))
2440     return nullptr;
2441 
2442   // Compute Prod = C * C2. We are essentially solving an equation of
2443   // form X / C2 = C. We solve for X by multiplying C2 and C.
2444   // By solving for X, we can turn this into a range check instead of computing
2445   // a divide.
2446   APInt Prod = C * *C2;
2447 
2448   // Determine if the product overflows by seeing if the product is not equal to
2449   // the divide. Make sure we do the same kind of divide as in the LHS
2450   // instruction that we're folding.
2451   bool ProdOV = (DivIsSigned ? Prod.sdiv(*C2) : Prod.udiv(*C2)) != C;
2452 
2453   ICmpInst::Predicate Pred = Cmp.getPredicate();
2454 
2455   // If the division is known to be exact, then there is no remainder from the
2456   // divide, so the covered range size is unit, otherwise it is the divisor.
2457   APInt RangeSize = Div->isExact() ? APInt(C2->getBitWidth(), 1) : *C2;
2458 
2459   // Figure out the interval that is being checked.  For example, a comparison
2460   // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
2461   // Compute this interval based on the constants involved and the signedness of
2462   // the compare/divide.  This computes a half-open interval, keeping track of
2463   // whether either value in the interval overflows.  After analysis each
2464   // overflow variable is set to 0 if it's corresponding bound variable is valid
2465   // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
2466   int LoOverflow = 0, HiOverflow = 0;
2467   APInt LoBound, HiBound;
2468 
2469   if (!DivIsSigned) {  // udiv
2470     // e.g. X/5 op 3  --> [15, 20)
2471     LoBound = Prod;
2472     HiOverflow = LoOverflow = ProdOV;
2473     if (!HiOverflow) {
2474       // If this is not an exact divide, then many values in the range collapse
2475       // to the same result value.
2476       HiOverflow = addWithOverflow(HiBound, LoBound, RangeSize, false);
2477     }
2478   } else if (C2->isStrictlyPositive()) { // Divisor is > 0.
2479     if (C.isNullValue()) {       // (X / pos) op 0
2480       // Can't overflow.  e.g.  X/2 op 0 --> [-1, 2)
2481       LoBound = -(RangeSize - 1);
2482       HiBound = RangeSize;
2483     } else if (C.isStrictlyPositive()) {   // (X / pos) op pos
2484       LoBound = Prod;     // e.g.   X/5 op 3 --> [15, 20)
2485       HiOverflow = LoOverflow = ProdOV;
2486       if (!HiOverflow)
2487         HiOverflow = addWithOverflow(HiBound, Prod, RangeSize, true);
2488     } else {                       // (X / pos) op neg
2489       // e.g. X/5 op -3  --> [-15-4, -15+1) --> [-19, -14)
2490       HiBound = Prod + 1;
2491       LoOverflow = HiOverflow = ProdOV ? -1 : 0;
2492       if (!LoOverflow) {
2493         APInt DivNeg = -RangeSize;
2494         LoOverflow = addWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
2495       }
2496     }
2497   } else if (C2->isNegative()) { // Divisor is < 0.
2498     if (Div->isExact())
2499       RangeSize.negate();
2500     if (C.isNullValue()) { // (X / neg) op 0
2501       // e.g. X/-5 op 0  --> [-4, 5)
2502       LoBound = RangeSize + 1;
2503       HiBound = -RangeSize;
2504       if (HiBound == *C2) {        // -INTMIN = INTMIN
2505         HiOverflow = 1;            // [INTMIN+1, overflow)
2506         HiBound = APInt();         // e.g. X/INTMIN = 0 --> X > INTMIN
2507       }
2508     } else if (C.isStrictlyPositive()) {   // (X / neg) op pos
2509       // e.g. X/-5 op 3  --> [-19, -14)
2510       HiBound = Prod + 1;
2511       HiOverflow = LoOverflow = ProdOV ? -1 : 0;
2512       if (!LoOverflow)
2513         LoOverflow = addWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
2514     } else {                       // (X / neg) op neg
2515       LoBound = Prod;       // e.g. X/-5 op -3  --> [15, 20)
2516       LoOverflow = HiOverflow = ProdOV;
2517       if (!HiOverflow)
2518         HiOverflow = subWithOverflow(HiBound, Prod, RangeSize, true);
2519     }
2520 
2521     // Dividing by a negative swaps the condition.  LT <-> GT
2522     Pred = ICmpInst::getSwappedPredicate(Pred);
2523   }
2524 
2525   Value *X = Div->getOperand(0);
2526   switch (Pred) {
2527     default: llvm_unreachable("Unhandled icmp opcode!");
2528     case ICmpInst::ICMP_EQ:
2529       if (LoOverflow && HiOverflow)
2530         return replaceInstUsesWith(Cmp, Builder.getFalse());
2531       if (HiOverflow)
2532         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2533                             ICmpInst::ICMP_UGE, X,
2534                             ConstantInt::get(Div->getType(), LoBound));
2535       if (LoOverflow)
2536         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2537                             ICmpInst::ICMP_ULT, X,
2538                             ConstantInt::get(Div->getType(), HiBound));
2539       return replaceInstUsesWith(
2540           Cmp, insertRangeTest(X, LoBound, HiBound, DivIsSigned, true));
2541     case ICmpInst::ICMP_NE:
2542       if (LoOverflow && HiOverflow)
2543         return replaceInstUsesWith(Cmp, Builder.getTrue());
2544       if (HiOverflow)
2545         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
2546                             ICmpInst::ICMP_ULT, X,
2547                             ConstantInt::get(Div->getType(), LoBound));
2548       if (LoOverflow)
2549         return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
2550                             ICmpInst::ICMP_UGE, X,
2551                             ConstantInt::get(Div->getType(), HiBound));
2552       return replaceInstUsesWith(Cmp,
2553                                  insertRangeTest(X, LoBound, HiBound,
2554                                                  DivIsSigned, false));
2555     case ICmpInst::ICMP_ULT:
2556     case ICmpInst::ICMP_SLT:
2557       if (LoOverflow == +1)   // Low bound is greater than input range.
2558         return replaceInstUsesWith(Cmp, Builder.getTrue());
2559       if (LoOverflow == -1)   // Low bound is less than input range.
2560         return replaceInstUsesWith(Cmp, Builder.getFalse());
2561       return new ICmpInst(Pred, X, ConstantInt::get(Div->getType(), LoBound));
2562     case ICmpInst::ICMP_UGT:
2563     case ICmpInst::ICMP_SGT:
2564       if (HiOverflow == +1)       // High bound greater than input range.
2565         return replaceInstUsesWith(Cmp, Builder.getFalse());
2566       if (HiOverflow == -1)       // High bound less than input range.
2567         return replaceInstUsesWith(Cmp, Builder.getTrue());
2568       if (Pred == ICmpInst::ICMP_UGT)
2569         return new ICmpInst(ICmpInst::ICMP_UGE, X,
2570                             ConstantInt::get(Div->getType(), HiBound));
2571       return new ICmpInst(ICmpInst::ICMP_SGE, X,
2572                           ConstantInt::get(Div->getType(), HiBound));
2573   }
2574 
2575   return nullptr;
2576 }
2577 
2578 /// Fold icmp (sub X, Y), C.
foldICmpSubConstant(ICmpInst & Cmp,BinaryOperator * Sub,const APInt & C)2579 Instruction *InstCombinerImpl::foldICmpSubConstant(ICmpInst &Cmp,
2580                                                    BinaryOperator *Sub,
2581                                                    const APInt &C) {
2582   Value *X = Sub->getOperand(0), *Y = Sub->getOperand(1);
2583   ICmpInst::Predicate Pred = Cmp.getPredicate();
2584   const APInt *C2;
2585   APInt SubResult;
2586 
2587   // icmp eq/ne (sub C, Y), C -> icmp eq/ne Y, 0
2588   if (match(X, m_APInt(C2)) && *C2 == C && Cmp.isEquality())
2589     return new ICmpInst(Cmp.getPredicate(), Y,
2590                         ConstantInt::get(Y->getType(), 0));
2591 
2592   // (icmp P (sub nuw|nsw C2, Y), C) -> (icmp swap(P) Y, C2-C)
2593   if (match(X, m_APInt(C2)) &&
2594       ((Cmp.isUnsigned() && Sub->hasNoUnsignedWrap()) ||
2595        (Cmp.isSigned() && Sub->hasNoSignedWrap())) &&
2596       !subWithOverflow(SubResult, *C2, C, Cmp.isSigned()))
2597     return new ICmpInst(Cmp.getSwappedPredicate(), Y,
2598                         ConstantInt::get(Y->getType(), SubResult));
2599 
2600   // The following transforms are only worth it if the only user of the subtract
2601   // is the icmp.
2602   if (!Sub->hasOneUse())
2603     return nullptr;
2604 
2605   if (Sub->hasNoSignedWrap()) {
2606     // (icmp sgt (sub nsw X, Y), -1) -> (icmp sge X, Y)
2607     if (Pred == ICmpInst::ICMP_SGT && C.isAllOnesValue())
2608       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
2609 
2610     // (icmp sgt (sub nsw X, Y), 0) -> (icmp sgt X, Y)
2611     if (Pred == ICmpInst::ICMP_SGT && C.isNullValue())
2612       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
2613 
2614     // (icmp slt (sub nsw X, Y), 0) -> (icmp slt X, Y)
2615     if (Pred == ICmpInst::ICMP_SLT && C.isNullValue())
2616       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
2617 
2618     // (icmp slt (sub nsw X, Y), 1) -> (icmp sle X, Y)
2619     if (Pred == ICmpInst::ICMP_SLT && C.isOneValue())
2620       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
2621   }
2622 
2623   if (!match(X, m_APInt(C2)))
2624     return nullptr;
2625 
2626   // C2 - Y <u C -> (Y | (C - 1)) == C2
2627   //   iff (C2 & (C - 1)) == C - 1 and C is a power of 2
2628   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() &&
2629       (*C2 & (C - 1)) == (C - 1))
2630     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateOr(Y, C - 1), X);
2631 
2632   // C2 - Y >u C -> (Y | C) != C2
2633   //   iff C2 & C == C and C + 1 is a power of 2
2634   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == C)
2635     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateOr(Y, C), X);
2636 
2637   return nullptr;
2638 }
2639 
2640 /// Fold icmp (add X, Y), C.
foldICmpAddConstant(ICmpInst & Cmp,BinaryOperator * Add,const APInt & C)2641 Instruction *InstCombinerImpl::foldICmpAddConstant(ICmpInst &Cmp,
2642                                                    BinaryOperator *Add,
2643                                                    const APInt &C) {
2644   Value *Y = Add->getOperand(1);
2645   const APInt *C2;
2646   if (Cmp.isEquality() || !match(Y, m_APInt(C2)))
2647     return nullptr;
2648 
2649   // Fold icmp pred (add X, C2), C.
2650   Value *X = Add->getOperand(0);
2651   Type *Ty = Add->getType();
2652   const CmpInst::Predicate Pred = Cmp.getPredicate();
2653 
2654   // If the add does not wrap, we can always adjust the compare by subtracting
2655   // the constants. Equality comparisons are handled elsewhere. SGE/SLE/UGE/ULE
2656   // are canonicalized to SGT/SLT/UGT/ULT.
2657   if ((Add->hasNoSignedWrap() &&
2658        (Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SLT)) ||
2659       (Add->hasNoUnsignedWrap() &&
2660        (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULT))) {
2661     bool Overflow;
2662     APInt NewC =
2663         Cmp.isSigned() ? C.ssub_ov(*C2, Overflow) : C.usub_ov(*C2, Overflow);
2664     // If there is overflow, the result must be true or false.
2665     // TODO: Can we assert there is no overflow because InstSimplify always
2666     // handles those cases?
2667     if (!Overflow)
2668       // icmp Pred (add nsw X, C2), C --> icmp Pred X, (C - C2)
2669       return new ICmpInst(Pred, X, ConstantInt::get(Ty, NewC));
2670   }
2671 
2672   auto CR = ConstantRange::makeExactICmpRegion(Pred, C).subtract(*C2);
2673   const APInt &Upper = CR.getUpper();
2674   const APInt &Lower = CR.getLower();
2675   if (Cmp.isSigned()) {
2676     if (Lower.isSignMask())
2677       return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, Upper));
2678     if (Upper.isSignMask())
2679       return new ICmpInst(ICmpInst::ICMP_SGE, X, ConstantInt::get(Ty, Lower));
2680   } else {
2681     if (Lower.isMinValue())
2682       return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, Upper));
2683     if (Upper.isMinValue())
2684       return new ICmpInst(ICmpInst::ICMP_UGE, X, ConstantInt::get(Ty, Lower));
2685   }
2686 
2687   // This set of folds is intentionally placed after folds that use no-wrapping
2688   // flags because those folds are likely better for later analysis/codegen.
2689   const APInt SMax = APInt::getSignedMaxValue(Ty->getScalarSizeInBits());
2690   const APInt SMin = APInt::getSignedMinValue(Ty->getScalarSizeInBits());
2691 
2692   // Fold compare with offset to opposite sign compare if it eliminates offset:
2693   // (X + C2) >u C --> X <s -C2 (if C == C2 + SMAX)
2694   if (Pred == CmpInst::ICMP_UGT && C == *C2 + SMax)
2695     return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantInt::get(Ty, -(*C2)));
2696 
2697   // (X + C2) <u C --> X >s ~C2 (if C == C2 + SMIN)
2698   if (Pred == CmpInst::ICMP_ULT && C == *C2 + SMin)
2699     return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantInt::get(Ty, ~(*C2)));
2700 
2701   // (X + C2) >s C --> X <u (SMAX - C) (if C == C2 - 1)
2702   if (Pred == CmpInst::ICMP_SGT && C == *C2 - 1)
2703     return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantInt::get(Ty, SMax - C));
2704 
2705   // (X + C2) <s C --> X >u (C ^ SMAX) (if C == C2)
2706   if (Pred == CmpInst::ICMP_SLT && C == *C2)
2707     return new ICmpInst(ICmpInst::ICMP_UGT, X, ConstantInt::get(Ty, C ^ SMax));
2708 
2709   if (!Add->hasOneUse())
2710     return nullptr;
2711 
2712   // X+C <u C2 -> (X & -C2) == C
2713   //   iff C & (C2-1) == 0
2714   //       C2 is a power of 2
2715   if (Pred == ICmpInst::ICMP_ULT && C.isPowerOf2() && (*C2 & (C - 1)) == 0)
2716     return new ICmpInst(ICmpInst::ICMP_EQ, Builder.CreateAnd(X, -C),
2717                         ConstantExpr::getNeg(cast<Constant>(Y)));
2718 
2719   // X+C >u C2 -> (X & ~C2) != C
2720   //   iff C & C2 == 0
2721   //       C2+1 is a power of 2
2722   if (Pred == ICmpInst::ICMP_UGT && (C + 1).isPowerOf2() && (*C2 & C) == 0)
2723     return new ICmpInst(ICmpInst::ICMP_NE, Builder.CreateAnd(X, ~C),
2724                         ConstantExpr::getNeg(cast<Constant>(Y)));
2725 
2726   return nullptr;
2727 }
2728 
matchThreeWayIntCompare(SelectInst * SI,Value * & LHS,Value * & RHS,ConstantInt * & Less,ConstantInt * & Equal,ConstantInt * & Greater)2729 bool InstCombinerImpl::matchThreeWayIntCompare(SelectInst *SI, Value *&LHS,
2730                                                Value *&RHS, ConstantInt *&Less,
2731                                                ConstantInt *&Equal,
2732                                                ConstantInt *&Greater) {
2733   // TODO: Generalize this to work with other comparison idioms or ensure
2734   // they get canonicalized into this form.
2735 
2736   // select i1 (a == b),
2737   //        i32 Equal,
2738   //        i32 (select i1 (a < b), i32 Less, i32 Greater)
2739   // where Equal, Less and Greater are placeholders for any three constants.
2740   ICmpInst::Predicate PredA;
2741   if (!match(SI->getCondition(), m_ICmp(PredA, m_Value(LHS), m_Value(RHS))) ||
2742       !ICmpInst::isEquality(PredA))
2743     return false;
2744   Value *EqualVal = SI->getTrueValue();
2745   Value *UnequalVal = SI->getFalseValue();
2746   // We still can get non-canonical predicate here, so canonicalize.
2747   if (PredA == ICmpInst::ICMP_NE)
2748     std::swap(EqualVal, UnequalVal);
2749   if (!match(EqualVal, m_ConstantInt(Equal)))
2750     return false;
2751   ICmpInst::Predicate PredB;
2752   Value *LHS2, *RHS2;
2753   if (!match(UnequalVal, m_Select(m_ICmp(PredB, m_Value(LHS2), m_Value(RHS2)),
2754                                   m_ConstantInt(Less), m_ConstantInt(Greater))))
2755     return false;
2756   // We can get predicate mismatch here, so canonicalize if possible:
2757   // First, ensure that 'LHS' match.
2758   if (LHS2 != LHS) {
2759     // x sgt y <--> y slt x
2760     std::swap(LHS2, RHS2);
2761     PredB = ICmpInst::getSwappedPredicate(PredB);
2762   }
2763   if (LHS2 != LHS)
2764     return false;
2765   // We also need to canonicalize 'RHS'.
2766   if (PredB == ICmpInst::ICMP_SGT && isa<Constant>(RHS2)) {
2767     // x sgt C-1  <-->  x sge C  <-->  not(x slt C)
2768     auto FlippedStrictness =
2769         InstCombiner::getFlippedStrictnessPredicateAndConstant(
2770             PredB, cast<Constant>(RHS2));
2771     if (!FlippedStrictness)
2772       return false;
2773     assert(FlippedStrictness->first == ICmpInst::ICMP_SGE && "Sanity check");
2774     RHS2 = FlippedStrictness->second;
2775     // And kind-of perform the result swap.
2776     std::swap(Less, Greater);
2777     PredB = ICmpInst::ICMP_SLT;
2778   }
2779   return PredB == ICmpInst::ICMP_SLT && RHS == RHS2;
2780 }
2781 
foldICmpSelectConstant(ICmpInst & Cmp,SelectInst * Select,ConstantInt * C)2782 Instruction *InstCombinerImpl::foldICmpSelectConstant(ICmpInst &Cmp,
2783                                                       SelectInst *Select,
2784                                                       ConstantInt *C) {
2785 
2786   assert(C && "Cmp RHS should be a constant int!");
2787   // If we're testing a constant value against the result of a three way
2788   // comparison, the result can be expressed directly in terms of the
2789   // original values being compared.  Note: We could possibly be more
2790   // aggressive here and remove the hasOneUse test. The original select is
2791   // really likely to simplify or sink when we remove a test of the result.
2792   Value *OrigLHS, *OrigRHS;
2793   ConstantInt *C1LessThan, *C2Equal, *C3GreaterThan;
2794   if (Cmp.hasOneUse() &&
2795       matchThreeWayIntCompare(Select, OrigLHS, OrigRHS, C1LessThan, C2Equal,
2796                               C3GreaterThan)) {
2797     assert(C1LessThan && C2Equal && C3GreaterThan);
2798 
2799     bool TrueWhenLessThan =
2800         ConstantExpr::getCompare(Cmp.getPredicate(), C1LessThan, C)
2801             ->isAllOnesValue();
2802     bool TrueWhenEqual =
2803         ConstantExpr::getCompare(Cmp.getPredicate(), C2Equal, C)
2804             ->isAllOnesValue();
2805     bool TrueWhenGreaterThan =
2806         ConstantExpr::getCompare(Cmp.getPredicate(), C3GreaterThan, C)
2807             ->isAllOnesValue();
2808 
2809     // This generates the new instruction that will replace the original Cmp
2810     // Instruction. Instead of enumerating the various combinations when
2811     // TrueWhenLessThan, TrueWhenEqual and TrueWhenGreaterThan are true versus
2812     // false, we rely on chaining of ORs and future passes of InstCombine to
2813     // simplify the OR further (i.e. a s< b || a == b becomes a s<= b).
2814 
2815     // When none of the three constants satisfy the predicate for the RHS (C),
2816     // the entire original Cmp can be simplified to a false.
2817     Value *Cond = Builder.getFalse();
2818     if (TrueWhenLessThan)
2819       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SLT,
2820                                                        OrigLHS, OrigRHS));
2821     if (TrueWhenEqual)
2822       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_EQ,
2823                                                        OrigLHS, OrigRHS));
2824     if (TrueWhenGreaterThan)
2825       Cond = Builder.CreateOr(Cond, Builder.CreateICmp(ICmpInst::ICMP_SGT,
2826                                                        OrigLHS, OrigRHS));
2827 
2828     return replaceInstUsesWith(Cmp, Cond);
2829   }
2830   return nullptr;
2831 }
2832 
foldICmpBitCast(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)2833 static Instruction *foldICmpBitCast(ICmpInst &Cmp,
2834                                     InstCombiner::BuilderTy &Builder) {
2835   auto *Bitcast = dyn_cast<BitCastInst>(Cmp.getOperand(0));
2836   if (!Bitcast)
2837     return nullptr;
2838 
2839   ICmpInst::Predicate Pred = Cmp.getPredicate();
2840   Value *Op1 = Cmp.getOperand(1);
2841   Value *BCSrcOp = Bitcast->getOperand(0);
2842 
2843   // Make sure the bitcast doesn't change the number of vector elements.
2844   if (Bitcast->getSrcTy()->getScalarSizeInBits() ==
2845           Bitcast->getDestTy()->getScalarSizeInBits()) {
2846     // Zero-equality and sign-bit checks are preserved through sitofp + bitcast.
2847     Value *X;
2848     if (match(BCSrcOp, m_SIToFP(m_Value(X)))) {
2849       // icmp  eq (bitcast (sitofp X)), 0 --> icmp  eq X, 0
2850       // icmp  ne (bitcast (sitofp X)), 0 --> icmp  ne X, 0
2851       // icmp slt (bitcast (sitofp X)), 0 --> icmp slt X, 0
2852       // icmp sgt (bitcast (sitofp X)), 0 --> icmp sgt X, 0
2853       if ((Pred == ICmpInst::ICMP_EQ || Pred == ICmpInst::ICMP_SLT ||
2854            Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT) &&
2855           match(Op1, m_Zero()))
2856         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2857 
2858       // icmp slt (bitcast (sitofp X)), 1 --> icmp slt X, 1
2859       if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_One()))
2860         return new ICmpInst(Pred, X, ConstantInt::get(X->getType(), 1));
2861 
2862       // icmp sgt (bitcast (sitofp X)), -1 --> icmp sgt X, -1
2863       if (Pred == ICmpInst::ICMP_SGT && match(Op1, m_AllOnes()))
2864         return new ICmpInst(Pred, X,
2865                             ConstantInt::getAllOnesValue(X->getType()));
2866     }
2867 
2868     // Zero-equality checks are preserved through unsigned floating-point casts:
2869     // icmp eq (bitcast (uitofp X)), 0 --> icmp eq X, 0
2870     // icmp ne (bitcast (uitofp X)), 0 --> icmp ne X, 0
2871     if (match(BCSrcOp, m_UIToFP(m_Value(X))))
2872       if (Cmp.isEquality() && match(Op1, m_Zero()))
2873         return new ICmpInst(Pred, X, ConstantInt::getNullValue(X->getType()));
2874 
2875     // If this is a sign-bit test of a bitcast of a casted FP value, eliminate
2876     // the FP extend/truncate because that cast does not change the sign-bit.
2877     // This is true for all standard IEEE-754 types and the X86 80-bit type.
2878     // The sign-bit is always the most significant bit in those types.
2879     const APInt *C;
2880     bool TrueIfSigned;
2881     if (match(Op1, m_APInt(C)) && Bitcast->hasOneUse() &&
2882         InstCombiner::isSignBitCheck(Pred, *C, TrueIfSigned)) {
2883       if (match(BCSrcOp, m_FPExt(m_Value(X))) ||
2884           match(BCSrcOp, m_FPTrunc(m_Value(X)))) {
2885         // (bitcast (fpext/fptrunc X)) to iX) < 0 --> (bitcast X to iY) < 0
2886         // (bitcast (fpext/fptrunc X)) to iX) > -1 --> (bitcast X to iY) > -1
2887         Type *XType = X->getType();
2888 
2889         // We can't currently handle Power style floating point operations here.
