1 /*
2  * Copyright 2006 The Android Open Source Project
3  *
4  * Use of this source code is governed by a BSD-style license that can be
5  * found in the LICENSE file.
6  */
7 
8 #include "SkGeometry.h"
9 #include "SkMatrix.h"
10 #include "SkNx.h"
11 #include "SkPoint3.h"
12 #include "SkPointPriv.h"
13 
to_vector(const Sk2s & x)14 static SkVector to_vector(const Sk2s& x) {
15     SkVector vector;
16     x.store(&vector);
17     return vector;
18 }
19 
20 ////////////////////////////////////////////////////////////////////////
21 
is_not_monotonic(SkScalar a,SkScalar b,SkScalar c)22 static int is_not_monotonic(SkScalar a, SkScalar b, SkScalar c) {
23     SkScalar ab = a - b;
24     SkScalar bc = b - c;
25     if (ab < 0) {
26         bc = -bc;
27     }
28     return ab == 0 || bc < 0;
29 }
30 
31 ////////////////////////////////////////////////////////////////////////
32 
is_unit_interval(SkScalar x)33 static bool is_unit_interval(SkScalar x) {
34     return x > 0 && x < SK_Scalar1;
35 }
36 
valid_unit_divide(SkScalar numer,SkScalar denom,SkScalar * ratio)37 static int valid_unit_divide(SkScalar numer, SkScalar denom, SkScalar* ratio) {
38     SkASSERT(ratio);
39 
40     if (numer < 0) {
41         numer = -numer;
42         denom = -denom;
43     }
44 
45     if (denom == 0 || numer == 0 || numer >= denom) {
46         return 0;
47     }
48 
49     SkScalar r = numer / denom;
50     if (SkScalarIsNaN(r)) {
51         return 0;
52     }
53     SkASSERTF(r >= 0 && r < SK_Scalar1, "numer %f, denom %f, r %f", numer, denom, r);
54     if (r == 0) { // catch underflow if numer <<<< denom
55         return 0;
56     }
57     *ratio = r;
58     return 1;
59 }
60 
61 // Just returns its argument, but makes it easy to set a break-point to know when
62 // SkFindUnitQuadRoots is going to return 0 (an error).
return_check_zero(int value)63 static int return_check_zero(int value) {
64     if (value == 0) {
65         return 0;
66     }
67     return value;
68 }
69 
70 /** From Numerical Recipes in C.
71 
72     Q = -1/2 (B + sign(B) sqrt[B*B - 4*A*C])
73     x1 = Q / A
74     x2 = C / Q
75 */
SkFindUnitQuadRoots(SkScalar A,SkScalar B,SkScalar C,SkScalar roots[2])76 int SkFindUnitQuadRoots(SkScalar A, SkScalar B, SkScalar C, SkScalar roots[2]) {
77     SkASSERT(roots);
78 
79     if (A == 0) {
80         return return_check_zero(valid_unit_divide(-C, B, roots));
81     }
82 
83     SkScalar* r = roots;
84 
85     // use doubles so we don't overflow temporarily trying to compute R
86     double dr = (double)B * B - 4 * (double)A * C;
87     if (dr < 0) {
88         return return_check_zero(0);
89     }
90     dr = sqrt(dr);
91     SkScalar R = SkDoubleToScalar(dr);
92     if (!SkScalarIsFinite(R)) {
93         return return_check_zero(0);
94     }
95 
96     SkScalar Q = (B < 0) ? -(B-R)/2 : -(B+R)/2;
97     r += valid_unit_divide(Q, A, r);
98     r += valid_unit_divide(C, Q, r);
99     if (r - roots == 2) {
100         if (roots[0] > roots[1])
101             SkTSwap<SkScalar>(roots[0], roots[1]);
102         else if (roots[0] == roots[1])  // nearly-equal?