2890         if (!(XType->isPPC_FP128Ty() || BCSrcOp->getType()->isPPC_FP128Ty())) {
2891 
2892           Type *NewType = Builder.getIntNTy(XType->getScalarSizeInBits());
2893           if (auto *XVTy = dyn_cast<VectorType>(XType))
2894             NewType = VectorType::get(NewType, XVTy->getElementCount());
2895           Value *NewBitcast = Builder.CreateBitCast(X, NewType);
2896           if (TrueIfSigned)
2897             return new ICmpInst(ICmpInst::ICMP_SLT, NewBitcast,
2898                                 ConstantInt::getNullValue(NewType));
2899           else
2900             return new ICmpInst(ICmpInst::ICMP_SGT, NewBitcast,
2901                                 ConstantInt::getAllOnesValue(NewType));
2902         }
2903       }
2904     }
2905   }
2906 
2907   // Test to see if the operands of the icmp are casted versions of other
2908   // values. If the ptr->ptr cast can be stripped off both arguments, do so.
2909   if (Bitcast->getType()->isPointerTy() &&
2910       (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2911     // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2912     // so eliminate it as well.
2913     if (auto *BC2 = dyn_cast<BitCastInst>(Op1))
2914       Op1 = BC2->getOperand(0);
2915 
2916     Op1 = Builder.CreateBitCast(Op1, BCSrcOp->getType());
2917     return new ICmpInst(Pred, BCSrcOp, Op1);
2918   }
2919 
2920   // Folding: icmp <pred> iN X, C
2921   //  where X = bitcast <M x iK> (shufflevector <M x iK> %vec, undef, SC)) to iN
2922   //    and C is a splat of a K-bit pattern
2923   //    and SC is a constant vector = <C', C', C', ..., C'>
2924   // Into:
2925   //   %E = extractelement <M x iK> %vec, i32 C'
2926   //   icmp <pred> iK %E, trunc(C)
2927   const APInt *C;
2928   if (!match(Cmp.getOperand(1), m_APInt(C)) ||
2929       !Bitcast->getType()->isIntegerTy() ||
2930       !Bitcast->getSrcTy()->isIntOrIntVectorTy())
2931     return nullptr;
2932 
2933   Value *Vec;
2934   ArrayRef<int> Mask;
2935   if (match(BCSrcOp, m_Shuffle(m_Value(Vec), m_Undef(), m_Mask(Mask)))) {
2936     // Check whether every element of Mask is the same constant
2937     if (is_splat(Mask)) {
2938       auto *VecTy = cast<VectorType>(BCSrcOp->getType());
2939       auto *EltTy = cast<IntegerType>(VecTy->getElementType());
2940       if (C->isSplat(EltTy->getBitWidth())) {
2941         // Fold the icmp based on the value of C
2942         // If C is M copies of an iK sized bit pattern,
2943         // then:
2944         //   =>  %E = extractelement <N x iK> %vec, i32 Elem
2945         //       icmp <pred> iK %SplatVal, <pattern>
2946         Value *Elem = Builder.getInt32(Mask[0]);
2947         Value *Extract = Builder.CreateExtractElement(Vec, Elem);
2948         Value *NewC = ConstantInt::get(EltTy, C->trunc(EltTy->getBitWidth()));
2949         return new ICmpInst(Pred, Extract, NewC);
2950       }
2951     }
2952   }
2953   return nullptr;
2954 }
2955 
2956 /// Try to fold integer comparisons with a constant operand: icmp Pred X, C
2957 /// where X is some kind of instruction.
foldICmpInstWithConstant(ICmpInst & Cmp)2958 Instruction *InstCombinerImpl::foldICmpInstWithConstant(ICmpInst &Cmp) {
2959   const APInt *C;
2960   if (!match(Cmp.getOperand(1), m_APInt(C)))
2961     return nullptr;
2962 
2963   if (auto *BO = dyn_cast<BinaryOperator>(Cmp.getOperand(0))) {
2964     switch (BO->getOpcode()) {
2965     case Instruction::Xor:
2966       if (Instruction *I = foldICmpXorConstant(Cmp, BO, *C))
2967         return I;
2968       break;
2969     case Instruction::And:
2970       if (Instruction *I = foldICmpAndConstant(Cmp, BO, *C))
2971         return I;
2972       break;
2973     case Instruction::Or:
2974       if (Instruction *I = foldICmpOrConstant(Cmp, BO, *C))
2975         return I;
2976       break;
2977     case Instruction::Mul:
2978       if (Instruction *I = foldICmpMulConstant(Cmp, BO, *C))
2979         return I;
2980       break;
2981     case Instruction::Shl:
2982       if (Instruction *I = foldICmpShlConstant(Cmp, BO, *C))
2983         return I;
2984       break;
2985     case Instruction::LShr:
2986     case Instruction::AShr:
2987       if (Instruction *I = foldICmpShrConstant(Cmp, BO, *C))
2988         return I;
2989       break;
2990     case Instruction::SRem:
2991       if (Instruction *I = foldICmpSRemConstant(Cmp, BO, *C))
2992         return I;
2993       break;
2994     case Instruction::UDiv:
2995       if (Instruction *I = foldICmpUDivConstant(Cmp, BO, *C))
2996         return I;
2997       LLVM_FALLTHROUGH;
2998     case Instruction::SDiv:
2999       if (Instruction *I = foldICmpDivConstant(Cmp, BO, *C))
3000         return I;
3001       break;
3002     case Instruction::Sub:
3003       if (Instruction *I = foldICmpSubConstant(Cmp, BO, *C))
3004         return I;
3005       break;
3006     case Instruction::Add:
3007       if (Instruction *I = foldICmpAddConstant(Cmp, BO, *C))
3008         return I;
3009       break;
3010     default:
3011       break;
3012     }
3013     // TODO: These folds could be refactored to be part of the above calls.
3014     if (Instruction *I = foldICmpBinOpEqualityWithConstant(Cmp, BO, *C))
3015       return I;
3016   }
3017 
3018   // Match against CmpInst LHS being instructions other than binary operators.
3019 
3020   if (auto *SI = dyn_cast<SelectInst>(Cmp.getOperand(0))) {
3021     // For now, we only support constant integers while folding the
3022     // ICMP(SELECT)) pattern. We can extend this to support vector of integers
3023     // similar to the cases handled by binary ops above.
3024     if (ConstantInt *ConstRHS = dyn_cast<ConstantInt>(Cmp.getOperand(1)))
3025       if (Instruction *I = foldICmpSelectConstant(Cmp, SI, ConstRHS))
3026         return I;
3027   }
3028 
3029   if (auto *TI = dyn_cast<TruncInst>(Cmp.getOperand(0))) {
3030     if (Instruction *I = foldICmpTruncConstant(Cmp, TI, *C))
3031       return I;
3032   }
3033 
3034   if (auto *II = dyn_cast<IntrinsicInst>(Cmp.getOperand(0)))
3035     if (Instruction *I = foldICmpIntrinsicWithConstant(Cmp, II, *C))
3036       return I;
3037 
3038   return nullptr;
3039 }
3040 
3041 /// Fold an icmp equality instruction with binary operator LHS and constant RHS:
3042 /// icmp eq/ne BO, C.
foldICmpBinOpEqualityWithConstant(ICmpInst & Cmp,BinaryOperator * BO,const APInt & C)3043 Instruction *InstCombinerImpl::foldICmpBinOpEqualityWithConstant(
3044     ICmpInst &Cmp, BinaryOperator *BO, const APInt &C) {
3045   // TODO: Some of these folds could work with arbitrary constants, but this
3046   // function is limited to scalar and vector splat constants.
3047   if (!Cmp.isEquality())
3048     return nullptr;
3049 
3050   ICmpInst::Predicate Pred = Cmp.getPredicate();
3051   bool isICMP_NE = Pred == ICmpInst::ICMP_NE;
3052   Constant *RHS = cast<Constant>(Cmp.getOperand(1));
3053   Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
3054 
3055   switch (BO->getOpcode()) {
3056   case Instruction::SRem:
3057     // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
3058     if (C.isNullValue() && BO->hasOneUse()) {
3059       const APInt *BOC;
3060       if (match(BOp1, m_APInt(BOC)) && BOC->sgt(1) && BOC->isPowerOf2()) {
3061         Value *NewRem = Builder.CreateURem(BOp0, BOp1, BO->getName());
3062         return new ICmpInst(Pred, NewRem,
3063                             Constant::getNullValue(BO->getType()));
3064       }
3065     }
3066     break;
3067   case Instruction::Add: {
3068     // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
3069     if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3070       if (BO->hasOneUse())
3071         return new ICmpInst(Pred, BOp0, ConstantExpr::getSub(RHS, BOC));
3072     } else if (C.isNullValue()) {
3073       // Replace ((add A, B) != 0) with (A != -B) if A or B is
3074       // efficiently invertible, or if the add has just this one use.
3075       if (Value *NegVal = dyn_castNegVal(BOp1))
3076         return new ICmpInst(Pred, BOp0, NegVal);
3077       if (Value *NegVal = dyn_castNegVal(BOp0))
3078         return new ICmpInst(Pred, NegVal, BOp1);
3079       if (BO->hasOneUse()) {
3080         Value *Neg = Builder.CreateNeg(BOp1);
3081         Neg->takeName(BO);
3082         return new ICmpInst(Pred, BOp0, Neg);
3083       }
3084     }
3085     break;
3086   }
3087   case Instruction::Xor:
3088     if (BO->hasOneUse()) {
3089       if (Constant *BOC = dyn_cast<Constant>(BOp1)) {
3090         // For the xor case, we can xor two constants together, eliminating
3091         // the explicit xor.
3092         return new ICmpInst(Pred, BOp0, ConstantExpr::getXor(RHS, BOC));
3093       } else if (C.isNullValue()) {
3094         // Replace ((xor A, B) != 0) with (A != B)
3095         return new ICmpInst(Pred, BOp0, BOp1);
3096       }
3097     }
3098     break;
3099   case Instruction::Sub:
3100     if (BO->hasOneUse()) {
3101       // Only check for constant LHS here, as constant RHS will be canonicalized
3102       // to add and use the fold above.
3103       if (Constant *BOC = dyn_cast<Constant>(BOp0)) {
3104         // Replace ((sub BOC, B) != C) with (B != BOC-C).
3105         return new ICmpInst(Pred, BOp1, ConstantExpr::getSub(BOC, RHS));
3106       } else if (C.isNullValue()) {
3107         // Replace ((sub A, B) != 0) with (A != B).
3108         return new ICmpInst(Pred, BOp0, BOp1);
3109       }
3110     }
3111     break;
3112   case Instruction::Or: {
3113     const APInt *BOC;
3114     if (match(BOp1, m_APInt(BOC)) && BO->hasOneUse() && RHS->isAllOnesValue()) {
3115       // Comparing if all bits outside of a constant mask are set?
3116       // Replace (X | C) == -1 with (X & ~C) == ~C.
3117       // This removes the -1 constant.
3118       Constant *NotBOC = ConstantExpr::getNot(cast<Constant>(BOp1));
3119       Value *And = Builder.CreateAnd(BOp0, NotBOC);
3120       return new ICmpInst(Pred, And, NotBOC);
3121     }
3122     break;
3123   }
3124   case Instruction::And: {
3125     const APInt *BOC;
3126     if (match(BOp1, m_APInt(BOC))) {
3127       // If we have ((X & C) == C), turn it into ((X & C) != 0).
3128       if (C == *BOC && C.isPowerOf2())
3129         return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ : ICmpInst::ICMP_NE,
3130                             BO, Constant::getNullValue(RHS->getType()));
3131     }
3132     break;
3133   }
3134   case Instruction::UDiv:
3135     if (C.isNullValue()) {
3136       // (icmp eq/ne (udiv A, B), 0) -> (icmp ugt/ule i32 B, A)
3137       auto NewPred = isICMP_NE ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3138       return new ICmpInst(NewPred, BOp1, BOp0);
3139     }
3140     break;
3141   default:
3142     break;
3143   }
3144   return nullptr;
3145 }
3146 
3147 /// Fold an equality icmp with LLVM intrinsic and constant operand.
foldICmpEqIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3148 Instruction *InstCombinerImpl::foldICmpEqIntrinsicWithConstant(
3149     ICmpInst &Cmp, IntrinsicInst *II, const APInt &C) {
3150   Type *Ty = II->getType();
3151   unsigned BitWidth = C.getBitWidth();
3152   switch (II->getIntrinsicID()) {
3153   case Intrinsic::abs:
3154     // abs(A) == 0  ->  A == 0
3155     // abs(A) == INT_MIN  ->  A == INT_MIN
3156     if (C.isNullValue() || C.isMinSignedValue())
3157       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3158                           ConstantInt::get(Ty, C));
3159     break;
3160 
3161   case Intrinsic::bswap:
3162     // bswap(A) == C  ->  A == bswap(C)
3163     return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3164                         ConstantInt::get(Ty, C.byteSwap()));
3165 
3166   case Intrinsic::ctlz:
3167   case Intrinsic::cttz: {
3168     // ctz(A) == bitwidth(A)  ->  A == 0 and likewise for !=
3169     if (C == BitWidth)
3170       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3171                           ConstantInt::getNullValue(Ty));
3172 
3173     // ctz(A) == C -> A & Mask1 == Mask2, where Mask2 only has bit C set
3174     // and Mask1 has bits 0..C+1 set. Similar for ctl, but for high bits.
3175     // Limit to one use to ensure we don't increase instruction count.
3176     unsigned Num = C.getLimitedValue(BitWidth);
3177     if (Num != BitWidth && II->hasOneUse()) {
3178       bool IsTrailing = II->getIntrinsicID() == Intrinsic::cttz;
3179       APInt Mask1 = IsTrailing ? APInt::getLowBitsSet(BitWidth, Num + 1)
3180                                : APInt::getHighBitsSet(BitWidth, Num + 1);
3181       APInt Mask2 = IsTrailing
3182         ? APInt::getOneBitSet(BitWidth, Num)
3183         : APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3184       return new ICmpInst(Cmp.getPredicate(),
3185           Builder.CreateAnd(II->getArgOperand(0), Mask1),
3186           ConstantInt::get(Ty, Mask2));
3187     }
3188     break;
3189   }
3190 
3191   case Intrinsic::ctpop: {
3192     // popcount(A) == 0  ->  A == 0 and likewise for !=
3193     // popcount(A) == bitwidth(A)  ->  A == -1 and likewise for !=
3194     bool IsZero = C.isNullValue();
3195     if (IsZero || C == BitWidth)
3196       return new ICmpInst(Cmp.getPredicate(), II->getArgOperand(0),
3197           IsZero ? Constant::getNullValue(Ty) : Constant::getAllOnesValue(Ty));
3198 
3199     break;
3200   }
3201 
3202   case Intrinsic::uadd_sat: {
3203     // uadd.sat(a, b) == 0  ->  (a | b) == 0
3204     if (C.isNullValue()) {
3205       Value *Or = Builder.CreateOr(II->getArgOperand(0), II->getArgOperand(1));
3206       return new ICmpInst(Cmp.getPredicate(), Or, Constant::getNullValue(Ty));
3207     }
3208     break;
3209   }
3210 
3211   case Intrinsic::usub_sat: {
3212     // usub.sat(a, b) == 0  ->  a <= b
3213     if (C.isNullValue()) {
3214       ICmpInst::Predicate NewPred = Cmp.getPredicate() == ICmpInst::ICMP_EQ
3215           ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_UGT;
3216       return new ICmpInst(NewPred, II->getArgOperand(0), II->getArgOperand(1));
3217     }
3218     break;
3219   }
3220   default:
3221     break;
3222   }
3223 
3224   return nullptr;
3225 }
3226 
3227 /// Fold an icmp with LLVM intrinsic and constant operand: icmp Pred II, C.
foldICmpIntrinsicWithConstant(ICmpInst & Cmp,IntrinsicInst * II,const APInt & C)3228 Instruction *InstCombinerImpl::foldICmpIntrinsicWithConstant(ICmpInst &Cmp,
3229                                                              IntrinsicInst *II,
3230                                                              const APInt &C) {
3231   if (Cmp.isEquality())
3232     return foldICmpEqIntrinsicWithConstant(Cmp, II, C);
3233 
3234   Type *Ty = II->getType();
3235   unsigned BitWidth = C.getBitWidth();
3236   ICmpInst::Predicate Pred = Cmp.getPredicate();
3237   switch (II->getIntrinsicID()) {
3238   case Intrinsic::ctpop: {
3239     // (ctpop X > BitWidth - 1) --> X == -1
3240     Value *X = II->getArgOperand(0);
3241     if (C == BitWidth - 1 && Pred == ICmpInst::ICMP_UGT)
3242       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ, X,
3243                              ConstantInt::getAllOnesValue(Ty));
3244     // (ctpop X < BitWidth) --> X != -1
3245     if (C == BitWidth && Pred == ICmpInst::ICMP_ULT)
3246       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE, X,
3247                              ConstantInt::getAllOnesValue(Ty));
3248     break;
3249   }
3250   case Intrinsic::ctlz: {
3251     // ctlz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX < 0b00010000
3252     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3253       unsigned Num = C.getLimitedValue();
3254       APInt Limit = APInt::getOneBitSet(BitWidth, BitWidth - Num - 1);
3255       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_ULT,
3256                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3257     }
3258 
3259     // ctlz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX > 0b00011111
3260     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3261       unsigned Num = C.getLimitedValue();
3262       APInt Limit = APInt::getLowBitsSet(BitWidth, BitWidth - Num);
3263       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_UGT,
3264                              II->getArgOperand(0), ConstantInt::get(Ty, Limit));
3265     }
3266     break;
3267   }
3268   case Intrinsic::cttz: {
3269     // Limit to one use to ensure we don't increase instruction count.
3270     if (!II->hasOneUse())
3271       return nullptr;
3272 
3273     // cttz(0bXXXXXXXX) > 3 -> 0bXXXXXXXX & 0b00001111 == 0
3274     if (Pred == ICmpInst::ICMP_UGT && C.ult(BitWidth)) {
3275       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue() + 1);
3276       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_EQ,
3277                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3278                              ConstantInt::getNullValue(Ty));
3279     }
3280 
3281     // cttz(0bXXXXXXXX) < 3 -> 0bXXXXXXXX & 0b00000111 != 0
3282     if (Pred == ICmpInst::ICMP_ULT && C.uge(1) && C.ule(BitWidth)) {
3283       APInt Mask = APInt::getLowBitsSet(BitWidth, C.getLimitedValue());
3284       return CmpInst::Create(Instruction::ICmp, ICmpInst::ICMP_NE,
3285                              Builder.CreateAnd(II->getArgOperand(0), Mask),
3286                              ConstantInt::getNullValue(Ty));
3287     }
3288     break;
3289   }
3290   default:
3291     break;
3292   }
3293 
3294   return nullptr;
3295 }
3296 
3297 /// Handle icmp with constant (but not simple integer constant) RHS.
foldICmpInstWithConstantNotInt(ICmpInst & I)3298 Instruction *InstCombinerImpl::foldICmpInstWithConstantNotInt(ICmpInst &I) {
3299   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3300   Constant *RHSC = dyn_cast<Constant>(Op1);
3301   Instruction *LHSI = dyn_cast<Instruction>(Op0);
3302   if (!RHSC || !LHSI)
3303     return nullptr;
3304 
3305   switch (LHSI->getOpcode()) {
3306   case Instruction::GetElementPtr:
3307     // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
3308     if (RHSC->isNullValue() &&
3309         cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
3310       return new ICmpInst(
3311           I.getPredicate(), LHSI->getOperand(0),
3312           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3313     break;
3314   case Instruction::PHI:
3315     // Only fold icmp into the PHI if the phi and icmp are in the same
3316     // block.  If in the same block, we're encouraging jump threading.  If
3317     // not, we are just pessimizing the code by making an i1 phi.
3318     if (LHSI->getParent() == I.getParent())
3319       if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
3320         return NV;
3321     break;
3322   case Instruction::Select: {
3323     // If either operand of the select is a constant, we can fold the
3324     // comparison into the select arms, which will cause one to be
3325     // constant folded and the select turned into a bitwise or.
3326     Value *Op1 = nullptr, *Op2 = nullptr;
3327     ConstantInt *CI = nullptr;
3328 
3329     auto SimplifyOp = [&](Value *V) {
3330       Value *Op = nullptr;
3331       if (Constant *C = dyn_cast<Constant>(V)) {
3332         Op = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
3333       } else if (RHSC->isNullValue()) {
3334         // If null is being compared, check if it can be further simplified.
3335         Op = SimplifyICmpInst(I.getPredicate(), V, RHSC, SQ);
3336       }
3337       return Op;
3338     };
3339     Op1 = SimplifyOp(LHSI->getOperand(1));
3340     if (Op1)
3341       CI = dyn_cast<ConstantInt>(Op1);
3342 
3343     Op2 = SimplifyOp(LHSI->getOperand(2));
3344     if (Op2)
3345       CI = dyn_cast<ConstantInt>(Op2);
3346 
3347     // We only want to perform this transformation if it will not lead to
3348     // additional code. This is true if either both sides of the select
3349     // fold to a constant (in which case the icmp is replaced with a select
3350     // which will usually simplify) or this is the only user of the
3351     // select (in which case we are trading a select+icmp for a simpler
3352     // select+icmp) or all uses of the select can be replaced based on
3353     // dominance information ("Global cases").
3354     bool Transform = false;
3355     if (Op1 && Op2)
3356       Transform = true;
3357     else if (Op1 || Op2) {
3358       // Local case
3359       if (LHSI->hasOneUse())
3360         Transform = true;
3361       // Global cases
3362       else if (CI && !CI->isZero())
3363         // When Op1 is constant try replacing select with second operand.
3364         // Otherwise Op2 is constant and try replacing select with first
3365         // operand.
3366         Transform =
3367             replacedSelectWithOperand(cast<SelectInst>(LHSI), &I, Op1 ? 2 : 1);
3368     }
3369     if (Transform) {
3370       if (!Op1)
3371         Op1 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(1), RHSC,
3372                                  I.getName());
3373       if (!Op2)
3374         Op2 = Builder.CreateICmp(I.getPredicate(), LHSI->getOperand(2), RHSC,
3375                                  I.getName());
3376       return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
3377     }
3378     break;
3379   }
3380   case Instruction::IntToPtr:
3381     // icmp pred inttoptr(X), null -> icmp pred X, 0
3382     if (RHSC->isNullValue() &&
3383         DL.getIntPtrType(RHSC->getType()) == LHSI->getOperand(0)->getType())
3384       return new ICmpInst(
3385           I.getPredicate(), LHSI->getOperand(0),
3386           Constant::getNullValue(LHSI->getOperand(0)->getType()));
3387     break;
3388 
3389   case Instruction::Load:
3390     // Try to optimize things like "A[i] > 4" to index computations.
3391     if (GetElementPtrInst *GEP =
3392             dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
3393       if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
3394         if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
3395             !cast<LoadInst>(LHSI)->isVolatile())
3396           if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
3397             return Res;
3398     }
3399     break;
3400   }
3401 
3402   return nullptr;
3403 }
3404 
3405 /// Some comparisons can be simplified.
3406 /// In this case, we are looking for comparisons that look like
3407 /// a check for a lossy truncation.
3408 /// Folds:
3409 ///   icmp SrcPred (x & Mask), x    to    icmp DstPred x, Mask
3410 /// Where Mask is some pattern that produces all-ones in low bits:
3411 ///    (-1 >> y)
3412 ///    ((-1 << y) >> y)     <- non-canonical, has extra uses
3413 ///   ~(-1 << y)
3414 ///    ((1 << y) + (-1))    <- non-canonical, has extra uses
3415 /// The Mask can be a constant, too.
3416 /// For some predicates, the operands are commutative.
3417 /// For others, x can only be on a specific side.
foldICmpWithLowBitMaskedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3418 static Value *foldICmpWithLowBitMaskedVal(ICmpInst &I,
3419                                           InstCombiner::BuilderTy &Builder) {
3420   ICmpInst::Predicate SrcPred;
3421   Value *X, *M, *Y;
3422   auto m_VariableMask = m_CombineOr(
3423       m_CombineOr(m_Not(m_Shl(m_AllOnes(), m_Value())),
3424                   m_Add(m_Shl(m_One(), m_Value()), m_AllOnes())),
3425       m_CombineOr(m_LShr(m_AllOnes(), m_Value()),
3426                   m_LShr(m_Shl(m_AllOnes(), m_Value(Y)), m_Deferred(Y))));
3427   auto m_Mask = m_CombineOr(m_VariableMask, m_LowBitMask());
3428   if (!match(&I, m_c_ICmp(SrcPred,
3429                           m_c_And(m_CombineAnd(m_Mask, m_Value(M)), m_Value(X)),
3430                           m_Deferred(X))))
3431     return nullptr;
3432 
3433   ICmpInst::Predicate DstPred;
3434   switch (SrcPred) {
3435   case ICmpInst::Predicate::ICMP_EQ:
3436     //  x & (-1 >> y) == x    ->    x u<= (-1 >> y)
3437     DstPred = ICmpInst::Predicate::ICMP_ULE;
3438     break;
3439   case ICmpInst::Predicate::ICMP_NE:
3440     //  x & (-1 >> y) != x    ->    x u> (-1 >> y)
3441     DstPred = ICmpInst::Predicate::ICMP_UGT;
3442     break;
3443   case ICmpInst::Predicate::ICMP_ULT:
3444     //  x & (-1 >> y) u< x    ->    x u> (-1 >> y)
3445     //  x u> x & (-1 >> y)    ->    x u> (-1 >> y)
3446     DstPred = ICmpInst::Predicate::ICMP_UGT;
3447     break;
3448   case ICmpInst::Predicate::ICMP_UGE:
3449     //  x & (-1 >> y) u>= x    ->    x u<= (-1 >> y)
3450     //  x u<= x & (-1 >> y)    ->    x u<= (-1 >> y)
3451     DstPred = ICmpInst::Predicate::ICMP_ULE;
3452     break;
3453   case ICmpInst::Predicate::ICMP_SLT:
3454     //  x & (-1 >> y) s< x    ->    x s> (-1 >> y)
3455     //  x s> x & (-1 >> y)    ->    x s> (-1 >> y)
3456     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3457       return nullptr;
3458     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3459       return nullptr;
3460     DstPred = ICmpInst::Predicate::ICMP_SGT;
3461     break;
3462   case ICmpInst::Predicate::ICMP_SGE:
3463     //  x & (-1 >> y) s>= x    ->    x s<= (-1 >> y)
3464     //  x s<= x & (-1 >> y)    ->    x s<= (-1 >> y)
3465     if (!match(M, m_Constant())) // Can not do this fold with non-constant.
3466       return nullptr;
3467     if (!match(M, m_NonNegative())) // Must not have any -1 vector elements.
3468       return nullptr;
3469     DstPred = ICmpInst::Predicate::ICMP_SLE;
3470     break;
3471   case ICmpInst::Predicate::ICMP_SGT:
3472   case ICmpInst::Predicate::ICMP_SLE:
3473     return nullptr;
3474   case ICmpInst::Predicate::ICMP_UGT:
3475   case ICmpInst::Predicate::ICMP_ULE:
3476     llvm_unreachable("Instsimplify took care of commut. variant");
3477     break;
3478   default:
3479     llvm_unreachable("All possible folds are handled.");
3480   }
3481 
3482   // The mask value may be a vector constant that has undefined elements. But it
3483   // may not be safe to propagate those undefs into the new compare, so replace
3484   // those elements by copying an existing, defined, and safe scalar constant.
3485   Type *OpTy = M->getType();
3486   auto *VecC = dyn_cast<Constant>(M);
3487   auto *OpVTy = dyn_cast<FixedVectorType>(OpTy);
3488   if (OpVTy && VecC && VecC->containsUndefOrPoisonElement()) {
3489     Constant *SafeReplacementConstant = nullptr;
3490     for (unsigned i = 0, e = OpVTy->getNumElements(); i != e; ++i) {
3491       if (!isa<UndefValue>(VecC->getAggregateElement(i))) {
3492         SafeReplacementConstant = VecC->getAggregateElement(i);
3493         break;
3494       }
3495     }
3496     assert(SafeReplacementConstant && "Failed to find undef replacement");
3497     M = Constant::replaceUndefsWith(VecC, SafeReplacementConstant);
3498   }
3499 
3500   return Builder.CreateICmp(DstPred, X, M);
3501 }
3502 
3503 /// Some comparisons can be simplified.
3504 /// In this case, we are looking for comparisons that look like
3505 /// a check for a lossy signed truncation.
3506 /// Folds:   (MaskedBits is a constant.)
3507 ///   ((%x << MaskedBits) a>> MaskedBits) SrcPred %x
3508 /// Into:
3509 ///   (add %x, (1 << (KeptBits-1))) DstPred (1 << KeptBits)
3510 /// Where  KeptBits = bitwidth(%x) - MaskedBits
3511 static Value *
foldICmpWithTruncSignExtendedVal(ICmpInst & I,InstCombiner::BuilderTy & Builder)3512 foldICmpWithTruncSignExtendedVal(ICmpInst &I,
3513                                  InstCombiner::BuilderTy &Builder) {
3514   ICmpInst::Predicate SrcPred;
3515   Value *X;
3516   const APInt *C0, *C1; // FIXME: non-splats, potentially with undef.
3517   // We are ok with 'shl' having multiple uses, but 'ashr' must be one-use.
3518   if (!match(&I, m_c_ICmp(SrcPred,
3519                           m_OneUse(m_AShr(m_Shl(m_Value(X), m_APInt(C0)),
3520                                           m_APInt(C1))),
3521                           m_Deferred(X))))
3522     return nullptr;
3523 
3524   // Potential handling of non-splats: for each element:
3525   //  * if both are undef, replace with constant 0.
3526   //    Because (1<<0) is OK and is 1, and ((1<<0)>>1) is also OK and is 0.
3527   //  * if both are not undef, and are different, bailout.
3528   //  * else, only one is undef, then pick the non-undef one.
3529 
3530   // The shift amount must be equal.
3531   if (*C0 != *C1)
3532     return nullptr;
3533   const APInt &MaskedBits = *C0;
3534   assert(MaskedBits != 0 && "shift by zero should be folded away already.");
3535 
3536   ICmpInst::Predicate DstPred;
3537   switch (SrcPred) {
3538   case ICmpInst::Predicate::ICMP_EQ:
3539     // ((%x << MaskedBits) a>> MaskedBits) == %x
3540     //   =>
3541     // (add %x, (1 << (KeptBits-1))) u< (1 << KeptBits)
3542     DstPred = ICmpInst::Predicate::ICMP_ULT;
3543     break;
3544   case ICmpInst::Predicate::ICMP_NE:
3545     // ((%x << MaskedBits) a>> MaskedBits) != %x
3546     //   =>
3547     // (add %x, (1 << (KeptBits-1))) u>= (1 << KeptBits)
3548     DstPred = ICmpInst::Predicate::ICMP_UGE;
3549     break;
3550   // FIXME: are more folds possible?
3551   default:
3552     return nullptr;
3553   }
3554 
3555   auto *XType = X->getType();
3556   const unsigned XBitWidth = XType->getScalarSizeInBits();
3557   const APInt BitWidth = APInt(XBitWidth, XBitWidth);
3558   assert(BitWidth.ugt(MaskedBits) && "shifts should leave some bits untouched");
3559 
3560   // KeptBits = bitwidth(%x) - MaskedBits
3561   const APInt KeptBits = BitWidth - MaskedBits;
3562   assert(KeptBits.ugt(0) && KeptBits.ult(BitWidth) && "unreachable");
3563   // ICmpCst = (1 << KeptBits)
3564   const APInt ICmpCst = APInt(XBitWidth, 1).shl(KeptBits);
3565   assert(ICmpCst.isPowerOf2());
3566   // AddCst = (1 << (KeptBits-1))
3567   const APInt AddCst = ICmpCst.lshr(1);
3568   assert(AddCst.ult(ICmpCst) && AddCst.isPowerOf2());
3569 
3570   // T0 = add %x, AddCst
3571   Value *T0 = Builder.CreateAdd(X, ConstantInt::get(XType, AddCst));
3572   // T1 = T0 DstPred ICmpCst
3573   Value *T1 = Builder.CreateICmp(DstPred, T0, ConstantInt::get(XType, ICmpCst));
3574 
3575   return T1;
3576 }
3577 
3578 // Given pattern:
3579 //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3580 // we should move shifts to the same hand of 'and', i.e. rewrite as
3581 //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3582 // We are only interested in opposite logical shifts here.
3583 // One of the shifts can be truncated.
3584 // If we can, we want to end up creating 'lshr' shift.
3585 static Value *
foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst & I,const SimplifyQuery SQ,InstCombiner::BuilderTy & Builder)3586 foldShiftIntoShiftInAnotherHandOfAndInICmp(ICmpInst &I, const SimplifyQuery SQ,
3587                                            InstCombiner::BuilderTy &Builder) {
3588   if (!I.isEquality() || !match(I.getOperand(1), m_Zero()) ||
3589       !I.getOperand(0)->hasOneUse())
3590     return nullptr;
3591 
3592   auto m_AnyLogicalShift = m_LogicalShift(m_Value(), m_Value());
3593 
3594   // Look for an 'and' of two logical shifts, one of which may be truncated.
3595   // We use m_TruncOrSelf() on the RHS to correctly handle commutative case.
3596   Instruction *XShift, *MaybeTruncation, *YShift;
3597   if (!match(
3598           I.getOperand(0),
3599           m_c_And(m_CombineAnd(m_AnyLogicalShift, m_Instruction(XShift)),
3600                   m_CombineAnd(m_TruncOrSelf(m_CombineAnd(
3601                                    m_AnyLogicalShift, m_Instruction(YShift))),
3602                                m_Instruction(MaybeTruncation)))))
3603     return nullptr;
3604 
3605   // We potentially looked past 'trunc', but only when matching YShift,
3606   // therefore YShift must have the widest type.
3607   Instruction *WidestShift = YShift;
3608   // Therefore XShift must have the shallowest type.
3609   // Or they both have identical types if there was no truncation.
3610   Instruction *NarrowestShift = XShift;
3611 
3612   Type *WidestTy = WidestShift->getType();
3613   Type *NarrowestTy = NarrowestShift->getType();
3614   assert(NarrowestTy == I.getOperand(0)->getType() &&
3615          "We did not look past any shifts while matching XShift though.");
3616   bool HadTrunc = WidestTy != I.getOperand(0)->getType();
3617 
3618   // If YShift is a 'lshr', swap the shifts around.
3619   if (match(YShift, m_LShr(m_Value(), m_Value())))
3620     std::swap(XShift, YShift);
3621 
3622   // The shifts must be in opposite directions.
3623   auto XShiftOpcode = XShift->getOpcode();
3624   if (XShiftOpcode == YShift->getOpcode())
3625     return nullptr; // Do not care about same-direction shifts here.
3626 
3627   Value *X, *XShAmt, *Y, *YShAmt;
3628   match(XShift, m_BinOp(m_Value(X), m_ZExtOrSelf(m_Value(XShAmt))));
3629   match(YShift, m_BinOp(m_Value(Y), m_ZExtOrSelf(m_Value(YShAmt))));
3630 
3631   // If one of the values being shifted is a constant, then we will end with
3632   // and+icmp, and [zext+]shift instrs will be constant-folded. If they are not,
3633   // however, we will need to ensure that we won't increase instruction count.
3634   if (!isa<Constant>(X) && !isa<Constant>(Y)) {
3635     // At least one of the hands of the 'and' should be one-use shift.
3636     if (!match(I.getOperand(0),
3637                m_c_And(m_OneUse(m_AnyLogicalShift), m_Value())))
3638       return nullptr;
3639     if (HadTrunc) {
3640       // Due to the 'trunc', we will need to widen X. For that either the old
3641       // 'trunc' or the shift amt in the non-truncated shift should be one-use.
3642       if (!MaybeTruncation->hasOneUse() &&
3643           !NarrowestShift->getOperand(1)->hasOneUse())
3644         return nullptr;
3645     }
3646   }
3647 
3648   // We have two shift amounts from two different shifts. The types of those
3649   // shift amounts may not match. If that's the case let's bailout now.
3650   if (XShAmt->getType() != YShAmt->getType())
3651     return nullptr;
3652 
3653   // As input, we have the following pattern:
3654   //   icmp eq/ne (and ((x shift Q), (y oppositeshift K))), 0
3655   // We want to rewrite that as:
3656   //   icmp eq/ne (and (x shift (Q+K)), y), 0  iff (Q+K) u< bitwidth(x)
3657   // While we know that originally (Q+K) would not overflow
3658   // (because  2 * (N-1) u<= iN -1), we have looked past extensions of
3659   // shift amounts. so it may now overflow in smaller bitwidth.
3660   // To ensure that does not happen, we need to ensure that the total maximal
3661   // shift amount is still representable in that smaller bit width.
3662   unsigned MaximalPossibleTotalShiftAmount =
3663       (WidestTy->getScalarSizeInBits() - 1) +
3664       (NarrowestTy->getScalarSizeInBits() - 1);
3665   APInt MaximalRepresentableShiftAmount =
3666       APInt::getAllOnesValue(XShAmt->getType()->getScalarSizeInBits());
3667   if (MaximalRepresentableShiftAmount.ult(MaximalPossibleTotalShiftAmount))
3668     return nullptr;
3669 
3670   // Can we fold (XShAmt+YShAmt) ?
3671   auto *NewShAmt = dyn_cast_or_null<Constant>(
3672       SimplifyAddInst(XShAmt, YShAmt, /*isNSW=*/false,
3673                       /*isNUW=*/false, SQ.getWithInstruction(&I)));
3674   if (!NewShAmt)
3675     return nullptr;
3676   NewShAmt = ConstantExpr::getZExtOrBitCast(NewShAmt, WidestTy);
3677   unsigned WidestBitWidth = WidestTy->getScalarSizeInBits();
3678 
3679   // Is the new shift amount smaller than the bit width?
3680   // FIXME: could also rely on ConstantRange.
3681   if (!match(NewShAmt,
3682              m_SpecificInt_ICMP(ICmpInst::Predicate::ICMP_ULT,
3683                                 APInt(WidestBitWidth, WidestBitWidth))))
3684     return nullptr;
3685 
3686   // An extra legality check is needed if we had trunc-of-lshr.
3687   if (HadTrunc && match(WidestShift, m_LShr(m_Value(), m_Value()))) {
3688     auto CanFold = [NewShAmt, WidestBitWidth, NarrowestShift, SQ,
3689                     WidestShift]() {
3690       // It isn't obvious whether it's worth it to analyze non-constants here.
3691       // Also, let's basically give up on non-splat cases, pessimizing vectors.
3692       // If *any* of these preconditions matches we can perform the fold.
3693       Constant *NewShAmtSplat = NewShAmt->getType()->isVectorTy()
3694                                     ? NewShAmt->getSplatValue()
3695                                     : NewShAmt;
3696       // If it's edge-case shift (by 0 or by WidestBitWidth-1) we can fold.
3697       if (NewShAmtSplat &&
3698           (NewShAmtSplat->isNullValue() ||
3699            NewShAmtSplat->getUniqueInteger() == WidestBitWidth - 1))
3700         return true;
3701       // We consider *min* leading zeros so a single outlier
3702       // blocks the transform as opposed to allowing it.
3703       if (auto *C = dyn_cast<Constant>(NarrowestShift->getOperand(0))) {
3704         KnownBits Known = computeKnownBits(C, SQ.DL);
3705         unsigned MinLeadZero = Known.countMinLeadingZeros();
3706         // If the value being shifted has at most lowest bit set we can fold.
3707         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3708         if (MaxActiveBits <= 1)
3709           return true;
3710         // Precondition:  NewShAmt u<= countLeadingZeros(C)
3711         if (NewShAmtSplat && NewShAmtSplat->getUniqueInteger().ule(MinLeadZero))
3712           return true;
3713       }
3714       if (auto *C = dyn_cast<Constant>(WidestShift->getOperand(0))) {
3715         KnownBits Known = computeKnownBits(C, SQ.DL);
3716         unsigned MinLeadZero = Known.countMinLeadingZeros();
3717         // If the value being shifted has at most lowest bit set we can fold.
3718         unsigned MaxActiveBits = Known.getBitWidth() - MinLeadZero;
3719         if (MaxActiveBits <= 1)
3720           return true;
3721         // Precondition:  ((WidestBitWidth-1)-NewShAmt) u<= countLeadingZeros(C)
3722         if (NewShAmtSplat) {
3723           APInt AdjNewShAmt =
3724               (WidestBitWidth - 1) - NewShAmtSplat->getUniqueInteger();
3725           if (AdjNewShAmt.ule(MinLeadZero))
3726             return true;
3727         }
3728       }
3729       return false; // Can't tell if it's ok.
3730     };
3731     if (!CanFold())
3732       return nullptr;
3733   }
3734 
3735   // All good, we can do this fold.
3736   X = Builder.CreateZExt(X, WidestTy);
3737   Y = Builder.CreateZExt(Y, WidestTy);
3738   // The shift is the same that was for X.
3739   Value *T0 = XShiftOpcode == Instruction::BinaryOps::LShr
3740                   ? Builder.CreateLShr(X, NewShAmt)
3741                   : Builder.CreateShl(X, NewShAmt);
3742   Value *T1 = Builder.CreateAnd(T0, Y);
3743   return Builder.CreateICmp(I.getPredicate(), T1,
3744                             Constant::getNullValue(WidestTy));
3745 }
3746 
3747 /// Fold
3748 ///   (-1 u/ x) u< y
3749 ///   ((x * y) u/ x) != y
3750 /// to
3751 ///   @llvm.umul.with.overflow(x, y) plus extraction of overflow bit
3752 /// Note that the comparison is commutative, while inverted (u>=, ==) predicate
3753 /// will mean that we are looking for the opposite answer.
foldUnsignedMultiplicationOverflowCheck(ICmpInst & I)3754 Value *InstCombinerImpl::foldUnsignedMultiplicationOverflowCheck(ICmpInst &I) {
3755   ICmpInst::Predicate Pred;
3756   Value *X, *Y;
3757   Instruction *Mul;
3758   bool NeedNegation;
3759   // Look for: (-1 u/ x) u</u>= y
3760   if (!I.isEquality() &&
3761       match(&I, m_c_ICmp(Pred, m_OneUse(m_UDiv(m_AllOnes(), m_Value(X))),
3762                          m_Value(Y)))) {
3763     Mul = nullptr;
3764 
3765     // Are we checking that overflow does not happen, or does happen?
3766     switch (Pred) {
3767     case ICmpInst::Predicate::ICMP_ULT:
3768       NeedNegation = false;
3769       break; // OK
3770     case ICmpInst::Predicate::ICMP_UGE:
3771       NeedNegation = true;
3772       break; // OK
3773     default:
3774       return nullptr; // Wrong predicate.
3775     }
3776   } else // Look for: ((x * y) u/ x) !=/== y
3777       if (I.isEquality() &&
3778           match(&I, m_c_ICmp(Pred, m_Value(Y),
3779                              m_OneUse(m_UDiv(m_CombineAnd(m_c_Mul(m_Deferred(Y),
3780                                                                   m_Value(X)),
3781                                                           m_Instruction(Mul)),
3782                                              m_Deferred(X)))))) {
3783     NeedNegation = Pred == ICmpInst::Predicate::ICMP_EQ;
3784   } else
3785     return nullptr;
3786 
3787   BuilderTy::InsertPointGuard Guard(Builder);
3788   // If the pattern included (x * y), we'll want to insert new instructions
3789   // right before that original multiplication so that we can replace it.
3790   bool MulHadOtherUses = Mul && !Mul->hasOneUse();
3791   if (MulHadOtherUses)
3792     Builder.SetInsertPoint(Mul);
3793 
3794   Function *F = Intrinsic::getDeclaration(
3795       I.getModule(), Intrinsic::umul_with_overflow, X->getType());
3796   CallInst *Call = Builder.CreateCall(F, {X, Y}, "umul");
3797 
3798   // If the multiplication was used elsewhere, to ensure that we don't leave
3799   // "duplicate" instructions, replace uses of that original multiplication
3800   // with the multiplication result from the with.overflow intrinsic.
3801   if (MulHadOtherUses)
3802     replaceInstUsesWith(*Mul, Builder.CreateExtractValue(Call, 0, "umul.val"));
3803 
3804   Value *Res = Builder.CreateExtractValue(Call, 1, "umul.ov");
3805   if (NeedNegation) // This technically increases instruction count.
3806     Res = Builder.CreateNot(Res, "umul.not.ov");
3807 
3808   // If we replaced the mul, erase it. Do this after all uses of Builder,
3809   // as the mul is used as insertion point.
3810   if (MulHadOtherUses)
3811     eraseInstFromFunction(*Mul);
3812 
3813   return Res;
3814 }
3815 
foldICmpXNegX(ICmpInst & I)3816 static Instruction *foldICmpXNegX(ICmpInst &I) {
3817   CmpInst::Predicate Pred;
3818   Value *X;
3819   if (!match(&I, m_c_ICmp(Pred, m_NSWNeg(m_Value(X)), m_Deferred(X))))
3820     return nullptr;
3821 
3822   if (ICmpInst::isSigned(Pred))
3823     Pred = ICmpInst::getSwappedPredicate(Pred);
3824   else if (ICmpInst::isUnsigned(Pred))
3825     Pred = ICmpInst::getSignedPredicate(Pred);
3826   // else for equality-comparisons just keep the predicate.
3827 
3828   return ICmpInst::Create(Instruction::ICmp, Pred, X,
3829                           Constant::getNullValue(X->getType()), I.getName());
3830 }
3831 
3832 /// Try to fold icmp (binop), X or icmp X, (binop).
3833 /// TODO: A large part of this logic is duplicated in InstSimplify's
3834 /// simplifyICmpWithBinOp(). We should be able to share that and avoid the code
3835 /// duplication.
foldICmpBinOp(ICmpInst & I,const SimplifyQuery & SQ)3836 Instruction *InstCombinerImpl::foldICmpBinOp(ICmpInst &I,
3837                                              const SimplifyQuery &SQ) {
3838   const SimplifyQuery Q = SQ.getWithInstruction(&I);
3839   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3840 
3841   // Special logic for binary operators.
3842   BinaryOperator *BO0 = dyn_cast<BinaryOperator>(Op0);
3843   BinaryOperator *BO1 = dyn_cast<BinaryOperator>(Op1);
3844   if (!BO0 && !BO1)
3845     return nullptr;
3846 
3847   if (Instruction *NewICmp = foldICmpXNegX(I))
3848     return NewICmp;
3849 
3850   const CmpInst::Predicate Pred = I.getPredicate();
3851   Value *X;
3852 
3853   // Convert add-with-unsigned-overflow comparisons into a 'not' with compare.
3854   // (Op1 + X) u</u>= Op1 --> ~Op1 u</u>= X
3855   if (match(Op0, m_OneUse(m_c_Add(m_Specific(Op1), m_Value(X)))) &&
3856       (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
3857     return new ICmpInst(Pred, Builder.CreateNot(Op1), X);
3858   // Op0 u>/u<= (Op0 + X) --> X u>/u<= ~Op0
3859   if (match(Op1, m_OneUse(m_c_Add(m_Specific(Op0), m_Value(X)))) &&
3860       (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
3861     return new ICmpInst(Pred, X, Builder.CreateNot(Op0));
3862 
3863   bool NoOp0WrapProblem = false, NoOp1WrapProblem = false;
3864   if (BO0 && isa<OverflowingBinaryOperator>(BO0))
3865     NoOp0WrapProblem =
3866         ICmpInst::isEquality(Pred) ||
3867         (CmpInst::isUnsigned(Pred) && BO0->hasNoUnsignedWrap()) ||
3868         (CmpInst::isSigned(Pred) && BO0->hasNoSignedWrap());
3869   if (BO1 && isa<OverflowingBinaryOperator>(BO1))
3870     NoOp1WrapProblem =
3871         ICmpInst::isEquality(Pred) ||
3872         (CmpInst::isUnsigned(Pred) && BO1->hasNoUnsignedWrap()) ||
3873         (CmpInst::isSigned(Pred) && BO1->hasNoSignedWrap());
3874 
3875   // Analyze the case when either Op0 or Op1 is an add instruction.
3876   // Op0 = A + B (or A and B are null); Op1 = C + D (or C and D are null).