103             r -= 1; // skip the double root
104     }
105     return return_check_zero((int)(r - roots));
106 }
107 
108 ///////////////////////////////////////////////////////////////////////////////
109 ///////////////////////////////////////////////////////////////////////////////
110 
SkEvalQuadAt(const SkPoint src[3],SkScalar t,SkPoint * pt,SkVector * tangent)111 void SkEvalQuadAt(const SkPoint src[3], SkScalar t, SkPoint* pt, SkVector* tangent) {
112     SkASSERT(src);
113     SkASSERT(t >= 0 && t <= SK_Scalar1);
114 
115     if (pt) {
116         *pt = SkEvalQuadAt(src, t);
117     }
118     if (tangent) {
119         *tangent = SkEvalQuadTangentAt(src, t);
120     }
121 }
122 
SkEvalQuadAt(const SkPoint src[3],SkScalar t)123 SkPoint SkEvalQuadAt(const SkPoint src[3], SkScalar t) {
124     return to_point(SkQuadCoeff(src).eval(t));
125 }
126 
SkEvalQuadTangentAt(const SkPoint src[3],SkScalar t)127 SkVector SkEvalQuadTangentAt(const SkPoint src[3], SkScalar t) {
128     // The derivative equation is 2(b - a +(a - 2b +c)t). This returns a
129     // zero tangent vector when t is 0 or 1, and the control point is equal
130     // to the end point. In this case, use the quad end points to compute the tangent.
131     if ((t == 0 && src[0] == src[1]) || (t == 1 && src[1] == src[2])) {
132         return src[2] - src[0];
133     }
134     SkASSERT(src);
135     SkASSERT(t >= 0 && t <= SK_Scalar1);
136 
137     Sk2s P0 = from_point(src[0]);
138     Sk2s P1 = from_point(src[1]);
139     Sk2s P2 = from_point(src[2]);
140 
141     Sk2s B = P1 - P0;
142     Sk2s A = P2 - P1 - B;
143     Sk2s T = A * Sk2s(t) + B;
144 
145     return to_vector(T + T);
146 }
147 
interp(const Sk2s & v0,const Sk2s & v1,const Sk2s & t)148 static inline Sk2s interp(const Sk2s& v0, const Sk2s& v1, const Sk2s& t) {
149     return v0 + (v1 - v0) * t;
150 }
151 
SkChopQuadAt(const SkPoint src[3],SkPoint dst[5],SkScalar t)152 void SkChopQuadAt(const SkPoint src[3], SkPoint dst[5], SkScalar t) {
153     SkASSERT(t > 0 && t < SK_Scalar1);
154 
155     Sk2s p0 = from_point(src[0]);
156     Sk2s p1 = from_point(src[1]);
157     Sk2s p2 = from_point(src[2]);
158     Sk2s tt(t);
159 
160     Sk2s p01 = interp(p0, p1, tt);
161     Sk2s p12 = interp(p1, p2, tt);
162 
163     dst[0] = to_point(p0);
164     dst[1] = to_point(p01);
165     dst[2] = to_point(interp(p01, p12, tt));
166     dst[3] = to_point(p12);
167     dst[4] = to_point(p2);
168 }
169 
SkChopQuadAtHalf(const SkPoint src[3],SkPoint dst[5])170 void SkChopQuadAtHalf(const SkPoint src[3], SkPoint dst[5]) {
171     SkChopQuadAt(src, dst, 0.5f);
172 }
173 
174 /** Quad'(t) = At + B, where
175     A = 2(a - 2b + c)
176     B = 2(b - a)
177     Solve for t, only if it fits between 0 < t < 1
178 */
SkFindQuadExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar tValue[1])179 int SkFindQuadExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar tValue[1]) {
180     /*  At + B == 0
181         t = -B / A
182     */
183     return valid_unit_divide(a - b, a - b - b + c, tValue);
184 }
185 
flatten_double_quad_extrema(SkScalar coords[14])186 static inline void flatten_double_quad_extrema(SkScalar coords[14]) {
187     coords[2] = coords[6] = coords[4];
188 }
189 
190 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
191  stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
192  */
SkChopQuadAtYExtrema(const SkPoint src[3],SkPoint dst[5])193 int SkChopQuadAtYExtrema(const SkPoint src[3], SkPoint dst[5]) {
194     SkASSERT(src);
195     SkASSERT(dst);
196 
197     SkScalar a = src[0].fY;
198     SkScalar b = src[1].fY;
199     SkScalar c = src[2].fY;
200 
201     if (is_not_monotonic(a, b, c)) {
202         SkScalar    tValue;
203         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
204             SkChopQuadAt(src, dst, tValue);
205             flatten_double_quad_extrema(&dst[0].fY);
206             return 1;
207         }
208         // if we get here, we need to force dst to be monotonic, even though
209         // we couldn't compute a unit_divide value (probably underflow).