3877   Value *A = nullptr, *B = nullptr, *C = nullptr, *D = nullptr;
3878   if (BO0 && BO0->getOpcode() == Instruction::Add) {
3879     A = BO0->getOperand(0);
3880     B = BO0->getOperand(1);
3881   }
3882   if (BO1 && BO1->getOpcode() == Instruction::Add) {
3883     C = BO1->getOperand(0);
3884     D = BO1->getOperand(1);
3885   }
3886 
3887   // icmp (A+B), A -> icmp B, 0 for equalities or if there is no overflow.
3888   // icmp (A+B), B -> icmp A, 0 for equalities or if there is no overflow.
3889   if ((A == Op1 || B == Op1) && NoOp0WrapProblem)
3890     return new ICmpInst(Pred, A == Op1 ? B : A,
3891                         Constant::getNullValue(Op1->getType()));
3892 
3893   // icmp C, (C+D) -> icmp 0, D for equalities or if there is no overflow.
3894   // icmp D, (C+D) -> icmp 0, C for equalities or if there is no overflow.
3895   if ((C == Op0 || D == Op0) && NoOp1WrapProblem)
3896     return new ICmpInst(Pred, Constant::getNullValue(Op0->getType()),
3897                         C == Op0 ? D : C);
3898 
3899   // icmp (A+B), (A+D) -> icmp B, D for equalities or if there is no overflow.
3900   if (A && C && (A == C || A == D || B == C || B == D) && NoOp0WrapProblem &&
3901       NoOp1WrapProblem) {
3902     // Determine Y and Z in the form icmp (X+Y), (X+Z).
3903     Value *Y, *Z;
3904     if (A == C) {
3905       // C + B == C + D  ->  B == D
3906       Y = B;
3907       Z = D;
3908     } else if (A == D) {
3909       // D + B == C + D  ->  B == C
3910       Y = B;
3911       Z = C;
3912     } else if (B == C) {
3913       // A + C == C + D  ->  A == D
3914       Y = A;
3915       Z = D;
3916     } else {
3917       assert(B == D);
3918       // A + D == C + D  ->  A == C
3919       Y = A;
3920       Z = C;
3921     }
3922     return new ICmpInst(Pred, Y, Z);
3923   }
3924 
3925   // icmp slt (A + -1), Op1 -> icmp sle A, Op1
3926   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLT &&
3927       match(B, m_AllOnes()))
3928     return new ICmpInst(CmpInst::ICMP_SLE, A, Op1);
3929 
3930   // icmp sge (A + -1), Op1 -> icmp sgt A, Op1
3931   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGE &&
3932       match(B, m_AllOnes()))
3933     return new ICmpInst(CmpInst::ICMP_SGT, A, Op1);
3934 
3935   // icmp sle (A + 1), Op1 -> icmp slt A, Op1
3936   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SLE && match(B, m_One()))
3937     return new ICmpInst(CmpInst::ICMP_SLT, A, Op1);
3938 
3939   // icmp sgt (A + 1), Op1 -> icmp sge A, Op1
3940   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_SGT && match(B, m_One()))
3941     return new ICmpInst(CmpInst::ICMP_SGE, A, Op1);
3942 
3943   // icmp sgt Op0, (C + -1) -> icmp sge Op0, C
3944   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGT &&
3945       match(D, m_AllOnes()))
3946     return new ICmpInst(CmpInst::ICMP_SGE, Op0, C);
3947 
3948   // icmp sle Op0, (C + -1) -> icmp slt Op0, C
3949   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLE &&
3950       match(D, m_AllOnes()))
3951     return new ICmpInst(CmpInst::ICMP_SLT, Op0, C);
3952 
3953   // icmp sge Op0, (C + 1) -> icmp sgt Op0, C
3954   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SGE && match(D, m_One()))
3955     return new ICmpInst(CmpInst::ICMP_SGT, Op0, C);
3956 
3957   // icmp slt Op0, (C + 1) -> icmp sle Op0, C
3958   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_SLT && match(D, m_One()))
3959     return new ICmpInst(CmpInst::ICMP_SLE, Op0, C);
3960 
3961   // TODO: The subtraction-related identities shown below also hold, but
3962   // canonicalization from (X -nuw 1) to (X + -1) means that the combinations
3963   // wouldn't happen even if they were implemented.
3964   //
3965   // icmp ult (A - 1), Op1 -> icmp ule A, Op1
3966   // icmp uge (A - 1), Op1 -> icmp ugt A, Op1
3967   // icmp ugt Op0, (C - 1) -> icmp uge Op0, C
3968   // icmp ule Op0, (C - 1) -> icmp ult Op0, C
3969 
3970   // icmp ule (A + 1), Op0 -> icmp ult A, Op1
3971   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_ULE && match(B, m_One()))
3972     return new ICmpInst(CmpInst::ICMP_ULT, A, Op1);
3973 
3974   // icmp ugt (A + 1), Op0 -> icmp uge A, Op1
3975   if (A && NoOp0WrapProblem && Pred == CmpInst::ICMP_UGT && match(B, m_One()))
3976     return new ICmpInst(CmpInst::ICMP_UGE, A, Op1);
3977 
3978   // icmp uge Op0, (C + 1) -> icmp ugt Op0, C
3979   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_UGE && match(D, m_One()))
3980     return new ICmpInst(CmpInst::ICMP_UGT, Op0, C);
3981 
3982   // icmp ult Op0, (C + 1) -> icmp ule Op0, C
3983   if (C && NoOp1WrapProblem && Pred == CmpInst::ICMP_ULT && match(D, m_One()))
3984     return new ICmpInst(CmpInst::ICMP_ULE, Op0, C);
3985 
3986   // if C1 has greater magnitude than C2:
3987   //  icmp (A + C1), (C + C2) -> icmp (A + C3), C
3988   //  s.t. C3 = C1 - C2
3989   //
3990   // if C2 has greater magnitude than C1:
3991   //  icmp (A + C1), (C + C2) -> icmp A, (C + C3)
3992   //  s.t. C3 = C2 - C1
3993   if (A && C && NoOp0WrapProblem && NoOp1WrapProblem &&
3994       (BO0->hasOneUse() || BO1->hasOneUse()) && !I.isUnsigned())
3995     if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
3996       if (ConstantInt *C2 = dyn_cast<ConstantInt>(D)) {
3997         const APInt &AP1 = C1->getValue();
3998         const APInt &AP2 = C2->getValue();
3999         if (AP1.isNegative() == AP2.isNegative()) {
4000           APInt AP1Abs = C1->getValue().abs();
4001           APInt AP2Abs = C2->getValue().abs();
4002           if (AP1Abs.uge(AP2Abs)) {
4003             ConstantInt *C3 = Builder.getInt(AP1 - AP2);
4004             bool HasNUW = BO0->hasNoUnsignedWrap() && C3->getValue().ule(AP1);
4005             bool HasNSW = BO0->hasNoSignedWrap();
4006             Value *NewAdd = Builder.CreateAdd(A, C3, "", HasNUW, HasNSW);
4007             return new ICmpInst(Pred, NewAdd, C);
4008           } else {
4009             ConstantInt *C3 = Builder.getInt(AP2 - AP1);
4010             bool HasNUW = BO1->hasNoUnsignedWrap() && C3->getValue().ule(AP2);
4011             bool HasNSW = BO1->hasNoSignedWrap();
4012             Value *NewAdd = Builder.CreateAdd(C, C3, "", HasNUW, HasNSW);
4013             return new ICmpInst(Pred, A, NewAdd);
4014           }
4015         }
4016       }
4017 
4018   // Analyze the case when either Op0 or Op1 is a sub instruction.
4019   // Op0 = A - B (or A and B are null); Op1 = C - D (or C and D are null).
4020   A = nullptr;
4021   B = nullptr;
4022   C = nullptr;
4023   D = nullptr;
4024   if (BO0 && BO0->getOpcode() == Instruction::Sub) {
4025     A = BO0->getOperand(0);
4026     B = BO0->getOperand(1);
4027   }
4028   if (BO1 && BO1->getOpcode() == Instruction::Sub) {
4029     C = BO1->getOperand(0);
4030     D = BO1->getOperand(1);
4031   }
4032 
4033   // icmp (A-B), A -> icmp 0, B for equalities or if there is no overflow.
4034   if (A == Op1 && NoOp0WrapProblem)
4035     return new ICmpInst(Pred, Constant::getNullValue(Op1->getType()), B);
4036   // icmp C, (C-D) -> icmp D, 0 for equalities or if there is no overflow.
4037   if (C == Op0 && NoOp1WrapProblem)
4038     return new ICmpInst(Pred, D, Constant::getNullValue(Op0->getType()));
4039 
4040   // Convert sub-with-unsigned-overflow comparisons into a comparison of args.
4041   // (A - B) u>/u<= A --> B u>/u<= A
4042   if (A == Op1 && (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_ULE))
4043     return new ICmpInst(Pred, B, A);
4044   // C u</u>= (C - D) --> C u</u>= D
4045   if (C == Op0 && (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_UGE))
4046     return new ICmpInst(Pred, C, D);
4047   // (A - B) u>=/u< A --> B u>/u<= A  iff B != 0
4048   if (A == Op1 && (Pred == ICmpInst::ICMP_UGE || Pred == ICmpInst::ICMP_ULT) &&
4049       isKnownNonZero(B, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4050     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), B, A);
4051   // C u<=/u> (C - D) --> C u</u>= D  iff B != 0
4052   if (C == Op0 && (Pred == ICmpInst::ICMP_ULE || Pred == ICmpInst::ICMP_UGT) &&
4053       isKnownNonZero(D, Q.DL, /*Depth=*/0, Q.AC, Q.CxtI, Q.DT))
4054     return new ICmpInst(CmpInst::getFlippedStrictnessPredicate(Pred), C, D);
4055 
4056   // icmp (A-B), (C-B) -> icmp A, C for equalities or if there is no overflow.
4057   if (B && D && B == D && NoOp0WrapProblem && NoOp1WrapProblem)
4058     return new ICmpInst(Pred, A, C);
4059 
4060   // icmp (A-B), (A-D) -> icmp D, B for equalities or if there is no overflow.
4061   if (A && C && A == C && NoOp0WrapProblem && NoOp1WrapProblem)
4062     return new ICmpInst(Pred, D, B);
4063 
4064   // icmp (0-X) < cst --> x > -cst
4065   if (NoOp0WrapProblem && ICmpInst::isSigned(Pred)) {
4066     Value *X;
4067     if (match(BO0, m_Neg(m_Value(X))))
4068       if (Constant *RHSC = dyn_cast<Constant>(Op1))
4069         if (RHSC->isNotMinSignedValue())
4070           return new ICmpInst(I.getSwappedPredicate(), X,
4071                               ConstantExpr::getNeg(RHSC));
4072   }
4073 
4074   {
4075     // Try to remove shared constant multiplier from equality comparison:
4076     // X * C == Y * C (with no overflowing/aliasing) --> X == Y
4077     Value *X, *Y;
4078     const APInt *C;
4079     if (match(Op0, m_Mul(m_Value(X), m_APInt(C))) && *C != 0 &&
4080         match(Op1, m_Mul(m_Value(Y), m_SpecificInt(*C))) && I.isEquality())
4081       if (!C->countTrailingZeros() ||
4082           (BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap()) ||
4083           (BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap()))
4084       return new ICmpInst(Pred, X, Y);
4085   }
4086 
4087   BinaryOperator *SRem = nullptr;
4088   // icmp (srem X, Y), Y
4089   if (BO0 && BO0->getOpcode() == Instruction::SRem && Op1 == BO0->getOperand(1))
4090     SRem = BO0;
4091   // icmp Y, (srem X, Y)
4092   else if (BO1 && BO1->getOpcode() == Instruction::SRem &&
4093            Op0 == BO1->getOperand(1))
4094     SRem = BO1;
4095   if (SRem) {
4096     // We don't check hasOneUse to avoid increasing register pressure because
4097     // the value we use is the same value this instruction was already using.
4098     switch (SRem == BO0 ? ICmpInst::getSwappedPredicate(Pred) : Pred) {
4099     default:
4100       break;
4101     case ICmpInst::ICMP_EQ:
4102       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
4103     case ICmpInst::ICMP_NE:
4104       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
4105     case ICmpInst::ICMP_SGT:
4106     case ICmpInst::ICMP_SGE:
4107       return new ICmpInst(ICmpInst::ICMP_SGT, SRem->getOperand(1),
4108                           Constant::getAllOnesValue(SRem->getType()));
4109     case ICmpInst::ICMP_SLT:
4110     case ICmpInst::ICMP_SLE:
4111       return new ICmpInst(ICmpInst::ICMP_SLT, SRem->getOperand(1),
4112                           Constant::getNullValue(SRem->getType()));
4113     }
4114   }
4115 
4116   if (BO0 && BO1 && BO0->getOpcode() == BO1->getOpcode() && BO0->hasOneUse() &&
4117       BO1->hasOneUse() && BO0->getOperand(1) == BO1->getOperand(1)) {
4118     switch (BO0->getOpcode()) {
4119     default:
4120       break;
4121     case Instruction::Add:
4122     case Instruction::Sub:
4123     case Instruction::Xor: {
4124       if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
4125         return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4126 
4127       const APInt *C;
4128       if (match(BO0->getOperand(1), m_APInt(C))) {
4129         // icmp u/s (a ^ signmask), (b ^ signmask) --> icmp s/u a, b
4130         if (C->isSignMask()) {
4131           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4132           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4133         }
4134 
4135         // icmp u/s (a ^ maxsignval), (b ^ maxsignval) --> icmp s/u' a, b
4136         if (BO0->getOpcode() == Instruction::Xor && C->isMaxSignedValue()) {
4137           ICmpInst::Predicate NewPred = I.getFlippedSignednessPredicate();
4138           NewPred = I.getSwappedPredicate(NewPred);
4139           return new ICmpInst(NewPred, BO0->getOperand(0), BO1->getOperand(0));
4140         }
4141       }
4142       break;
4143     }
4144     case Instruction::Mul: {
4145       if (!I.isEquality())
4146         break;
4147 
4148       const APInt *C;
4149       if (match(BO0->getOperand(1), m_APInt(C)) && !C->isNullValue() &&
4150           !C->isOneValue()) {
4151         // icmp eq/ne (X * C), (Y * C) --> icmp (X & Mask), (Y & Mask)
4152         // Mask = -1 >> count-trailing-zeros(C).
4153         if (unsigned TZs = C->countTrailingZeros()) {
4154           Constant *Mask = ConstantInt::get(
4155               BO0->getType(),
4156               APInt::getLowBitsSet(C->getBitWidth(), C->getBitWidth() - TZs));
4157           Value *And1 = Builder.CreateAnd(BO0->getOperand(0), Mask);
4158           Value *And2 = Builder.CreateAnd(BO1->getOperand(0), Mask);
4159           return new ICmpInst(Pred, And1, And2);
4160         }
4161       }
4162       break;
4163     }
4164     case Instruction::UDiv:
4165     case Instruction::LShr:
4166       if (I.isSigned() || !BO0->isExact() || !BO1->isExact())
4167         break;
4168       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4169 
4170     case Instruction::SDiv:
4171       if (!I.isEquality() || !BO0->isExact() || !BO1->isExact())
4172         break;
4173       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4174 
4175     case Instruction::AShr:
4176       if (!BO0->isExact() || !BO1->isExact())
4177         break;
4178       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4179 
4180     case Instruction::Shl: {
4181       bool NUW = BO0->hasNoUnsignedWrap() && BO1->hasNoUnsignedWrap();
4182       bool NSW = BO0->hasNoSignedWrap() && BO1->hasNoSignedWrap();
4183       if (!NUW && !NSW)
4184         break;
4185       if (!NSW && I.isSigned())
4186         break;
4187       return new ICmpInst(Pred, BO0->getOperand(0), BO1->getOperand(0));
4188     }
4189     }
4190   }
4191 
4192   if (BO0) {
4193     // Transform  A & (L - 1) `ult` L --> L != 0
4194     auto LSubOne = m_Add(m_Specific(Op1), m_AllOnes());
4195     auto BitwiseAnd = m_c_And(m_Value(), LSubOne);
4196 
4197     if (match(BO0, BitwiseAnd) && Pred == ICmpInst::ICMP_ULT) {
4198       auto *Zero = Constant::getNullValue(BO0->getType());
4199       return new ICmpInst(ICmpInst::ICMP_NE, Op1, Zero);
4200     }
4201   }
4202 
4203   if (Value *V = foldUnsignedMultiplicationOverflowCheck(I))
4204     return replaceInstUsesWith(I, V);
4205 
4206   if (Value *V = foldICmpWithLowBitMaskedVal(I, Builder))
4207     return replaceInstUsesWith(I, V);
4208 
4209   if (Value *V = foldICmpWithTruncSignExtendedVal(I, Builder))
4210     return replaceInstUsesWith(I, V);
4211 
4212   if (Value *V = foldShiftIntoShiftInAnotherHandOfAndInICmp(I, SQ, Builder))
4213     return replaceInstUsesWith(I, V);
4214 
4215   return nullptr;
4216 }
4217 
4218 /// Fold icmp Pred min|max(X, Y), X.
foldICmpWithMinMax(ICmpInst & Cmp)4219 static Instruction *foldICmpWithMinMax(ICmpInst &Cmp) {
4220   ICmpInst::Predicate Pred = Cmp.getPredicate();
4221   Value *Op0 = Cmp.getOperand(0);
4222   Value *X = Cmp.getOperand(1);
4223 
4224   // Canonicalize minimum or maximum operand to LHS of the icmp.
4225   if (match(X, m_c_SMin(m_Specific(Op0), m_Value())) ||
4226       match(X, m_c_SMax(m_Specific(Op0), m_Value())) ||
4227       match(X, m_c_UMin(m_Specific(Op0), m_Value())) ||
4228       match(X, m_c_UMax(m_Specific(Op0), m_Value()))) {
4229     std::swap(Op0, X);
4230     Pred = Cmp.getSwappedPredicate();
4231   }
4232 
4233   Value *Y;
4234   if (match(Op0, m_c_SMin(m_Specific(X), m_Value(Y)))) {
4235     // smin(X, Y)  == X --> X s<= Y
4236     // smin(X, Y) s>= X --> X s<= Y
4237     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SGE)
4238       return new ICmpInst(ICmpInst::ICMP_SLE, X, Y);
4239 
4240     // smin(X, Y) != X --> X s> Y
4241     // smin(X, Y) s< X --> X s> Y
4242     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SLT)
4243       return new ICmpInst(ICmpInst::ICMP_SGT, X, Y);
4244 
4245     // These cases should be handled in InstSimplify:
4246     // smin(X, Y) s<= X --> true
4247     // smin(X, Y) s> X --> false
4248     return nullptr;
4249   }
4250 
4251   if (match(Op0, m_c_SMax(m_Specific(X), m_Value(Y)))) {
4252     // smax(X, Y)  == X --> X s>= Y
4253     // smax(X, Y) s<= X --> X s>= Y
4254     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_SLE)
4255       return new ICmpInst(ICmpInst::ICMP_SGE, X, Y);
4256 
4257     // smax(X, Y) != X --> X s< Y
4258     // smax(X, Y) s> X --> X s< Y
4259     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_SGT)
4260       return new ICmpInst(ICmpInst::ICMP_SLT, X, Y);
4261 
4262     // These cases should be handled in InstSimplify:
4263     // smax(X, Y) s>= X --> true
4264     // smax(X, Y) s< X --> false
4265     return nullptr;
4266   }
4267 
4268   if (match(Op0, m_c_UMin(m_Specific(X), m_Value(Y)))) {
4269     // umin(X, Y)  == X --> X u<= Y
4270     // umin(X, Y) u>= X --> X u<= Y
4271     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_UGE)
4272       return new ICmpInst(ICmpInst::ICMP_ULE, X, Y);
4273 
4274     // umin(X, Y) != X --> X u> Y
4275     // umin(X, Y) u< X --> X u> Y
4276     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT)
4277       return new ICmpInst(ICmpInst::ICMP_UGT, X, Y);
4278 
4279     // These cases should be handled in InstSimplify:
4280     // umin(X, Y) u<= X --> true
4281     // umin(X, Y) u> X --> false
4282     return nullptr;
4283   }
4284 
4285   if (match(Op0, m_c_UMax(m_Specific(X), m_Value(Y)))) {
4286     // umax(X, Y)  == X --> X u>= Y
4287     // umax(X, Y) u<= X --> X u>= Y
4288     if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_ULE)
4289       return new ICmpInst(ICmpInst::ICMP_UGE, X, Y);
4290 
4291     // umax(X, Y) != X --> X u< Y
4292     // umax(X, Y) u> X --> X u< Y
4293     if (Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_UGT)
4294       return new ICmpInst(ICmpInst::ICMP_ULT, X, Y);
4295 
4296     // These cases should be handled in InstSimplify:
4297     // umax(X, Y) u>= X --> true
4298     // umax(X, Y) u< X --> false
4299     return nullptr;
4300   }
4301 
4302   return nullptr;
4303 }
4304 
foldICmpEquality(ICmpInst & I)4305 Instruction *InstCombinerImpl::foldICmpEquality(ICmpInst &I) {
4306   if (!I.isEquality())
4307     return nullptr;
4308 
4309   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4310   const CmpInst::Predicate Pred = I.getPredicate();
4311   Value *A, *B, *C, *D;
4312   if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
4313     if (A == Op1 || B == Op1) { // (A^B) == A  ->  B == 0
4314       Value *OtherVal = A == Op1 ? B : A;
4315       return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4316     }
4317 
4318     if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
4319       // A^c1 == C^c2 --> A == C^(c1^c2)
4320       ConstantInt *C1, *C2;
4321       if (match(B, m_ConstantInt(C1)) && match(D, m_ConstantInt(C2)) &&
4322           Op1->hasOneUse()) {
4323         Constant *NC = Builder.getInt(C1->getValue() ^ C2->getValue());
4324         Value *Xor = Builder.CreateXor(C, NC);
4325         return new ICmpInst(Pred, A, Xor);
4326       }
4327 
4328       // A^B == A^D -> B == D
4329       if (A == C)
4330         return new ICmpInst(Pred, B, D);
4331       if (A == D)
4332         return new ICmpInst(Pred, B, C);
4333       if (B == C)
4334         return new ICmpInst(Pred, A, D);
4335       if (B == D)
4336         return new ICmpInst(Pred, A, C);
4337     }
4338   }
4339 
4340   if (match(Op1, m_Xor(m_Value(A), m_Value(B))) && (A == Op0 || B == Op0)) {
4341     // A == (A^B)  ->  B == 0
4342     Value *OtherVal = A == Op0 ? B : A;
4343     return new ICmpInst(Pred, OtherVal, Constant::getNullValue(A->getType()));
4344   }
4345 
4346   // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
4347   if (match(Op0, m_OneUse(m_And(m_Value(A), m_Value(B)))) &&
4348       match(Op1, m_OneUse(m_And(m_Value(C), m_Value(D))))) {
4349     Value *X = nullptr, *Y = nullptr, *Z = nullptr;
4350 
4351     if (A == C) {
4352       X = B;
4353       Y = D;
4354       Z = A;
4355     } else if (A == D) {
4356       X = B;
4357       Y = C;
4358       Z = A;
4359     } else if (B == C) {
4360       X = A;
4361       Y = D;
4362       Z = B;
4363     } else if (B == D) {
4364       X = A;
4365       Y = C;
4366       Z = B;
4367     }
4368 
4369     if (X) { // Build (X^Y) & Z
4370       Op1 = Builder.CreateXor(X, Y);
4371       Op1 = Builder.CreateAnd(Op1, Z);
4372       return new ICmpInst(Pred, Op1, Constant::getNullValue(Op1->getType()));
4373     }
4374   }
4375 
4376   // Transform (zext A) == (B & (1<<X)-1) --> A == (trunc B)
4377   // and       (B & (1<<X)-1) == (zext A) --> A == (trunc B)
4378   ConstantInt *Cst1;
4379   if ((Op0->hasOneUse() && match(Op0, m_ZExt(m_Value(A))) &&
4380        match(Op1, m_And(m_Value(B), m_ConstantInt(Cst1)))) ||
4381       (Op1->hasOneUse() && match(Op0, m_And(m_Value(B), m_ConstantInt(Cst1))) &&
4382        match(Op1, m_ZExt(m_Value(A))))) {
4383     APInt Pow2 = Cst1->getValue() + 1;
4384     if (Pow2.isPowerOf2() && isa<IntegerType>(A->getType()) &&
4385         Pow2.logBase2() == cast<IntegerType>(A->getType())->getBitWidth())
4386       return new ICmpInst(Pred, A, Builder.CreateTrunc(B, A->getType()));
4387   }
4388 
4389   // (A >> C) == (B >> C) --> (A^B) u< (1 << C)
4390   // For lshr and ashr pairs.
4391   if ((match(Op0, m_OneUse(m_LShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4392        match(Op1, m_OneUse(m_LShr(m_Value(B), m_Specific(Cst1))))) ||
4393       (match(Op0, m_OneUse(m_AShr(m_Value(A), m_ConstantInt(Cst1)))) &&
4394        match(Op1, m_OneUse(m_AShr(m_Value(B), m_Specific(Cst1)))))) {
4395     unsigned TypeBits = Cst1->getBitWidth();
4396     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4397     if (ShAmt < TypeBits && ShAmt != 0) {
4398       ICmpInst::Predicate NewPred =
4399           Pred == ICmpInst::ICMP_NE ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
4400       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4401       APInt CmpVal = APInt::getOneBitSet(TypeBits, ShAmt);
4402       return new ICmpInst(NewPred, Xor, Builder.getInt(CmpVal));
4403     }
4404   }
4405 
4406   // (A << C) == (B << C) --> ((A^B) & (~0U >> C)) == 0
4407   if (match(Op0, m_OneUse(m_Shl(m_Value(A), m_ConstantInt(Cst1)))) &&
4408       match(Op1, m_OneUse(m_Shl(m_Value(B), m_Specific(Cst1))))) {
4409     unsigned TypeBits = Cst1->getBitWidth();
4410     unsigned ShAmt = (unsigned)Cst1->getLimitedValue(TypeBits);
4411     if (ShAmt < TypeBits && ShAmt != 0) {
4412       Value *Xor = Builder.CreateXor(A, B, I.getName() + ".unshifted");
4413       APInt AndVal = APInt::getLowBitsSet(TypeBits, TypeBits - ShAmt);
4414       Value *And = Builder.CreateAnd(Xor, Builder.getInt(AndVal),
4415                                       I.getName() + ".mask");
4416       return new ICmpInst(Pred, And, Constant::getNullValue(Cst1->getType()));
4417     }
4418   }
4419 
4420   // Transform "icmp eq (trunc (lshr(X, cst1)), cst" to
4421   // "icmp (and X, mask), cst"
4422   uint64_t ShAmt = 0;
4423   if (Op0->hasOneUse() &&
4424       match(Op0, m_Trunc(m_OneUse(m_LShr(m_Value(A), m_ConstantInt(ShAmt))))) &&
4425       match(Op1, m_ConstantInt(Cst1)) &&
4426       // Only do this when A has multiple uses.  This is most important to do
4427       // when it exposes other optimizations.
4428       !A->hasOneUse()) {
4429     unsigned ASize = cast<IntegerType>(A->getType())->getPrimitiveSizeInBits();
4430 
4431     if (ShAmt < ASize) {
4432       APInt MaskV =
4433           APInt::getLowBitsSet(ASize, Op0->getType()->getPrimitiveSizeInBits());
4434       MaskV <<= ShAmt;
4435 
4436       APInt CmpV = Cst1->getValue().zext(ASize);
4437       CmpV <<= ShAmt;
4438 
4439       Value *Mask = Builder.CreateAnd(A, Builder.getInt(MaskV));
4440       return new ICmpInst(Pred, Mask, Builder.getInt(CmpV));
4441     }
4442   }
4443 
4444   // If both operands are byte-swapped or bit-reversed, just compare the
4445   // original values.
4446   // TODO: Move this to a function similar to foldICmpIntrinsicWithConstant()
4447   // and handle more intrinsics.
4448   if ((match(Op0, m_BSwap(m_Value(A))) && match(Op1, m_BSwap(m_Value(B)))) ||
4449       (match(Op0, m_BitReverse(m_Value(A))) &&
4450        match(Op1, m_BitReverse(m_Value(B)))))
4451     return new ICmpInst(Pred, A, B);
4452 
4453   // Canonicalize checking for a power-of-2-or-zero value:
4454   // (A & (A-1)) == 0 --> ctpop(A) < 2 (two commuted variants)
4455   // ((A-1) & A) != 0 --> ctpop(A) > 1 (two commuted variants)
4456   if (!match(Op0, m_OneUse(m_c_And(m_Add(m_Value(A), m_AllOnes()),
4457                                    m_Deferred(A)))) ||
4458       !match(Op1, m_ZeroInt()))
4459     A = nullptr;
4460 
4461   // (A & -A) == A --> ctpop(A) < 2 (four commuted variants)
4462   // (-A & A) != A --> ctpop(A) > 1 (four commuted variants)
4463   if (match(Op0, m_OneUse(m_c_And(m_Neg(m_Specific(Op1)), m_Specific(Op1)))))
4464     A = Op1;
4465   else if (match(Op1,
4466                  m_OneUse(m_c_And(m_Neg(m_Specific(Op0)), m_Specific(Op0)))))
4467     A = Op0;
4468 
4469   if (A) {
4470     Type *Ty = A->getType();
4471     CallInst *CtPop = Builder.CreateUnaryIntrinsic(Intrinsic::ctpop, A);
4472     return Pred == ICmpInst::ICMP_EQ
4473         ? new ICmpInst(ICmpInst::ICMP_ULT, CtPop, ConstantInt::get(Ty, 2))
4474         : new ICmpInst(ICmpInst::ICMP_UGT, CtPop, ConstantInt::get(Ty, 1));
4475   }
4476 
4477   return nullptr;
4478 }
4479 
foldICmpWithZextOrSext(ICmpInst & ICmp,InstCombiner::BuilderTy & Builder)4480 static Instruction *foldICmpWithZextOrSext(ICmpInst &ICmp,
4481                                            InstCombiner::BuilderTy &Builder) {
4482   assert(isa<CastInst>(ICmp.getOperand(0)) && "Expected cast for operand 0");
4483   auto *CastOp0 = cast<CastInst>(ICmp.getOperand(0));
4484   Value *X;
4485   if (!match(CastOp0, m_ZExtOrSExt(m_Value(X))))
4486     return nullptr;
4487 
4488   bool IsSignedExt = CastOp0->getOpcode() == Instruction::SExt;
4489   bool IsSignedCmp = ICmp.isSigned();
4490   if (auto *CastOp1 = dyn_cast<CastInst>(ICmp.getOperand(1))) {
4491     // If the signedness of the two casts doesn't agree (i.e. one is a sext
4492     // and the other is a zext), then we can't handle this.
4493     // TODO: This is too strict. We can handle some predicates (equality?).
4494     if (CastOp0->getOpcode() != CastOp1->getOpcode())
4495       return nullptr;
4496 
4497     // Not an extension from the same type?
4498     Value *Y = CastOp1->getOperand(0);
4499     Type *XTy = X->getType(), *YTy = Y->getType();
4500     if (XTy != YTy) {
4501       // One of the casts must have one use because we are creating a new cast.
4502       if (!CastOp0->hasOneUse() && !CastOp1->hasOneUse())
4503         return nullptr;
4504       // Extend the narrower operand to the type of the wider operand.
4505       if (XTy->getScalarSizeInBits() < YTy->getScalarSizeInBits())
4506         X = Builder.CreateCast(CastOp0->getOpcode(), X, YTy);
4507       else if (YTy->getScalarSizeInBits() < XTy->getScalarSizeInBits())
4508         Y = Builder.CreateCast(CastOp0->getOpcode(), Y, XTy);
4509       else
4510         return nullptr;
4511     }
4512 
4513     // (zext X) == (zext Y) --> X == Y
4514     // (sext X) == (sext Y) --> X == Y
4515     if (ICmp.isEquality())
4516       return new ICmpInst(ICmp.getPredicate(), X, Y);
4517 
4518     // A signed comparison of sign extended values simplifies into a
4519     // signed comparison.
4520     if (IsSignedCmp && IsSignedExt)
4521       return new ICmpInst(ICmp.getPredicate(), X, Y);
4522 
4523     // The other three cases all fold into an unsigned comparison.
4524     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Y);
4525   }
4526 
4527   // Below here, we are only folding a compare with constant.
4528   auto *C = dyn_cast<Constant>(ICmp.getOperand(1));
4529   if (!C)
4530     return nullptr;
4531 
4532   // Compute the constant that would happen if we truncated to SrcTy then
4533   // re-extended to DestTy.
4534   Type *SrcTy = CastOp0->getSrcTy();
4535   Type *DestTy = CastOp0->getDestTy();
4536   Constant *Res1 = ConstantExpr::getTrunc(C, SrcTy);
4537   Constant *Res2 = ConstantExpr::getCast(CastOp0->getOpcode(), Res1, DestTy);
4538 
4539   // If the re-extended constant didn't change...
4540   if (Res2 == C) {
4541     if (ICmp.isEquality())
4542       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4543 
4544     // A signed comparison of sign extended values simplifies into a
4545     // signed comparison.
4546     if (IsSignedExt && IsSignedCmp)
4547       return new ICmpInst(ICmp.getPredicate(), X, Res1);
4548 
4549     // The other three cases all fold into an unsigned comparison.
4550     return new ICmpInst(ICmp.getUnsignedPredicate(), X, Res1);
4551   }
4552 
4553   // The re-extended constant changed, partly changed (in the case of a vector),
4554   // or could not be determined to be equal (in the case of a constant
4555   // expression), so the constant cannot be represented in the shorter type.
4556   // All the cases that fold to true or false will have already been handled
4557   // by SimplifyICmpInst, so only deal with the tricky case.
4558   if (IsSignedCmp || !IsSignedExt || !isa<ConstantInt>(C))
4559     return nullptr;
4560 
4561   // Is source op positive?
4562   // icmp ult (sext X), C --> icmp sgt X, -1
4563   if (ICmp.getPredicate() == ICmpInst::ICMP_ULT)
4564     return new ICmpInst(CmpInst::ICMP_SGT, X, Constant::getAllOnesValue(SrcTy));
4565 
4566   // Is source op negative?
4567   // icmp ugt (sext X), C --> icmp slt X, 0
4568   assert(ICmp.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
4569   return new ICmpInst(CmpInst::ICMP_SLT, X, Constant::getNullValue(SrcTy));
4570 }
4571 
4572 /// Handle icmp (cast x), (cast or constant).
foldICmpWithCastOp(ICmpInst & ICmp)4573 Instruction *InstCombinerImpl::foldICmpWithCastOp(ICmpInst &ICmp) {
4574   // If any operand of ICmp is a inttoptr roundtrip cast then remove it as
4575   // icmp compares only pointer's value.
4576   // icmp (inttoptr (ptrtoint p1)), p2 --> icmp p1, p2.
4577   Value *SimplifiedOp0 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(0));
4578   Value *SimplifiedOp1 = simplifyIntToPtrRoundTripCast(ICmp.getOperand(1));
4579   if (SimplifiedOp0 || SimplifiedOp1)
4580     return new ICmpInst(ICmp.getPredicate(),
4581                         SimplifiedOp0 ? SimplifiedOp0 : ICmp.getOperand(0),
4582                         SimplifiedOp1 ? SimplifiedOp1 : ICmp.getOperand(1));
4583 
4584   auto *CastOp0 = dyn_cast<CastInst>(ICmp.getOperand(0));
4585   if (!CastOp0)
4586     return nullptr;
4587   if (!isa<Constant>(ICmp.getOperand(1)) && !isa<CastInst>(ICmp.getOperand(1)))
4588     return nullptr;
4589 
4590   Value *Op0Src = CastOp0->getOperand(0);
4591   Type *SrcTy = CastOp0->getSrcTy();
4592   Type *DestTy = CastOp0->getDestTy();
4593 
4594   // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
4595   // integer type is the same size as the pointer type.
4596   auto CompatibleSizes = [&](Type *SrcTy, Type *DestTy) {
4597     if (isa<VectorType>(SrcTy)) {
4598       SrcTy = cast<VectorType>(SrcTy)->getElementType();
4599       DestTy = cast<VectorType>(DestTy)->getElementType();
4600     }
4601     return DL.getPointerTypeSizeInBits(SrcTy) == DestTy->getIntegerBitWidth();
4602   };
4603   if (CastOp0->getOpcode() == Instruction::PtrToInt &&
4604       CompatibleSizes(SrcTy, DestTy)) {
4605     Value *NewOp1 = nullptr;
4606     if (auto *PtrToIntOp1 = dyn_cast<PtrToIntOperator>(ICmp.getOperand(1))) {
4607       Value *PtrSrc = PtrToIntOp1->getOperand(0);
4608       if (PtrSrc->getType()->getPointerAddressSpace() ==
4609           Op0Src->getType()->getPointerAddressSpace()) {
4610         NewOp1 = PtrToIntOp1->getOperand(0);
4611         // If the pointer types don't match, insert a bitcast.
4612         if (Op0Src->getType() != NewOp1->getType())
4613           NewOp1 = Builder.CreateBitCast(NewOp1, Op0Src->getType());
4614       }
4615     } else if (auto *RHSC = dyn_cast<Constant>(ICmp.getOperand(1))) {
4616       NewOp1 = ConstantExpr::getIntToPtr(RHSC, SrcTy);
4617     }
4618 
4619     if (NewOp1)
4620       return new ICmpInst(ICmp.getPredicate(), Op0Src, NewOp1);
4621   }
4622 
4623   return foldICmpWithZextOrSext(ICmp, Builder);
4624 }
4625 
isNeutralValue(Instruction::BinaryOps BinaryOp,Value * RHS)4626 static bool isNeutralValue(Instruction::BinaryOps BinaryOp, Value *RHS) {
4627   switch (BinaryOp) {
4628     default:
4629       llvm_unreachable("Unsupported binary op");
4630     case Instruction::Add:
4631     case Instruction::Sub:
4632       return match(RHS, m_Zero());
4633     case Instruction::Mul:
4634       return match(RHS, m_One());
4635   }
4636 }
4637 
4638 OverflowResult
computeOverflow(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction * CxtI) const4639 InstCombinerImpl::computeOverflow(Instruction::BinaryOps BinaryOp,
4640                                   bool IsSigned, Value *LHS, Value *RHS,
4641                                   Instruction *CxtI) const {
4642   switch (BinaryOp) {
4643     default:
4644       llvm_unreachable("Unsupported binary op");
4645     case Instruction::Add:
4646       if (IsSigned)
4647         return computeOverflowForSignedAdd(LHS, RHS, CxtI);
4648       else
4649         return computeOverflowForUnsignedAdd(LHS, RHS, CxtI);
4650     case Instruction::Sub:
4651       if (IsSigned)
4652         return computeOverflowForSignedSub(LHS, RHS, CxtI);
4653       else
4654         return computeOverflowForUnsignedSub(LHS, RHS, CxtI);
4655     case Instruction::Mul:
4656       if (IsSigned)
4657         return computeOverflowForSignedMul(LHS, RHS, CxtI);
4658       else
4659         return computeOverflowForUnsignedMul(LHS, RHS, CxtI);
4660   }
4661 }
4662 
OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,bool IsSigned,Value * LHS,Value * RHS,Instruction & OrigI,Value * & Result,Constant * & Overflow)4663 bool InstCombinerImpl::OptimizeOverflowCheck(Instruction::BinaryOps BinaryOp,
4664                                              bool IsSigned, Value *LHS,
4665                                              Value *RHS, Instruction &OrigI,
4666                                              Value *&Result,
4667                                              Constant *&Overflow) {
4668   if (OrigI.isCommutative() && isa<Constant>(LHS) && !isa<Constant>(RHS))
4669     std::swap(LHS, RHS);
4670 
4671   // If the overflow check was an add followed by a compare, the insertion point
4672   // may be pointing to the compare.  We want to insert the new instructions
4673   // before the add in case there are uses of the add between the add and the
4674   // compare.
4675   Builder.SetInsertPoint(&OrigI);
4676 
4677   Type *OverflowTy = Type::getInt1Ty(LHS->getContext());
4678   if (auto *LHSTy = dyn_cast<VectorType>(LHS->getType()))
4679     OverflowTy = VectorType::get(OverflowTy, LHSTy->getElementCount());
4680 
4681   if (isNeutralValue(BinaryOp, RHS)) {
4682     Result = LHS;
4683     Overflow = ConstantInt::getFalse(OverflowTy);
4684     return true;
4685   }
4686 
4687   switch (computeOverflow(BinaryOp, IsSigned, LHS, RHS, &OrigI)) {
4688     case OverflowResult::MayOverflow:
4689       return false;
4690     case OverflowResult::AlwaysOverflowsLow:
4691     case OverflowResult::AlwaysOverflowsHigh:
4692       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4693       Result->takeName(&OrigI);
4694       Overflow = ConstantInt::getTrue(OverflowTy);
4695       return true;
4696     case OverflowResult::NeverOverflows:
4697       Result = Builder.CreateBinOp(BinaryOp, LHS, RHS);
4698       Result->takeName(&OrigI);
4699       Overflow = ConstantInt::getFalse(OverflowTy);
4700       if (auto *Inst = dyn_cast<Instruction>(Result)) {
4701         if (IsSigned)
4702           Inst->setHasNoSignedWrap();
4703         else
4704           Inst->setHasNoUnsignedWrap();
4705       }
4706       return true;
4707   }
4708 
4709   llvm_unreachable("Unexpected overflow result");
4710 }
4711 
4712 /// Recognize and process idiom involving test for multiplication
4713 /// overflow.
4714 ///
4715 /// The caller has matched a pattern of the form:
4716 ///   I = cmp u (mul(zext A, zext B), V
4717 /// The function checks if this is a test for overflow and if so replaces
4718 /// multiplication with call to 'mul.with.overflow' intrinsic.
4719 ///
4720 /// \param I Compare instruction.
4721 /// \param MulVal Result of 'mult' instruction.  It is one of the arguments of
4722 ///               the compare instruction.  Must be of integer type.
4723 /// \param OtherVal The other argument of compare instruction.
4724 /// \returns Instruction which must replace the compare instruction, NULL if no
4725 ///          replacement required.
processUMulZExtIdiom(ICmpInst & I,Value * MulVal,Value * OtherVal,InstCombinerImpl & IC)4726 static Instruction *processUMulZExtIdiom(ICmpInst &I, Value *MulVal,
4727                                          Value *OtherVal,
4728                                          InstCombinerImpl &IC) {
4729   // Don't bother doing this transformation for pointers, don't do it for
4730   // vectors.
4731   if (!isa<IntegerType>(MulVal->getType()))
4732     return nullptr;
4733 
4734   assert(I.getOperand(0) == MulVal || I.getOperand(1) == MulVal);
4735   assert(I.getOperand(0) == OtherVal || I.getOperand(1) == OtherVal);
4736   auto *MulInstr = dyn_cast<Instruction>(MulVal);
4737   if (!MulInstr)
4738     return nullptr;
4739   assert(MulInstr->getOpcode() == Instruction::Mul);
4740 
4741   auto *LHS = cast<ZExtOperator>(MulInstr->getOperand(0)),
4742        *RHS = cast<ZExtOperator>(MulInstr->getOperand(1));
4743   assert(LHS->getOpcode() == Instruction::ZExt);
4744   assert(RHS->getOpcode() == Instruction::ZExt);
4745   Value *A = LHS->getOperand(0), *B = RHS->getOperand(0);
4746 
4747   // Calculate type and width of the result produced by mul.with.overflow.
4748   Type *TyA = A->getType(), *TyB = B->getType();
4749   unsigned WidthA = TyA->getPrimitiveSizeInBits(),
4750            WidthB = TyB->getPrimitiveSizeInBits();
4751   unsigned MulWidth;
4752   Type *MulType;
4753   if (WidthB > WidthA) {
4754     MulWidth = WidthB;
4755     MulType = TyB;
4756   } else {
4757     MulWidth = WidthA;
4758     MulType = TyA;
4759   }
4760 
4761   // In order to replace the original mul with a narrower mul.with.overflow,
4762   // all uses must ignore upper bits of the product.  The number of used low
4763   // bits must be not greater than the width of mul.with.overflow.
4764   if (MulVal->hasNUsesOrMore(2))
4765     for (User *U : MulVal->users()) {
4766       if (U == &I)
4767         continue;
4768       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4769         // Check if truncation ignores bits above MulWidth.
4770         unsigned TruncWidth = TI->getType()->getPrimitiveSizeInBits();
4771         if (TruncWidth > MulWidth)
4772           return nullptr;
4773       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4774         // Check if AND ignores bits above MulWidth.
4775         if (BO->getOpcode() != Instruction::And)
4776           return nullptr;
4777         if (ConstantInt *CI = dyn_cast<ConstantInt>(BO->getOperand(1))) {
4778           const APInt &CVal = CI->getValue();
4779           if (CVal.getBitWidth() - CVal.countLeadingZeros() > MulWidth)
4780             return nullptr;
4781         } else {
4782           // In this case we could have the operand of the binary operation
4783           // being defined in another block, and performing the replacement
4784           // could break the dominance relation.
4785           return nullptr;
4786         }
4787       } else {
4788         // Other uses prohibit this transformation.
4789         return nullptr;
4790       }
4791     }
4792 
4793   // Recognize patterns
4794   switch (I.getPredicate()) {
4795   case ICmpInst::ICMP_EQ:
4796   case ICmpInst::ICMP_NE:
4797     // Recognize pattern:
4798     //   mulval = mul(zext A, zext B)
4799     //   cmp eq/neq mulval, and(mulval, mask), mask selects low MulWidth bits.
4800     ConstantInt *CI;
4801     Value *ValToMask;
4802     if (match(OtherVal, m_And(m_Value(ValToMask), m_ConstantInt(CI)))) {
4803       if (ValToMask != MulVal)
4804         return nullptr;
4805       const APInt &CVal = CI->getValue() + 1;
4806       if (CVal.isPowerOf2()) {
4807         unsigned MaskWidth = CVal.logBase2();
4808         if (MaskWidth == MulWidth)
4809           break; // Recognized
4810       }
4811     }
4812     return nullptr;
4813 
4814   case ICmpInst::ICMP_UGT:
4815     // Recognize pattern:
4816     //   mulval = mul(zext A, zext B)
4817     //   cmp ugt mulval, max
4818     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4819       APInt MaxVal = APInt::getMaxValue(MulWidth);
4820       MaxVal = MaxVal.zext(CI->getBitWidth());
4821       if (MaxVal.eq(CI->getValue()))
4822         break; // Recognized
4823     }
4824     return nullptr;
4825 
4826   case ICmpInst::ICMP_UGE:
4827     // Recognize pattern:
4828     //   mulval = mul(zext A, zext B)
4829     //   cmp uge mulval, max+1
4830     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4831       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4832       if (MaxVal.eq(CI->getValue()))
4833         break; // Recognized
4834     }
4835     return nullptr;
4836 
4837   case ICmpInst::ICMP_ULE:
4838     // Recognize pattern:
4839     //   mulval = mul(zext A, zext B)
4840     //   cmp ule mulval, max
4841     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4842       APInt MaxVal = APInt::getMaxValue(MulWidth);
4843       MaxVal = MaxVal.zext(CI->getBitWidth());
4844       if (MaxVal.eq(CI->getValue()))
4845         break; // Recognized
4846     }
4847     return nullptr;
4848 
4849   case ICmpInst::ICMP_ULT:
4850     // Recognize pattern:
4851     //   mulval = mul(zext A, zext B)
4852     //   cmp ule mulval, max + 1
4853     if (ConstantInt *CI = dyn_cast<ConstantInt>(OtherVal)) {
4854       APInt MaxVal = APInt::getOneBitSet(CI->getBitWidth(), MulWidth);
4855       if (MaxVal.eq(CI->getValue()))
4856         break; // Recognized
4857     }
4858     return nullptr;
4859 
4860   default:
4861     return nullptr;
4862   }
4863 
4864   InstCombiner::BuilderTy &Builder = IC.Builder;
4865   Builder.SetInsertPoint(MulInstr);
4866 
4867   // Replace: mul(zext A, zext B) --> mul.with.overflow(A, B)
4868   Value *MulA = A, *MulB = B;
4869   if (WidthA < MulWidth)
4870     MulA = Builder.CreateZExt(A, MulType);
4871   if (WidthB < MulWidth)
4872     MulB = Builder.CreateZExt(B, MulType);
4873   Function *F = Intrinsic::getDeclaration(
4874       I.getModule(), Intrinsic::umul_with_overflow, MulType);
4875   CallInst *Call = Builder.CreateCall(F, {MulA, MulB}, "umul");
4876   IC.addToWorklist(MulInstr);
4877 
4878   // If there are uses of mul result other than the comparison, we know that
4879   // they are truncation or binary AND. Change them to use result of
4880   // mul.with.overflow and adjust properly mask/size.
4881   if (MulVal->hasNUsesOrMore(2)) {
4882     Value *Mul = Builder.CreateExtractValue(Call, 0, "umul.value");
4883     for (User *U : make_early_inc_range(MulVal->users())) {
4884       if (U == &I || U == OtherVal)
4885         continue;
4886       if (TruncInst *TI = dyn_cast<TruncInst>(U)) {
4887         if (TI->getType()->getPrimitiveSizeInBits() == MulWidth)
4888           IC.replaceInstUsesWith(*TI, Mul);
4889         else
4890           TI->setOperand(0, Mul);
4891       } else if (BinaryOperator *BO = dyn_cast<BinaryOperator>(U)) {
4892         assert(BO->getOpcode() == Instruction::And);
4893         // Replace (mul & mask) --> zext (mul.with.overflow & short_mask)
4894         ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1));
4895         APInt ShortMask = CI->getValue().trunc(MulWidth);
4896         Value *ShortAnd = Builder.CreateAnd(Mul, ShortMask);
4897         Value *Zext = Builder.CreateZExt(ShortAnd, BO->getType());
4898         IC.replaceInstUsesWith(*BO, Zext);
4899       } else {
4900         llvm_unreachable("Unexpected Binary operation");
4901       }
4902       IC.addToWorklist(cast<Instruction>(U));
4903     }
4904   }
4905   if (isa<Instruction>(OtherVal))
4906     IC.addToWorklist(cast<Instruction>(OtherVal));
4907 
4908   // The original icmp gets replaced with the overflow value, maybe inverted
4909   // depending on predicate.
4910   bool Inverse = false;
4911   switch (I.getPredicate()) {
4912   case ICmpInst::ICMP_NE:
4913     break;
4914   case ICmpInst::ICMP_EQ:
4915     Inverse = true;
4916     break;
4917   case ICmpInst::ICMP_UGT:
4918   case ICmpInst::ICMP_UGE:
4919     if (I.getOperand(0) == MulVal)
4920       break;
4921     Inverse = true;
4922     break;
4923   case ICmpInst::ICMP_ULT:
4924   case ICmpInst::ICMP_ULE:
4925     if (I.getOperand(1) == MulVal)
4926       break;
4927     Inverse = true;
4928     break;
4929   default:
4930     llvm_unreachable("Unexpected predicate");
4931   }
4932   if (Inverse) {
4933     Value *Res = Builder.CreateExtractValue(Call, 1);
4934     return BinaryOperator::CreateNot(Res);
4935   }
4936 
4937   return ExtractValueInst::Create(Call, 1);
4938 }
4939 
4940 /// When performing a comparison against a constant, it is possible that not all
4941 /// the bits in the LHS are demanded. This helper method computes the mask that
4942 /// IS demanded.
getDemandedBitsLHSMask(ICmpInst & I,unsigned BitWidth)4943 static APInt getDemandedBitsLHSMask(ICmpInst &I, unsigned BitWidth) {
4944   const APInt *RHS;
4945   if (!match(I.getOperand(1), m_APInt(RHS)))
4946     return APInt::getAllOnesValue(BitWidth);
4947 
4948   // If this is a normal comparison, it demands all bits. If it is a sign bit
4949   // comparison, it only demands the sign bit.
4950   bool UnusedBit;
4951   if (InstCombiner::isSignBitCheck(I.getPredicate(), *RHS, UnusedBit))
4952     return APInt::getSignMask(BitWidth);
4953 
4954   switch (I.getPredicate()) {
4955   // For a UGT comparison, we don't care about any bits that
4956   // correspond to the trailing ones of the comparand.  The value of these
4957   // bits doesn't impact the outcome of the comparison, because any value
4958   // greater than the RHS must differ in a bit higher than these due to carry.
4959   case ICmpInst::ICMP_UGT:
4960     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingOnes());
4961 
4962   // Similarly, for a ULT comparison, we don't care about the trailing zeros.
4963   // Any value less than the RHS must differ in a higher bit because of carries.
4964   case ICmpInst::ICMP_ULT:
4965     return APInt::getBitsSetFrom(BitWidth, RHS->countTrailingZeros());
4966 
4967   default:
4968     return APInt::getAllOnesValue(BitWidth);
4969   }
4970 }
4971 
4972 /// Check if the order of \p Op0 and \p Op1 as operands in an ICmpInst
4973 /// should be swapped.
4974 /// The decision is based on how many times these two operands are reused
4975 /// as subtract operands and their positions in those instructions.
4976 /// The rationale is that several architectures use the same instruction for
4977 /// both subtract and cmp. Thus, it is better if the order of those operands
4978 /// match.
4979 /// \return true if Op0 and Op1 should be swapped.
swapMayExposeCSEOpportunities(const Value * Op0,const Value * Op1)4980 static bool swapMayExposeCSEOpportunities(const Value *Op0, const Value *Op1) {
4981   // Filter out pointer values as those cannot appear directly in subtract.
4982   // FIXME: we may want to go through inttoptrs or bitcasts.
4983   if (Op0->getType()->isPointerTy())
4984     return false;
4985   // If a subtract already has the same operands as a compare, swapping would be
4986   // bad. If a subtract has the same operands as a compare but in reverse order,
4987   // then swapping is good.
4988   int GoodToSwap = 0;
4989   for (const User *U : Op0->users()) {
4990     if (match(U, m_Sub(m_Specific(Op1), m_Specific(Op0))))
4991       GoodToSwap++;
4992     else if (match(U, m_Sub(m_Specific(Op0), m_Specific(Op1))))
4993       GoodToSwap--;
4994   }
4995   return GoodToSwap > 0;
4996 }
4997 
4998 /// Check that one use is in the same block as the definition and all
4999 /// other uses are in blocks dominated by a given block.
5000 ///
5001 /// \param DI Definition
5002 /// \param UI Use
5003 /// \param DB Block that must dominate all uses of \p DI outside
5004 ///           the parent block
5005 /// \return true when \p UI is the only use of \p DI in the parent block
5006 /// and all other uses of \p DI are in blocks dominated by \p DB.
5007 ///
dominatesAllUses(const Instruction * DI,const Instruction * UI,const BasicBlock * DB) const5008 bool InstCombinerImpl::dominatesAllUses(const Instruction *DI,
5009                                         const Instruction *UI,
5010                                         const BasicBlock *DB) const {
5011   assert(DI && UI && "Instruction not defined\n");
5012   // Ignore incomplete definitions.
5013   if (!DI->getParent())
5014     return false;
5015   // DI and UI must be in the same block.
5016   if (DI->getParent() != UI->getParent())
5017     return false;
5018   // Protect from self-referencing blocks.
5019   if (DI->getParent() == DB)
5020     return false;
5021   for (const User *U : DI->users()) {
5022     auto *Usr = cast<Instruction>(U);
5023     if (Usr != UI && !DT.dominates(DB, Usr->getParent()))
5024       return false;
5025   }
5026   return true;
5027 }
5028 
5029 /// Return true when the instruction sequence within a block is select-cmp-br.
isChainSelectCmpBranch(const SelectInst * SI)5030 static bool isChainSelectCmpBranch(const SelectInst *SI) {
5031   const BasicBlock *BB = SI->getParent();
5032   if (!BB)
5033     return false;
5034   auto *BI = dyn_cast_or_null<BranchInst>(BB->getTerminator());
5035   if (!BI || BI->getNumSuccessors() != 2)
5036     return false;
5037   auto *IC = dyn_cast<ICmpInst>(BI->getCondition());
5038   if (!IC || (IC->getOperand(0) != SI && IC->getOperand(1) != SI))
5039     return false;
5040   return true;
5041 }
5042 
5043 /// True when a select result is replaced by one of its operands
5044 /// in select-icmp sequence. This will eventually result in the elimination
5045 /// of the select.
5046 ///
5047 /// \param SI    Select instruction
5048 /// \param Icmp  Compare instruction
5049 /// \param SIOpd Operand that replaces the select
5050 ///
5051 /// Notes:
5052 /// - The replacement is global and requires dominator information
5053 /// - The caller is responsible for the actual replacement
5054 ///
5055 /// Example:
5056 ///
5057 /// entry:
5058 ///  %4 = select i1 %3, %C* %0, %C* null
5059 ///  %5 = icmp eq %C* %4, null
5060 ///  br i1 %5, label %9, label %7
5061 ///  ...
5062 ///  ; <label>:7                                       ; preds = %entry
5063 ///  %8 = getelementptr inbounds %C* %4, i64 0, i32 0
5064 ///  ...
5065 ///
5066 /// can be transformed to
5067 ///
5068 ///  %5 = icmp eq %C* %0, null
5069 ///  %6 = select i1 %3, i1 %5, i1 true
5070 ///  br i1 %6, label %9, label %7
5071 ///  ...
5072 ///  ; <label>:7                                       ; preds = %entry
5073 ///  %8 = getelementptr inbounds %C* %0, i64 0, i32 0  // replace by %0!
5074 ///
5075 /// Similar when the first operand of the select is a constant or/and
5076 /// the compare is for not equal rather than equal.
5077 ///
5078 /// NOTE: The function is only called when the select and compare constants
5079 /// are equal, the optimization can work only for EQ predicates. This is not a
5080 /// major restriction since a NE compare should be 'normalized' to an equal
5081 /// compare, which usually happens in the combiner and test case
5082 /// select-cmp-br.ll checks for it.
replacedSelectWithOperand(SelectInst * SI,const ICmpInst * Icmp,const unsigned SIOpd)5083 bool InstCombinerImpl::replacedSelectWithOperand(SelectInst *SI,
5084                                                  const ICmpInst *Icmp,
5085                                                  const unsigned SIOpd) {
5086   assert((SIOpd == 1 || SIOpd == 2) && "Invalid select operand!");
5087   if (isChainSelectCmpBranch(SI) && Icmp->getPredicate() == ICmpInst::ICMP_EQ) {
5088     BasicBlock *Succ = SI->getParent()->getTerminator()->getSuccessor(1);
5089     // The check for the single predecessor is not the best that can be
5090     // done. But it protects efficiently against cases like when SI's
5091     // home block has two successors, Succ and Succ1, and Succ1 predecessor
5092     // of Succ. Then SI can't be replaced by SIOpd because the use that gets
5093     // replaced can be reached on either path. So the uniqueness check
5094     // guarantees that the path all uses of SI (outside SI's parent) are on
5095     // is disjoint from all other paths out of SI. But that information
5096     // is more expensive to compute, and the trade-off here is in favor
5097     // of compile-time. It should also be noticed that we check for a single
5098     // predecessor and not only uniqueness. This to handle the situation when
5099     // Succ and Succ1 points to the same basic block.
5100     if (Succ->getSinglePredecessor() && dominatesAllUses(SI, Icmp, Succ)) {
5101       NumSel++;
5102       SI->replaceUsesOutsideBlock(SI->getOperand(SIOpd), SI->getParent());
5103       return true;
5104     }
5105   }
5106   return false;
5107 }
5108 
5109 /// Try to fold the comparison based on range information we can get by checking
5110 /// whether bits are known to be zero or one in the inputs.
foldICmpUsingKnownBits(ICmpInst & I)5111 Instruction *InstCombinerImpl::foldICmpUsingKnownBits(ICmpInst &I) {
5112   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5113   Type *Ty = Op0->getType();
5114   ICmpInst::Predicate Pred = I.getPredicate();
5115 
5116   // Get scalar or pointer size.
5117   unsigned BitWidth = Ty->isIntOrIntVectorTy()
5118                           ? Ty->getScalarSizeInBits()
5119                           : DL.getPointerTypeSizeInBits(Ty->getScalarType());
5120 
5121   if (!BitWidth)
5122     return nullptr;
5123 
5124   KnownBits Op0Known(BitWidth);
5125   KnownBits Op1Known(BitWidth);
5126 
5127   if (SimplifyDemandedBits(&I, 0,
5128                            getDemandedBitsLHSMask(I, BitWidth),
5129                            Op0Known, 0))
5130     return &I;
5131 
5132   if (SimplifyDemandedBits(&I, 1, APInt::getAllOnesValue(BitWidth),
5133                            Op1Known, 0))
5134     return &I;
5135 
5136   // Given the known and unknown bits, compute a range that the LHS could be
5137   // in.  Compute the Min, Max and RHS values based on the known bits. For the
5138   // EQ and NE we use unsigned values.
5139   APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
5140   APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
5141   if (I.isSigned()) {
5142     Op0Min = Op0Known.getSignedMinValue();
5143     Op0Max = Op0Known.getSignedMaxValue();
5144     Op1Min = Op1Known.getSignedMinValue();
5145     Op1Max = Op1Known.getSignedMaxValue();
5146   } else {
5147     Op0Min = Op0Known.getMinValue();
5148     Op0Max = Op0Known.getMaxValue();
5149     Op1Min = Op1Known.getMinValue();
5150     Op1Max = Op1Known.getMaxValue();
5151   }
5152 
5153   // If Min and Max are known to be the same, then SimplifyDemandedBits figured
5154   // out that the LHS or RHS is a constant. Constant fold this now, so that
5155   // code below can assume that Min != Max.
5156   if (!isa<Constant>(Op0) && Op0Min == Op0Max)
5157     return new ICmpInst(Pred, ConstantExpr::getIntegerValue(Ty, Op0Min), Op1);
5158   if (!isa<Constant>(Op1) && Op1Min == Op1Max)
5159     return new ICmpInst(Pred, Op0, ConstantExpr::getIntegerValue(Ty, Op1Min));
5160 
5161   // Don't break up a clamp pattern -- (min(max X, Y), Z) -- by replacing a
5162   // min/max canonical compare with some other compare. That could lead to
5163   // conflict with select canonicalization and infinite looping.
5164   // FIXME: This constraint may go away if min/max intrinsics are canonical.
5165   auto isMinMaxCmp = [&](Instruction &Cmp) {
5166     if (!Cmp.hasOneUse())
5167       return false;
5168     Value *A, *B;
5169     SelectPatternFlavor SPF = matchSelectPattern(Cmp.user_back(), A, B).Flavor;
5170     if (!SelectPatternResult::isMinOrMax(SPF))
5171       return false;
5172     return match(Op0, m_MaxOrMin(m_Value(), m_Value())) ||
5173            match(Op1, m_MaxOrMin(m_Value(), m_Value()));
5174   };
5175   if (!isMinMaxCmp(I)) {
5176     switch (Pred) {
5177     default:
5178       break;
5179     case ICmpInst::ICMP_ULT: {
5180       if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
5181         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5182       const APInt *CmpC;
5183       if (match(Op1, m_APInt(CmpC))) {
5184         // A <u C -> A == C-1 if min(A)+1 == C
5185         if (*CmpC == Op0Min + 1)
5186           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5187                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5188         // X <u C --> X == 0, if the number of zero bits in the bottom of X
5189         // exceeds the log2 of C.
5190         if (Op0Known.countMinTrailingZeros() >= CmpC->ceilLogBase2())
5191           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5192                               Constant::getNullValue(Op1->getType()));
5193       }
5194       break;
5195     }
5196     case ICmpInst::ICMP_UGT: {
5197       if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
5198         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5199       const APInt *CmpC;
5200       if (match(Op1, m_APInt(CmpC))) {
5201         // A >u C -> A == C+1 if max(a)-1 == C
5202         if (*CmpC == Op0Max - 1)
5203           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5204                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5205         // X >u C --> X != 0, if the number of zero bits in the bottom of X
5206         // exceeds the log2 of C.
5207         if (Op0Known.countMinTrailingZeros() >= CmpC->getActiveBits())
5208           return new ICmpInst(ICmpInst::ICMP_NE, Op0,
5209                               Constant::getNullValue(Op1->getType()));
5210       }
5211       break;
5212     }
5213     case ICmpInst::ICMP_SLT: {
5214       if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
5215         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5216       const APInt *CmpC;
5217       if (match(Op1, m_APInt(CmpC))) {
5218         if (*CmpC == Op0Min + 1) // A <s C -> A == C-1 if min(A)+1 == C
5219           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5220                               ConstantInt::get(Op1->getType(), *CmpC - 1));
5221       }
5222       break;
5223     }
5224     case ICmpInst::ICMP_SGT: {
5225       if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
5226         return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
5227       const APInt *CmpC;
5228       if (match(Op1, m_APInt(CmpC))) {
5229         if (*CmpC == Op0Max - 1) // A >s C -> A == C+1 if max(A)-1 == C
5230           return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
5231                               ConstantInt::get(Op1->getType(), *CmpC + 1));
5232       }
5233       break;
5234     }
5235     }
5236   }
5237 
5238   // Based on the range information we know about the LHS, see if we can
5239   // simplify this comparison.  For example, (x&4) < 8 is always true.
5240   switch (Pred) {
5241   default:
5242     llvm_unreachable("Unknown icmp opcode!");
5243   case ICmpInst::ICMP_EQ:
5244   case ICmpInst::ICMP_NE: {
5245     if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
5246       return replaceInstUsesWith(
5247           I, ConstantInt::getBool(I.getType(), Pred == CmpInst::ICMP_NE));
5248 
5249     // If all bits are known zero except for one, then we know at most one bit
5250     // is set. If the comparison is against zero, then this is a check to see if
5251     // *that* bit is set.
5252     APInt Op0KnownZeroInverted = ~Op0Known.Zero;
5253     if (Op1Known.isZero()) {
5254       // If the LHS is an AND with the same constant, look through it.
5255       Value *LHS = nullptr;
5256       const APInt *LHSC;
5257       if (!match(Op0, m_And(m_Value(LHS), m_APInt(LHSC))) ||
5258           *LHSC != Op0KnownZeroInverted)
5259         LHS = Op0;
5260 
5261       Value *X;
5262       if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
5263         APInt ValToCheck = Op0KnownZeroInverted;
5264         Type *XTy = X->getType();
5265         if (ValToCheck.isPowerOf2()) {
5266           // ((1 << X) & 8) == 0 -> X != 3
5267           // ((1 << X) & 8) != 0 -> X == 3
5268           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5269           auto NewPred = ICmpInst::getInversePredicate(Pred);
5270           return new ICmpInst(NewPred, X, CmpC);
5271         } else if ((++ValToCheck).isPowerOf2()) {
5272           // ((1 << X) & 7) == 0 -> X >= 3
5273           // ((1 << X) & 7) != 0 -> X  < 3
5274           auto *CmpC = ConstantInt::get(XTy, ValToCheck.countTrailingZeros());
5275           auto NewPred =
5276               Pred == CmpInst::ICMP_EQ ? CmpInst::ICMP_UGE : CmpInst::ICMP_ULT;
5277           return new ICmpInst(NewPred, X, CmpC);
5278         }
5279       }
5280 
5281       // Check if the LHS is 8 >>u x and the result is a power of 2 like 1.
5282       const APInt *CI;
5283       if (Op0KnownZeroInverted.isOneValue() &&
5284           match(LHS, m_LShr(m_Power2(CI), m_Value(X)))) {
5285         // ((8 >>u X) & 1) == 0 -> X != 3
5286         // ((8 >>u X) & 1) != 0 -> X == 3
5287         unsigned CmpVal = CI->countTrailingZeros();
5288         auto NewPred = ICmpInst::getInversePredicate(Pred);
5289         return new ICmpInst(NewPred, X, ConstantInt::get(X->getType(), CmpVal));
5290       }
5291     }
5292     break;
5293   }
5294   case ICmpInst::ICMP_ULT: {
5295     if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
5296       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5297     if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
5298       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5299     break;
5300   }
5301   case ICmpInst::ICMP_UGT: {
5302     if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
5303       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5304     if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
5305       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5306     break;
5307   }
5308   case ICmpInst::ICMP_SLT: {
5309     if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
5310       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5311     if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
5312       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5313     break;
5314   }
5315   case ICmpInst::ICMP_SGT: {
5316     if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
5317       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5318     if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
5319       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5320     break;
5321   }
5322   case ICmpInst::ICMP_SGE:
5323     assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
5324     if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
5325       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5326     if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
5327       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5328     if (Op1Min == Op0Max) // A >=s B -> A == B if max(A) == min(B)
5329       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5330     break;
5331   case ICmpInst::ICMP_SLE:
5332     assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
5333     if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
5334       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5335     if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
5336       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5337     if (Op1Max == Op0Min) // A <=s B -> A == B if min(A) == max(B)
5338       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5339     break;
5340   case ICmpInst::ICMP_UGE:
5341     assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
5342     if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
5343       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5344     if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
5345       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5346     if (Op1Min == Op0Max) // A >=u B -> A == B if max(A) == min(B)
5347       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5348     break;
5349   case ICmpInst::ICMP_ULE:
5350     assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
5351     if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
5352       return replaceInstUsesWith(I, ConstantInt::getTrue(I.getType()));
5353     if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
5354       return replaceInstUsesWith(I, ConstantInt::getFalse(I.getType()));
5355     if (Op1Max == Op0Min) // A <=u B -> A == B if min(A) == max(B)
5356       return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
5357     break;
5358   }
5359 
5360   // Turn a signed comparison into an unsigned one if both operands are known to
5361   // have the same sign.
5362   if (I.isSigned() &&
5363       ((Op0Known.Zero.isNegative() && Op1Known.Zero.isNegative()) ||
5364        (Op0Known.One.isNegative() && Op1Known.One.isNegative())))
5365     return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
5366 
5367   return nullptr;
5368 }
5369 
5370 llvm::Optional<std::pair<CmpInst::Predicate, Constant *>>
getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,Constant * C)5371 InstCombiner::getFlippedStrictnessPredicateAndConstant(CmpInst::Predicate Pred,
5372                                                        Constant *C) {
5373   assert(ICmpInst::isRelational(Pred) && ICmpInst::isIntPredicate(Pred) &&
5374          "Only for relational integer predicates.");
5375 
5376   Type *Type = C->getType();
5377   bool IsSigned = ICmpInst::isSigned(Pred);
5378 
5379   CmpInst::Predicate UnsignedPred = ICmpInst::getUnsignedPredicate(Pred);
5380   bool WillIncrement =
5381       UnsignedPred == ICmpInst::ICMP_ULE || UnsignedPred == ICmpInst::ICMP_UGT;
5382 
5383   // Check if the constant operand can be safely incremented/decremented
5384   // without overflowing/underflowing.
5385   auto ConstantIsOk = [WillIncrement, IsSigned](ConstantInt *C) {
5386     return WillIncrement ? !C->isMaxValue(IsSigned) : !C->isMinValue(IsSigned);
5387   };
5388 
5389   Constant *SafeReplacementConstant = nullptr;
5390   if (auto *CI = dyn_cast<ConstantInt>(C)) {
5391     // Bail out if the constant can't be safely incremented/decremented.
5392     if (!ConstantIsOk(CI))
5393       return llvm::None;
5394   } else if (auto *FVTy = dyn_cast<FixedVectorType>(Type)) {
5395     unsigned NumElts = FVTy->getNumElements();
5396     for (unsigned i = 0; i != NumElts; ++i) {
5397       Constant *Elt = C->getAggregateElement(i);
5398       if (!Elt)
5399         return llvm::None;
5400 
5401       if (isa<UndefValue>(Elt))
5402         continue;
5403 
5404       // Bail out if we can't determine if this constant is min/max or if we
5405       // know that this constant is min/max.
5406       auto *CI = dyn_cast<ConstantInt>(Elt);
5407       if (!CI || !ConstantIsOk(CI))
5408         return llvm::None;
5409 
5410       if (!SafeReplacementConstant)
5411         SafeReplacementConstant = CI;
5412     }
5413   } else {
5414     // ConstantExpr?
5415     return llvm::None;
5416   }
5417 
5418   // It may not be safe to change a compare predicate in the presence of
5419   // undefined elements, so replace those elements with the first safe constant
5420   // that we found.
5421   // TODO: in case of poison, it is safe; let's replace undefs only.
5422   if (C->containsUndefOrPoisonElement()) {
5423     assert(SafeReplacementConstant && "Replacement constant not set");
5424     C = Constant::replaceUndefsWith(C, SafeReplacementConstant);
5425   }
5426 
5427   CmpInst::Predicate NewPred = CmpInst::getFlippedStrictnessPredicate(Pred);
5428 
5429   // Increment or decrement the constant.
5430   Constant *OneOrNegOne = ConstantInt::get(Type, WillIncrement ? 1 : -1, true);
5431   Constant *NewC = ConstantExpr::getAdd(C, OneOrNegOne);
5432 
5433   return std::make_pair(NewPred, NewC);
5434 }
5435 
5436 /// If we have an icmp le or icmp ge instruction with a constant operand, turn
5437 /// it into the appropriate icmp lt or icmp gt instruction. This transform
5438 /// allows them to be folded in visitICmpInst.
canonicalizeCmpWithConstant(ICmpInst & I)5439 static ICmpInst *canonicalizeCmpWithConstant(ICmpInst &I) {
5440   ICmpInst::Predicate Pred = I.getPredicate();
5441   if (ICmpInst::isEquality(Pred) || !ICmpInst::isIntPredicate(Pred) ||
5442       InstCombiner::isCanonicalPredicate(Pred))
5443     return nullptr;
5444 
5445   Value *Op0 = I.getOperand(0);
5446   Value *Op1 = I.getOperand(1);
5447   auto *Op1C = dyn_cast<Constant>(Op1);
5448   if (!Op1C)
5449     return nullptr;
5450 
5451   auto FlippedStrictness =
5452       InstCombiner::getFlippedStrictnessPredicateAndConstant(Pred, Op1C);
5453   if (!FlippedStrictness)
5454     return nullptr;
5455 
5456   return new ICmpInst(FlippedStrictness->first, Op0, FlippedStrictness->second);
5457 }
5458 
5459 /// If we have a comparison with a non-canonical predicate, if we can update
5460 /// all the users, invert the predicate and adjust all the users.
canonicalizeICmpPredicate(CmpInst & I)5461 CmpInst *InstCombinerImpl::canonicalizeICmpPredicate(CmpInst &I) {
5462   // Is the predicate already canonical?
5463   CmpInst::Predicate Pred = I.getPredicate();
5464   if (InstCombiner::isCanonicalPredicate(Pred))
5465     return nullptr;
5466 
5467   // Can all users be adjusted to predicate inversion?
5468   if (!InstCombiner::canFreelyInvertAllUsersOf(&I, /*IgnoredUser=*/nullptr))
5469     return nullptr;
5470 
5471   // Ok, we can canonicalize comparison!
5472   // Let's first invert the comparison's predicate.
5473   I.setPredicate(CmpInst::getInversePredicate(Pred));
5474   I.setName(I.getName() + ".not");
5475 
5476   // And, adapt users.
5477   freelyInvertAllUsersOf(&I);
5478 
5479   return &I;
5480 }
5481 
5482 /// Integer compare with boolean values can always be turned into bitwise ops.
canonicalizeICmpBool(ICmpInst & I,InstCombiner::BuilderTy & Builder)5483 static Instruction *canonicalizeICmpBool(ICmpInst &I,
5484                                          InstCombiner::BuilderTy &Builder) {
5485   Value *A = I.getOperand(0), *B = I.getOperand(1);
5486   assert(A->getType()->isIntOrIntVectorTy(1) && "Bools only");
5487 
5488   // A boolean compared to true/false can be simplified to Op0/true/false in
5489   // 14 out of the 20 (10 predicates * 2 constants) possible combinations.
5490   // Cases not handled by InstSimplify are always 'not' of Op0.
5491   if (match(B, m_Zero())) {
5492     switch (I.getPredicate()) {
5493       case CmpInst::ICMP_EQ:  // A ==   0 -> !A
5494       case CmpInst::ICMP_ULE: // A <=u  0 -> !A
5495       case CmpInst::ICMP_SGE: // A >=s  0 -> !A
5496         return BinaryOperator::CreateNot(A);
5497       default:
5498         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5499     }
5500   } else if (match(B, m_One())) {
5501     switch (I.getPredicate()) {
5502       case CmpInst::ICMP_NE:  // A !=  1 -> !A
5503       case CmpInst::ICMP_ULT: // A <u  1 -> !A
5504       case CmpInst::ICMP_SGT: // A >s -1 -> !A
5505         return BinaryOperator::CreateNot(A);
5506       default:
5507         llvm_unreachable("ICmp i1 X, C not simplified as expected.");
5508     }
5509   }
5510 
5511   switch (I.getPredicate()) {
5512   default:
5513     llvm_unreachable("Invalid icmp instruction!");
5514   case ICmpInst::ICMP_EQ:
5515     // icmp eq i1 A, B -> ~(A ^ B)
5516     return BinaryOperator::CreateNot(Builder.CreateXor(A, B));
5517 
5518   case ICmpInst::ICMP_NE:
5519     // icmp ne i1 A, B -> A ^ B
5520     return BinaryOperator::CreateXor(A, B);
5521 
5522   case ICmpInst::ICMP_UGT:
5523     // icmp ugt -> icmp ult
5524     std::swap(A, B);
5525     LLVM_FALLTHROUGH;
5526   case ICmpInst::ICMP_ULT:
5527     // icmp ult i1 A, B -> ~A & B
5528     return BinaryOperator::CreateAnd(Builder.CreateNot(A), B);
5529 
5530   case ICmpInst::ICMP_SGT:
5531     // icmp sgt -> icmp slt
5532     std::swap(A, B);
5533     LLVM_FALLTHROUGH;
5534   case ICmpInst::ICMP_SLT:
5535     // icmp slt i1 A, B -> A & ~B
5536     return BinaryOperator::CreateAnd(Builder.CreateNot(B), A);
5537 
5538   case ICmpInst::ICMP_UGE:
5539     // icmp uge -> icmp ule
5540     std::swap(A, B);
5541     LLVM_FALLTHROUGH;
5542   case ICmpInst::ICMP_ULE:
5543     // icmp ule i1 A, B -> ~A | B
5544     return BinaryOperator::CreateOr(Builder.CreateNot(A), B);
5545 
5546   case ICmpInst::ICMP_SGE:
5547     // icmp sge -> icmp sle
5548     std::swap(A, B);
5549     LLVM_FALLTHROUGH;
5550   case ICmpInst::ICMP_SLE:
5551     // icmp sle i1 A, B -> A | ~B
5552     return BinaryOperator::CreateOr(Builder.CreateNot(B), A);
5553   }
5554 }
5555 
5556 // Transform pattern like:
5557 //   (1 << Y) u<= X  or  ~(-1 << Y) u<  X  or  ((1 << Y)+(-1)) u<  X
5558 //   (1 << Y) u>  X  or  ~(-1 << Y) u>= X  or  ((1 << Y)+(-1)) u>= X
5559 // Into:
5560 //   (X l>> Y) != 0
5561 //   (X l>> Y) == 0
foldICmpWithHighBitMask(ICmpInst & Cmp,InstCombiner::BuilderTy & Builder)5562 static Instruction *foldICmpWithHighBitMask(ICmpInst &Cmp,
5563                                             InstCombiner::BuilderTy &Builder) {
5564   ICmpInst::Predicate Pred, NewPred;
5565   Value *X, *Y;
5566   if (match(&Cmp,
5567             m_c_ICmp(Pred, m_OneUse(m_Shl(m_One(), m_Value(Y))), m_Value(X)))) {
5568     switch (Pred) {
5569     case ICmpInst::ICMP_ULE:
5570       NewPred = ICmpInst::ICMP_NE;
5571       break;
5572     case ICmpInst::ICMP_UGT:
5573       NewPred = ICmpInst::ICMP_EQ;
5574       break;
5575     default:
5576       return nullptr;
5577     }
5578   } else if (match(&Cmp, m_c_ICmp(Pred,
5579                                   m_OneUse(m_CombineOr(
5580                                       m_Not(m_Shl(m_AllOnes(), m_Value(Y))),
5581                                       m_Add(m_Shl(m_One(), m_Value(Y)),
5582                                             m_AllOnes()))),
5583                                   m_Value(X)))) {
5584     // The variant with 'add' is not canonical, (the variant with 'not' is)
5585     // we only get it because it has extra uses, and can't be canonicalized,
5586 
5587     switch (Pred) {
5588     case ICmpInst::ICMP_ULT:
5589       NewPred = ICmpInst::ICMP_NE;
5590       break;
5591     case ICmpInst::ICMP_UGE:
5592       NewPred = ICmpInst::ICMP_EQ;
5593       break;
5594     default:
5595       return nullptr;
5596     }
5597   } else
5598     return nullptr;
5599 
5600   Value *NewX = Builder.CreateLShr(X, Y, X->getName() + ".highbits");
5601   Constant *Zero = Constant::getNullValue(NewX->getType());
5602   return CmpInst::Create(Instruction::ICmp, NewPred, NewX, Zero);
5603 }
5604 
foldVectorCmp(CmpInst & Cmp,InstCombiner::BuilderTy & Builder)5605 static Instruction *foldVectorCmp(CmpInst &Cmp,
5606                                   InstCombiner::BuilderTy &Builder) {
5607   const CmpInst::Predicate Pred = Cmp.getPredicate();
5608   Value *LHS = Cmp.getOperand(0), *RHS = Cmp.getOperand(1);
5609   Value *V1, *V2;
5610   ArrayRef<int> M;
5611   if (!match(LHS, m_Shuffle(m_Value(V1), m_Undef(), m_Mask(M))))
5612     return nullptr;
5613 
5614   // If both arguments of the cmp are shuffles that use the same mask and
5615   // shuffle within a single vector, move the shuffle after the cmp:
5616   // cmp (shuffle V1, M), (shuffle V2, M) --> shuffle (cmp V1, V2), M
5617   Type *V1Ty = V1->getType();
5618   if (match(RHS, m_Shuffle(m_Value(V2), m_Undef(), m_SpecificMask(M))) &&
5619       V1Ty == V2->getType() && (LHS->hasOneUse() || RHS->hasOneUse())) {
5620     Value *NewCmp = Builder.CreateCmp(Pred, V1, V2);
5621     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()), M);
5622   }
5623 
5624   // Try to canonicalize compare with splatted operand and splat constant.
5625   // TODO: We could generalize this for more than splats. See/use the code in
5626   //       InstCombiner::foldVectorBinop().
5627   Constant *C;
5628   if (!LHS->hasOneUse() || !match(RHS, m_Constant(C)))
5629     return nullptr;
5630 
5631   // Length-changing splats are ok, so adjust the constants as needed:
5632   // cmp (shuffle V1, M), C --> shuffle (cmp V1, C'), M
5633   Constant *ScalarC = C->getSplatValue(/* AllowUndefs */ true);
5634   int MaskSplatIndex;
5635   if (ScalarC && match(M, m_SplatOrUndefMask(MaskSplatIndex))) {
5636     // We allow undefs in matching, but this transform removes those for safety.
5637     // Demanded elements analysis should be able to recover some/all of that.
5638     C = ConstantVector::getSplat(cast<VectorType>(V1Ty)->getElementCount(),
5639                                  ScalarC);
5640     SmallVector<int, 8> NewM(M.size(), MaskSplatIndex);
5641     Value *NewCmp = Builder.CreateCmp(Pred, V1, C);
5642     return new ShuffleVectorInst(NewCmp, UndefValue::get(NewCmp->getType()),
5643                                  NewM);
5644   }
5645 
5646   return nullptr;
5647 }
5648 
5649 // extract(uadd.with.overflow(A, B), 0) ult A
5650 //  -> extract(uadd.with.overflow(A, B), 1)
foldICmpOfUAddOv(ICmpInst & I)5651 static Instruction *foldICmpOfUAddOv(ICmpInst &I) {
5652   CmpInst::Predicate Pred = I.getPredicate();
5653   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5654 
5655   Value *UAddOv;
5656   Value *A, *B;
5657   auto UAddOvResultPat = m_ExtractValue<0>(
5658       m_Intrinsic<Intrinsic::uadd_with_overflow>(m_Value(A), m_Value(B)));
5659   if (match(Op0, UAddOvResultPat) &&
5660       ((Pred == ICmpInst::ICMP_ULT && (Op1 == A || Op1 == B)) ||
5661        (Pred == ICmpInst::ICMP_EQ && match(Op1, m_ZeroInt()) &&
5662         (match(A, m_One()) || match(B, m_One()))) ||
5663        (Pred == ICmpInst::ICMP_NE && match(Op1, m_AllOnes()) &&
5664         (match(A, m_AllOnes()) || match(B, m_AllOnes())))))
5665     // extract(uadd.with.overflow(A, B), 0) < A
5666     // extract(uadd.with.overflow(A, 1), 0) == 0
5667     // extract(uadd.with.overflow(A, -1), 0) != -1
5668     UAddOv = cast<ExtractValueInst>(Op0)->getAggregateOperand();
5669   else if (match(Op1, UAddOvResultPat) &&
5670            Pred == ICmpInst::ICMP_UGT && (Op0 == A || Op0 == B))
5671     // A > extract(uadd.with.overflow(A, B), 0)
5672     UAddOv = cast<ExtractValueInst>(Op1)->getAggregateOperand();
5673   else
5674     return nullptr;
5675 
5676   return ExtractValueInst::Create(UAddOv, 1);
5677 }
5678 
visitICmpInst(ICmpInst & I)5679 Instruction *InstCombinerImpl::visitICmpInst(ICmpInst &I) {
5680   bool Changed = false;
5681   const SimplifyQuery Q = SQ.getWithInstruction(&I);
5682   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5683   unsigned Op0Cplxity = getComplexity(Op0);
5684   unsigned Op1Cplxity = getComplexity(Op1);
5685 
5686   /// Orders the operands of the compare so that they are listed from most
5687   /// complex to least complex.  This puts constants before unary operators,
5688   /// before binary operators.
5689   if (Op0Cplxity < Op1Cplxity ||
5690       (Op0Cplxity == Op1Cplxity && swapMayExposeCSEOpportunities(Op0, Op1))) {
5691     I.swapOperands();
5692     std::swap(Op0, Op1);
5693     Changed = true;
5694   }
5695 
5696   if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, Q))
5697     return replaceInstUsesWith(I, V);
5698 
5699   // Comparing -val or val with non-zero is the same as just comparing val
5700   // ie, abs(val) != 0 -> val != 0
5701   if (I.getPredicate() == ICmpInst::ICMP_NE && match(Op1, m_Zero())) {
5702     Value *Cond, *SelectTrue, *SelectFalse;
5703     if (match(Op0, m_Select(m_Value(Cond), m_Value(SelectTrue),
5704                             m_Value(SelectFalse)))) {
5705       if (Value *V = dyn_castNegVal(SelectTrue)) {
5706         if (V == SelectFalse)
5707           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5708       }
5709       else if (Value *V = dyn_castNegVal(SelectFalse)) {
5710         if (V == SelectTrue)
5711           return CmpInst::Create(Instruction::ICmp, I.getPredicate(), V, Op1);
5712       }
5713     }
5714   }
5715 
5716   if (Op0->getType()->isIntOrIntVectorTy(1))
5717     if (Instruction *Res = canonicalizeICmpBool(I, Builder))
5718       return Res;
5719 
5720   if (Instruction *Res = canonicalizeCmpWithConstant(I))
5721     return Res;
5722 
5723   if (Instruction *Res = canonicalizeICmpPredicate(I))
5724     return Res;
5725 
5726   if (Instruction *Res = foldICmpWithConstant(I))
5727     return Res;
5728 
5729   if (Instruction *Res = foldICmpWithDominatingICmp(I))
5730     return Res;
5731 
5732   if (Instruction *Res = foldICmpBinOp(I, Q))
5733     return Res;
5734 
5735   if (Instruction *Res = foldICmpUsingKnownBits(I))
5736     return Res;
5737 
5738   // Test if the ICmpInst instruction is used exclusively by a select as
5739   // part of a minimum or maximum operation. If so, refrain from doing
5740   // any other folding. This helps out other analyses which understand
5741   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
5742   // and CodeGen. And in this case, at least one of the comparison
5743   // operands has at least one user besides the compare (the select),
5744   // which would often largely negate the benefit of folding anyway.
5745   //
5746   // Do the same for the other patterns recognized by matchSelectPattern.
5747   if (I.hasOneUse())
5748     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
5749       Value *A, *B;
5750       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
5751       if (SPR.Flavor != SPF_UNKNOWN)
5752         return nullptr;
5753     }
5754 
5755   // Do this after checking for min/max to prevent infinite looping.
5756   if (Instruction *Res = foldICmpWithZero(I))
5757     return Res;
5758 
5759   // FIXME: We only do this after checking for min/max to prevent infinite
5760   // looping caused by a reverse canonicalization of these patterns for min/max.
5761   // FIXME: The organization of folds is a mess. These would naturally go into
5762   // canonicalizeCmpWithConstant(), but we can't move all of the above folds
5763   // down here after the min/max restriction.
5764   ICmpInst::Predicate Pred = I.getPredicate();
5765   const APInt *C;
5766   if (match(Op1, m_APInt(C))) {
5767     // For i32: x >u 2147483647 -> x <s 0  -> true if sign bit set
5768     if (Pred == ICmpInst::ICMP_UGT && C->isMaxSignedValue()) {
5769       Constant *Zero = Constant::getNullValue(Op0->getType());
5770       return new ICmpInst(ICmpInst::ICMP_SLT, Op0, Zero);
5771     }
5772 
5773     // For i32: x <u 2147483648 -> x >s -1  -> true if sign bit clear
5774     if (Pred == ICmpInst::ICMP_ULT && C->isMinSignedValue()) {
5775       Constant *AllOnes = Constant::getAllOnesValue(Op0->getType());
5776       return new ICmpInst(ICmpInst::ICMP_SGT, Op0, AllOnes);
5777     }
5778   }
5779 
5780   if (Instruction *Res = foldICmpInstWithConstant(I))
5781     return Res;
5782 
5783   // Try to match comparison as a sign bit test. Intentionally do this after
5784   // foldICmpInstWithConstant() to potentially let other folds to happen first.
5785   if (Instruction *New = foldSignBitTest(I))
5786     return New;
5787 
5788   if (Instruction *Res = foldICmpInstWithConstantNotInt(I))
5789     return Res;
5790 
5791   // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5792   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
5793     if (Instruction *NI = foldGEPICmp(GEP, Op1, I.getPredicate(), I))
5794       return NI;
5795   if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
5796     if (Instruction *NI = foldGEPICmp(GEP, Op0,
5797                            ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5798       return NI;
5799 
5800   // Try to optimize equality comparisons against alloca-based pointers.
5801   if (Op0->getType()->isPointerTy() && I.isEquality()) {
5802     assert(Op1->getType()->isPointerTy() && "Comparing pointer with non-pointer?");
5803     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op0)))
5804       if (Instruction *New = foldAllocaCmp(I, Alloca, Op1))
5805         return New;
5806     if (auto *Alloca = dyn_cast<AllocaInst>(getUnderlyingObject(Op1)))
5807       if (Instruction *New = foldAllocaCmp(I, Alloca, Op0))
5808         return New;
5809   }
5810 
5811   if (Instruction *Res = foldICmpBitCast(I, Builder))
5812     return Res;
5813 
5814   // TODO: Hoist this above the min/max bailout.
5815   if (Instruction *R = foldICmpWithCastOp(I))
5816     return R;
5817 
5818   if (Instruction *Res = foldICmpWithMinMax(I))
5819     return Res;
5820 
5821   {
5822     Value *A, *B;
5823     // Transform (A & ~B) == 0 --> (A & B) != 0
5824     // and       (A & ~B) != 0 --> (A & B) == 0
5825     // if A is a power of 2.
5826     if (match(Op0, m_And(m_Value(A), m_Not(m_Value(B)))) &&
5827         match(Op1, m_Zero()) &&
5828         isKnownToBeAPowerOfTwo(A, false, 0, &I) && I.isEquality())
5829       return new ICmpInst(I.getInversePredicate(), Builder.CreateAnd(A, B),
5830                           Op1);
5831 
5832     // ~X < ~Y --> Y < X
5833     // ~X < C -->  X > ~C
5834     if (match(Op0, m_Not(m_Value(A)))) {
5835       if (match(Op1, m_Not(m_Value(B))))
5836         return new ICmpInst(I.getPredicate(), B, A);
5837 
5838       const APInt *C;
5839       if (match(Op1, m_APInt(C)))
5840         return new ICmpInst(I.getSwappedPredicate(), A,
5841                             ConstantInt::get(Op1->getType(), ~(*C)));
5842     }
5843 
5844     Instruction *AddI = nullptr;
5845     if (match(&I, m_UAddWithOverflow(m_Value(A), m_Value(B),
5846                                      m_Instruction(AddI))) &&
5847         isa<IntegerType>(A->getType())) {
5848       Value *Result;
5849       Constant *Overflow;
5850       // m_UAddWithOverflow can match patterns that do not include  an explicit
5851       // "add" instruction, so check the opcode of the matched op.
5852       if (AddI->getOpcode() == Instruction::Add &&
5853           OptimizeOverflowCheck(Instruction::Add, /*Signed*/ false, A, B, *AddI,
5854                                 Result, Overflow)) {
5855         replaceInstUsesWith(*AddI, Result);
5856         eraseInstFromFunction(*AddI);
5857         return replaceInstUsesWith(I, Overflow);
5858       }
5859     }
5860 
5861     // (zext a) * (zext b)  --> llvm.umul.with.overflow.
5862     if (match(Op0, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5863       if (Instruction *R = processUMulZExtIdiom(I, Op0, Op1, *this))
5864         return R;
5865     }
5866     if (match(Op1, m_Mul(m_ZExt(m_Value(A)), m_ZExt(m_Value(B))))) {
5867       if (Instruction *R = processUMulZExtIdiom(I, Op1, Op0, *this))
5868         return R;
5869     }
5870   }
5871 
5872   if (Instruction *Res = foldICmpEquality(I))
5873     return Res;
5874 
5875   if (Instruction *Res = foldICmpOfUAddOv(I))
5876     return Res;
5877 
5878   // The 'cmpxchg' instruction returns an aggregate containing the old value and
5879   // an i1 which indicates whether or not we successfully did the swap.
5880   //
5881   // Replace comparisons between the old value and the expected value with the
5882   // indicator that 'cmpxchg' returns.
5883   //
5884   // N.B.  This transform is only valid when the 'cmpxchg' is not permitted to
5885   // spuriously fail.  In those cases, the old value may equal the expected
5886   // value but it is possible for the swap to not occur.
5887   if (I.getPredicate() == ICmpInst::ICMP_EQ)
5888     if (auto *EVI = dyn_cast<ExtractValueInst>(Op0))
5889       if (auto *ACXI = dyn_cast<AtomicCmpXchgInst>(EVI->getAggregateOperand()))
5890         if (EVI->getIndices()[0] == 0 && ACXI->getCompareOperand() == Op1 &&
5891             !ACXI->isWeak())
5892           return ExtractValueInst::Create(ACXI, 1);
5893 
5894   {
5895     Value *X;
5896     const APInt *C;
5897     // icmp X+Cst, X
5898     if (match(Op0, m_Add(m_Value(X), m_APInt(C))) && Op1 == X)
5899       return foldICmpAddOpConst(X, *C, I.getPredicate());
5900 
5901     // icmp X, X+Cst
5902     if (match(Op1, m_Add(m_Value(X), m_APInt(C))) && Op0 == X)
5903       return foldICmpAddOpConst(X, *C, I.getSwappedPredicate());
5904   }
5905 
5906   if (Instruction *Res = foldICmpWithHighBitMask(I, Builder))
5907     return Res;
5908 
5909   if (I.getType()->isVectorTy())
5910     if (Instruction *Res = foldVectorCmp(I, Builder))
5911       return Res;
5912 
5913   return Changed ? &I : nullptr;
5914 }
5915 
5916 /// Fold fcmp ([us]itofp x, cst) if possible.
foldFCmpIntToFPConst(FCmpInst & I,Instruction * LHSI,Constant * RHSC)5917 Instruction *InstCombinerImpl::foldFCmpIntToFPConst(FCmpInst &I,
5918                                                     Instruction *LHSI,
5919                                                     Constant *RHSC) {
5920   if (!isa<ConstantFP>(RHSC)) return nullptr;
5921   const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
5922 
5923   // Get the width of the mantissa.  We don't want to hack on conversions that
5924   // might lose information from the integer, e.g. "i64 -> float"
5925   int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
5926   if (MantissaWidth == -1) return nullptr;  // Unknown.
5927 
5928   IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
5929 
5930   bool LHSUnsigned = isa<UIToFPInst>(LHSI);
5931 
5932   if (I.isEquality()) {
5933     FCmpInst::Predicate P = I.getPredicate();
5934     bool IsExact = false;
5935     APSInt RHSCvt(IntTy->getBitWidth(), LHSUnsigned);
5936     RHS.convertToInteger(RHSCvt, APFloat::rmNearestTiesToEven, &IsExact);
5937 
5938     // If the floating point constant isn't an integer value, we know if we will
5939     // ever compare equal / not equal to it.
5940     if (!IsExact) {
5941       // TODO: Can never be -0.0 and other non-representable values
5942       APFloat RHSRoundInt(RHS);
5943       RHSRoundInt.roundToIntegral(APFloat::rmNearestTiesToEven);
5944       if (RHS != RHSRoundInt) {
5945         if (P == FCmpInst::FCMP_OEQ || P == FCmpInst::FCMP_UEQ)
5946           return replaceInstUsesWith(I, Builder.getFalse());
5947 
5948         assert(P == FCmpInst::FCMP_ONE || P == FCmpInst::FCMP_UNE);
5949         return replaceInstUsesWith(I, Builder.getTrue());
5950       }
5951     }
5952 
5953     // TODO: If the constant is exactly representable, is it always OK to do
5954     // equality compares as integer?
5955   }
5956 
5957   // Check to see that the input is converted from an integer type that is small
5958   // enough that preserves all bits.  TODO: check here for "known" sign bits.
5959   // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
5960   unsigned InputSize = IntTy->getScalarSizeInBits();
5961 
5962   // Following test does NOT adjust InputSize downwards for signed inputs,
5963   // because the most negative value still requires all the mantissa bits
5964   // to distinguish it from one less than that value.
5965   if ((int)InputSize > MantissaWidth) {
5966     // Conversion would lose accuracy. Check if loss can impact comparison.
5967     int Exp = ilogb(RHS);
5968     if (Exp == APFloat::IEK_Inf) {
5969       int MaxExponent = ilogb(APFloat::getLargest(RHS.getSemantics()));
5970       if (MaxExponent < (int)InputSize - !LHSUnsigned)
5971         // Conversion could create infinity.
5972         return nullptr;
5973     } else {
5974       // Note that if RHS is zero or NaN, then Exp is negative
5975       // and first condition is trivially false.
5976       if (MantissaWidth <= Exp && Exp <= (int)InputSize - !LHSUnsigned)
5977         // Conversion could affect comparison.
5978         return nullptr;
5979     }
5980   }
5981 
5982   // Otherwise, we can potentially simplify the comparison.  We know that it
5983   // will always come through as an integer value and we know the constant is
5984   // not a NAN (it would have been previously simplified).
5985   assert(!RHS.isNaN() && "NaN comparison not already folded!");
5986 
5987   ICmpInst::Predicate Pred;
5988   switch (I.getPredicate()) {
5989   default: llvm_unreachable("Unexpected predicate!");
5990   case FCmpInst::FCMP_UEQ:
5991   case FCmpInst::FCMP_OEQ:
5992     Pred = ICmpInst::ICMP_EQ;
5993     break;
5994   case FCmpInst::FCMP_UGT:
5995   case FCmpInst::FCMP_OGT:
5996     Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
5997     break;
5998   case FCmpInst::FCMP_UGE:
5999   case FCmpInst::FCMP_OGE:
6000     Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
6001     break;
6002   case FCmpInst::FCMP_ULT:
6003   case FCmpInst::FCMP_OLT:
6004     Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
6005     break;
6006   case FCmpInst::FCMP_ULE:
6007   case FCmpInst::FCMP_OLE:
6008     Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
6009     break;
6010   case FCmpInst::FCMP_UNE:
6011   case FCmpInst::FCMP_ONE:
6012     Pred = ICmpInst::ICMP_NE;
6013     break;
6014   case FCmpInst::FCMP_ORD:
6015     return replaceInstUsesWith(I, Builder.getTrue());
6016   case FCmpInst::FCMP_UNO:
6017     return replaceInstUsesWith(I, Builder.getFalse());
6018   }
6019 
6020   // Now we know that the APFloat is a normal number, zero or inf.
6021 
6022   // See if the FP constant is too large for the integer.  For example,
6023   // comparing an i8 to 300.0.
6024   unsigned IntWidth = IntTy->getScalarSizeInBits();
6025 
6026   if (!LHSUnsigned) {
6027     // If the RHS value is > SignedMax, fold the comparison.  This handles +INF
6028     // and large values.
6029     APFloat SMax(RHS.getSemantics());
6030     SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
6031                           APFloat::rmNearestTiesToEven);
6032     if (SMax < RHS) { // smax < 13123.0
6033       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_SLT ||
6034           Pred == ICmpInst::ICMP_SLE)
6035         return replaceInstUsesWith(I, Builder.getTrue());
6036       return replaceInstUsesWith(I, Builder.getFalse());
6037     }
6038   } else {
6039     // If the RHS value is > UnsignedMax, fold the comparison. This handles
6040     // +INF and large values.
6041     APFloat UMax(RHS.getSemantics());
6042     UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
6043                           APFloat::rmNearestTiesToEven);
6044     if (UMax < RHS) { // umax < 13123.0
6045       if (Pred == ICmpInst::ICMP_NE  || Pred == ICmpInst::ICMP_ULT ||
6046           Pred == ICmpInst::ICMP_ULE)
6047         return replaceInstUsesWith(I, Builder.getTrue());
6048       return replaceInstUsesWith(I, Builder.getFalse());
6049     }
6050   }
6051 
6052   if (!LHSUnsigned) {
6053     // See if the RHS value is < SignedMin.
6054     APFloat SMin(RHS.getSemantics());
6055     SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
6056                           APFloat::rmNearestTiesToEven);
6057     if (SMin > RHS) { // smin > 12312.0
6058       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
6059           Pred == ICmpInst::ICMP_SGE)
6060         return replaceInstUsesWith(I, Builder.getTrue());
6061       return replaceInstUsesWith(I, Builder.getFalse());
6062     }
6063   } else {
6064     // See if the RHS value is < UnsignedMin.
6065     APFloat UMin(RHS.getSemantics());
6066     UMin.convertFromAPInt(APInt::getMinValue(IntWidth), false,
6067                           APFloat::rmNearestTiesToEven);
6068     if (UMin > RHS) { // umin > 12312.0
6069       if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_UGT ||
6070           Pred == ICmpInst::ICMP_UGE)
6071         return replaceInstUsesWith(I, Builder.getTrue());
6072       return replaceInstUsesWith(I, Builder.getFalse());
6073     }
6074   }
6075 
6076   // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
6077   // [0, UMAX], but it may still be fractional.  See if it is fractional by
6078   // casting the FP value to the integer value and back, checking for equality.
6079   // Don't do this for zero, because -0.0 is not fractional.
6080   Constant *RHSInt = LHSUnsigned
6081     ? ConstantExpr::getFPToUI(RHSC, IntTy)
6082     : ConstantExpr::getFPToSI(RHSC, IntTy);
6083   if (!RHS.isZero()) {
6084     bool Equal = LHSUnsigned
6085       ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
6086       : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
6087     if (!Equal) {
6088       // If we had a comparison against a fractional value, we have to adjust
6089       // the compare predicate and sometimes the value.  RHSC is rounded towards
6090       // zero at this point.
6091       switch (Pred) {
6092       default: llvm_unreachable("Unexpected integer comparison!");
6093       case ICmpInst::ICMP_NE:  // (float)int != 4.4   --> true
6094         return replaceInstUsesWith(I, Builder.getTrue());
6095       case ICmpInst::ICMP_EQ:  // (float)int == 4.4   --> false
6096         return replaceInstUsesWith(I, Builder.getFalse());
6097       case ICmpInst::ICMP_ULE:
6098         // (float)int <= 4.4   --> int <= 4
6099         // (float)int <= -4.4  --> false
6100         if (RHS.isNegative())
6101           return replaceInstUsesWith(I, Builder.getFalse());
6102         break;
6103       case ICmpInst::ICMP_SLE:
6104         // (float)int <= 4.4   --> int <= 4
6105         // (float)int <= -4.4  --> int < -4
6106         if (RHS.isNegative())
6107           Pred = ICmpInst::ICMP_SLT;
6108         break;
6109       case ICmpInst::ICMP_ULT:
6110         // (float)int < -4.4   --> false
6111         // (float)int < 4.4    --> int <= 4
6112         if (RHS.isNegative())
6113           return replaceInstUsesWith(I, Builder.getFalse());
6114         Pred = ICmpInst::ICMP_ULE;
6115         break;
6116       case ICmpInst::ICMP_SLT:
6117         // (float)int < -4.4   --> int < -4
6118         // (float)int < 4.4    --> int <= 4
6119         if (!RHS.isNegative())
6120           Pred = ICmpInst::ICMP_SLE;
6121         break;
6122       case ICmpInst::ICMP_UGT:
6123         // (float)int > 4.4    --> int > 4
6124         // (float)int > -4.4   --> true
6125         if (RHS.isNegative())
6126           return replaceInstUsesWith(I, Builder.getTrue());
6127         break;
6128       case ICmpInst::ICMP_SGT:
6129         // (float)int > 4.4    --> int > 4
6130         // (float)int > -4.4   --> int >= -4
6131         if (RHS.isNegative())
6132           Pred = ICmpInst::ICMP_SGE;
6133         break;
6134       case ICmpInst::ICMP_UGE:
6135         // (float)int >= -4.4   --> true
6136         // (float)int >= 4.4    --> int > 4
6137         if (RHS.isNegative())
6138           return replaceInstUsesWith(I, Builder.getTrue());
6139         Pred = ICmpInst::ICMP_UGT;
6140         break;
6141       case ICmpInst::ICMP_SGE:
6142         // (float)int >= -4.4   --> int >= -4
6143         // (float)int >= 4.4    --> int > 4
6144         if (!RHS.isNegative())
6145           Pred = ICmpInst::ICMP_SGT;
6146         break;
6147       }
6148     }
6149   }
6150 
6151   // Lower this FP comparison into an appropriate integer version of the
6152   // comparison.
6153   return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
6154 }
6155 
6156 /// Fold (C / X) < 0.0 --> X < 0.0 if possible. Swap predicate if necessary.
foldFCmpReciprocalAndZero(FCmpInst & I,Instruction * LHSI,Constant * RHSC)6157 static Instruction *foldFCmpReciprocalAndZero(FCmpInst &I, Instruction *LHSI,
6158                                               Constant *RHSC) {
6159   // When C is not 0.0 and infinities are not allowed:
6160   // (C / X) < 0.0 is a sign-bit test of X
6161   // (C / X) < 0.0 --> X < 0.0 (if C is positive)
6162   // (C / X) < 0.0 --> X > 0.0 (if C is negative, swap the predicate)
6163   //
6164   // Proof:
6165   // Multiply (C / X) < 0.0 by X * X / C.
6166   // - X is non zero, if it is the flag 'ninf' is violated.
6167   // - C defines the sign of X * X * C. Thus it also defines whether to swap
6168   //   the predicate. C is also non zero by definition.
6169   //
6170   // Thus X * X / C is non zero and the transformation is valid. [qed]
6171 
6172   FCmpInst::Predicate Pred = I.getPredicate();
6173 
6174   // Check that predicates are valid.
6175   if ((Pred != FCmpInst::FCMP_OGT) && (Pred != FCmpInst::FCMP_OLT) &&
6176       (Pred != FCmpInst::FCMP_OGE) && (Pred != FCmpInst::FCMP_OLE))
6177     return nullptr;
6178 
6179   // Check that RHS operand is zero.
6180   if (!match(RHSC, m_AnyZeroFP()))
6181     return nullptr;
6182 
6183   // Check fastmath flags ('ninf').
6184   if (!LHSI->hasNoInfs() || !I.hasNoInfs())
6185     return nullptr;
6186 
6187   // Check the properties of the dividend. It must not be zero to avoid a
6188   // division by zero (see Proof).
6189   const APFloat *C;
6190   if (!match(LHSI->getOperand(0), m_APFloat(C)))
6191     return nullptr;
6192 
6193   if (C->isZero())
6194     return nullptr;
6195 
6196   // Get swapped predicate if necessary.
6197   if (C->isNegative())
6198     Pred = I.getSwappedPredicate();
6199 
6200   return new FCmpInst(Pred, LHSI->getOperand(1), RHSC, "", &I);
6201 }
6202 
6203 /// Optimize fabs(X) compared with zero.
foldFabsWithFcmpZero(FCmpInst & I,InstCombinerImpl & IC)6204 static Instruction *foldFabsWithFcmpZero(FCmpInst &I, InstCombinerImpl &IC) {
6205   Value *X;
6206   if (!match(I.getOperand(0), m_FAbs(m_Value(X))) ||
6207       !match(I.getOperand(1), m_PosZeroFP()))
6208     return nullptr;
6209 
6210   auto replacePredAndOp0 = [&IC](FCmpInst *I, FCmpInst::Predicate P, Value *X) {
6211     I->setPredicate(P);
6212     return IC.replaceOperand(*I, 0, X);
6213   };
6214 
6215   switch (I.getPredicate()) {
6216   case FCmpInst::FCMP_UGE:
6217   case FCmpInst::FCMP_OLT:
6218     // fabs(X) >= 0.0 --> true
6219     // fabs(X) <  0.0 --> false
6220     llvm_unreachable("fcmp should have simplified");
6221 
6222   case FCmpInst::FCMP_OGT:
6223     // fabs(X) > 0.0 --> X != 0.0
6224     return replacePredAndOp0(&I, FCmpInst::FCMP_ONE, X);
6225 
6226   case FCmpInst::FCMP_UGT:
6227     // fabs(X) u> 0.0 --> X u!= 0.0
6228     return replacePredAndOp0(&I, FCmpInst::FCMP_UNE, X);
6229 
6230   case FCmpInst::FCMP_OLE:
6231     // fabs(X) <= 0.0 --> X == 0.0
6232     return replacePredAndOp0(&I, FCmpInst::FCMP_OEQ, X);
6233 
6234   case FCmpInst::FCMP_ULE:
6235     // fabs(X) u<= 0.0 --> X u== 0.0
6236     return replacePredAndOp0(&I, FCmpInst::FCMP_UEQ, X);
6237 
6238   case FCmpInst::FCMP_OGE:
6239     // fabs(X) >= 0.0 --> !isnan(X)
6240     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6241     return replacePredAndOp0(&I, FCmpInst::FCMP_ORD, X);
6242 
6243   case FCmpInst::FCMP_ULT:
6244     // fabs(X) u< 0.0 --> isnan(X)
6245     assert(!I.hasNoNaNs() && "fcmp should have simplified");
6246     return replacePredAndOp0(&I, FCmpInst::FCMP_UNO, X);
6247 
6248   case FCmpInst::FCMP_OEQ:
6249   case FCmpInst::FCMP_UEQ:
6250   case FCmpInst::FCMP_ONE:
6251   case FCmpInst::FCMP_UNE:
6252   case FCmpInst::FCMP_ORD:
6253   case FCmpInst::FCMP_UNO:
6254     // Look through the fabs() because it doesn't change anything but the sign.
6255     // fabs(X) == 0.0 --> X == 0.0,
6256     // fabs(X) != 0.0 --> X != 0.0
6257     // isnan(fabs(X)) --> isnan(X)
6258     // !isnan(fabs(X) --> !isnan(X)
6259     return replacePredAndOp0(&I, I.getPredicate(), X);
6260 
6261   default:
6262     return nullptr;
6263   }
6264 }
6265 
visitFCmpInst(FCmpInst & I)6266 Instruction *InstCombinerImpl::visitFCmpInst(FCmpInst &I) {
6267   bool Changed = false;
6268 
6269   /// Orders the operands of the compare so that they are listed from most
6270   /// complex to least complex.  This puts constants before unary operators,
6271   /// before binary operators.
6272   if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
6273     I.swapOperands();
6274     Changed = true;
6275   }
6276 
6277   const CmpInst::Predicate Pred = I.getPredicate();
6278   Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
6279   if (Value *V = SimplifyFCmpInst(Pred, Op0, Op1, I.getFastMathFlags(),
6280                                   SQ.getWithInstruction(&I)))
6281     return replaceInstUsesWith(I, V);
6282 
6283   // Simplify 'fcmp pred X, X'
6284   Type *OpType = Op0->getType();
6285   assert(OpType == Op1->getType() && "fcmp with different-typed operands?");
6286   if (Op0 == Op1) {
6287     switch (Pred) {
6288       default: break;
6289     case FCmpInst::FCMP_UNO:    // True if unordered: isnan(X) | isnan(Y)
6290     case FCmpInst::FCMP_ULT:    // True if unordered or less than
6291     case FCmpInst::FCMP_UGT:    // True if unordered or greater than
6292     case FCmpInst::FCMP_UNE:    // True if unordered or not equal
6293       // Canonicalize these to be 'fcmp uno %X, 0.0'.
6294       I.setPredicate(FCmpInst::FCMP_UNO);
6295       I.setOperand(1, Constant::getNullValue(OpType));
6296       return &I;
6297 
6298     case FCmpInst::FCMP_ORD:    // True if ordered (no nans)
6299     case FCmpInst::FCMP_OEQ:    // True if ordered and equal
6300     case FCmpInst::FCMP_OGE:    // True if ordered and greater than or equal
6301     case FCmpInst::FCMP_OLE:    // True if ordered and less than or equal
6302       // Canonicalize these to be 'fcmp ord %X, 0.0'.
6303       I.setPredicate(FCmpInst::FCMP_ORD);
6304       I.setOperand(1, Constant::getNullValue(OpType));
6305       return &I;
6306     }
6307   }
6308 
6309   // If we're just checking for a NaN (ORD/UNO) and have a non-NaN operand,
6310   // then canonicalize the operand to 0.0.
6311   if (Pred == CmpInst::FCMP_ORD || Pred == CmpInst::FCMP_UNO) {
6312     if (!match(Op0, m_PosZeroFP()) && isKnownNeverNaN(Op0, &TLI))
6313       return replaceOperand(I, 0, ConstantFP::getNullValue(OpType));
6314 
6315     if (!match(Op1, m_PosZeroFP()) && isKnownNeverNaN(Op1, &TLI))
6316       return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6317   }
6318 
6319   // fcmp pred (fneg X), (fneg Y) -> fcmp swap(pred) X, Y
6320   Value *X, *Y;
6321   if (match(Op0, m_FNeg(m_Value(X))) && match(Op1, m_FNeg(m_Value(Y))))
6322     return new FCmpInst(I.getSwappedPredicate(), X, Y, "", &I);
6323 
6324   // Test if the FCmpInst instruction is used exclusively by a select as
6325   // part of a minimum or maximum operation. If so, refrain from doing
6326   // any other folding. This helps out other analyses which understand
6327   // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
6328   // and CodeGen. And in this case, at least one of the comparison
6329   // operands has at least one user besides the compare (the select),
6330   // which would often largely negate the benefit of folding anyway.
6331   if (I.hasOneUse())
6332     if (SelectInst *SI = dyn_cast<SelectInst>(I.user_back())) {
6333       Value *A, *B;
6334       SelectPatternResult SPR = matchSelectPattern(SI, A, B);
6335       if (SPR.Flavor != SPF_UNKNOWN)
6336         return nullptr;
6337     }
6338 
6339   // The sign of 0.0 is ignored by fcmp, so canonicalize to +0.0:
6340   // fcmp Pred X, -0.0 --> fcmp Pred X, 0.0
6341   if (match(Op1, m_AnyZeroFP()) && !match(Op1, m_PosZeroFP()))
6342     return replaceOperand(I, 1, ConstantFP::getNullValue(OpType));
6343 
6344   // Handle fcmp with instruction LHS and constant RHS.
6345   Instruction *LHSI;
6346   Constant *RHSC;
6347   if (match(Op0, m_Instruction(LHSI)) && match(Op1, m_Constant(RHSC))) {
6348     switch (LHSI->getOpcode()) {
6349     case Instruction::PHI:
6350       // Only fold fcmp into the PHI if the phi and fcmp are in the same
6351       // block.  If in the same block, we're encouraging jump threading.  If
6352       // not, we are just pessimizing the code by making an i1 phi.
6353       if (LHSI->getParent() == I.getParent())
6354         if (Instruction *NV = foldOpIntoPhi(I, cast<PHINode>(LHSI)))
6355           return NV;
6356       break;
6357     case Instruction::SIToFP:
6358     case Instruction::UIToFP:
6359       if (Instruction *NV = foldFCmpIntToFPConst(I, LHSI, RHSC))
6360         return NV;
6361       break;
6362     case Instruction::FDiv:
6363       if (Instruction *NV = foldFCmpReciprocalAndZero(I, LHSI, RHSC))
6364         return NV;
6365       break;
6366     case Instruction::Load:
6367       if (auto *GEP = dyn_cast<GetElementPtrInst>(LHSI->getOperand(0)))
6368         if (auto *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
6369           if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
6370               !cast<LoadInst>(LHSI)->isVolatile())
6371             if (Instruction *Res = foldCmpLoadFromIndexedGlobal(GEP, GV, I))
6372               return Res;
6373       break;
6374   }
6375   }
6376 
6377   if (Instruction *R = foldFabsWithFcmpZero(I, *this))
6378     return R;
6379 
6380   if (match(Op0, m_FNeg(m_Value(X)))) {
6381     // fcmp pred (fneg X), C --> fcmp swap(pred) X, -C
6382     Constant *C;
6383     if (match(Op1, m_Constant(C))) {
6384       Constant *NegC = ConstantExpr::getFNeg(C);
6385       return new FCmpInst(I.getSwappedPredicate(), X, NegC, "", &I);
6386     }
6387   }
6388 
6389   if (match(Op0, m_FPExt(m_Value(X)))) {
6390     // fcmp (fpext X), (fpext Y) -> fcmp X, Y
6391     if (match(Op1, m_FPExt(m_Value(Y))) && X->getType() == Y->getType())
6392       return new FCmpInst(Pred, X, Y, "", &I);
6393 
6394     // fcmp (fpext X), C -> fcmp X, (fptrunc C) if fptrunc is lossless
6395     const APFloat *C;
6396     if (match(Op1, m_APFloat(C))) {
6397       const fltSemantics &FPSem =
6398           X->getType()->getScalarType()->getFltSemantics();
6399       bool Lossy;
6400       APFloat TruncC = *C;
6401       TruncC.convert(FPSem, APFloat::rmNearestTiesToEven, &Lossy);
6402 
6403       // Avoid lossy conversions and denormals.
6404       // Zero is a special case that's OK to convert.
6405       APFloat Fabs = TruncC;
6406       Fabs.clearSign();
6407       if (!Lossy &&
6408           (!(Fabs < APFloat::getSmallestNormalized(FPSem)) || Fabs.isZero())) {
6409         Constant *NewC = ConstantFP::get(X->getType(), TruncC);
6410         return new FCmpInst(Pred, X, NewC, "", &I);
6411       }
6412     }
6413   }
6414 
6415   // Convert a sign-bit test of an FP value into a cast and integer compare.
6416   // TODO: Simplify if the copysign constant is 0.0 or NaN.
6417   // TODO: Handle non-zero compare constants.
6418   // TODO: Handle other predicates.
6419   const APFloat *C;
6420   if (match(Op0, m_OneUse(m_Intrinsic<Intrinsic::copysign>(m_APFloat(C),
6421                                                            m_Value(X)))) &&
6422       match(Op1, m_AnyZeroFP()) && !C->isZero() && !C->isNaN()) {
6423     Type *IntType = Builder.getIntNTy(X->getType()->getScalarSizeInBits());
6424     if (auto *VecTy = dyn_cast<VectorType>(OpType))
6425       IntType = VectorType::get(IntType, VecTy->getElementCount());
6426 
6427     // copysign(non-zero constant, X) < 0.0 --> (bitcast X) < 0
6428     if (Pred == FCmpInst::FCMP_OLT) {
6429       Value *IntX = Builder.CreateBitCast(X, IntType);
6430       return new ICmpInst(ICmpInst::ICMP_SLT, IntX,
6431                           ConstantInt::getNullValue(IntType));
6432     }
6433   }
6434 
6435   if (I.getType()->isVectorTy())
6436     if (Instruction *Res = foldVectorCmp(I, Builder))
6437       return Res;
6438 
6439   return Changed ? &I : nullptr;
6440 }
6441