210         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
211     }
212     dst[0].set(src[0].fX, a);
213     dst[1].set(src[1].fX, b);
214     dst[2].set(src[2].fX, c);
215     return 0;
216 }
217 
218 /*  Returns 0 for 1 quad, and 1 for two quads, either way the answer is
219     stored in dst[]. Guarantees that the 1/2 quads will be monotonic.
220  */
SkChopQuadAtXExtrema(const SkPoint src[3],SkPoint dst[5])221 int SkChopQuadAtXExtrema(const SkPoint src[3], SkPoint dst[5]) {
222     SkASSERT(src);
223     SkASSERT(dst);
224 
225     SkScalar a = src[0].fX;
226     SkScalar b = src[1].fX;
227     SkScalar c = src[2].fX;
228 
229     if (is_not_monotonic(a, b, c)) {
230         SkScalar tValue;
231         if (valid_unit_divide(a - b, a - b - b + c, &tValue)) {
232             SkChopQuadAt(src, dst, tValue);
233             flatten_double_quad_extrema(&dst[0].fX);
234             return 1;
235         }
236         // if we get here, we need to force dst to be monotonic, even though
237         // we couldn't compute a unit_divide value (probably underflow).
238         b = SkScalarAbs(a - b) < SkScalarAbs(b - c) ? a : c;
239     }
240     dst[0].set(a, src[0].fY);
241     dst[1].set(b, src[1].fY);
242     dst[2].set(c, src[2].fY);
243     return 0;
244 }
245 
246 //  F(t)    = a (1 - t) ^ 2 + 2 b t (1 - t) + c t ^ 2
247 //  F'(t)   = 2 (b - a) + 2 (a - 2b + c) t
248 //  F''(t)  = 2 (a - 2b + c)
249 //
250 //  A = 2 (b - a)
251 //  B = 2 (a - 2b + c)
252 //
253 //  Maximum curvature for a quadratic means solving
254 //  Fx' Fx'' + Fy' Fy'' = 0
255 //
256 //  t = - (Ax Bx + Ay By) / (Bx ^ 2 + By ^ 2)
257 //
SkFindQuadMaxCurvature(const SkPoint src[3])258 SkScalar SkFindQuadMaxCurvature(const SkPoint src[3]) {
259     SkScalar    Ax = src[1].fX - src[0].fX;
260     SkScalar    Ay = src[1].fY - src[0].fY;
261     SkScalar    Bx = src[0].fX - src[1].fX - src[1].fX + src[2].fX;
262     SkScalar    By = src[0].fY - src[1].fY - src[1].fY + src[2].fY;
263     SkScalar    t = 0;  // 0 means don't chop
264 
265     (void)valid_unit_divide(-(Ax * Bx + Ay * By), Bx * Bx + By * By, &t);
266     return t;
267 }
268 
SkChopQuadAtMaxCurvature(const SkPoint src[3],SkPoint dst[5])269 int SkChopQuadAtMaxCurvature(const SkPoint src[3], SkPoint dst[5]) {
270     SkScalar t = SkFindQuadMaxCurvature(src);
271     if (t == 0) {
272         memcpy(dst, src, 3 * sizeof(SkPoint));
273         return 1;
274     } else {
275         SkChopQuadAt(src, dst, t);
276         return 2;
277     }
278 }
279 
SkConvertQuadToCubic(const SkPoint src[3],SkPoint dst[4])280 void SkConvertQuadToCubic(const SkPoint src[3], SkPoint dst[4]) {
281     Sk2s scale(SkDoubleToScalar(2.0 / 3.0));
282     Sk2s s0 = from_point(src[0]);
283     Sk2s s1 = from_point(src[1]);
284     Sk2s s2 = from_point(src[2]);
285 
286     dst[0] = src[0];
287     dst[1] = to_point(s0 + (s1 - s0) * scale);
288     dst[2] = to_point(s2 + (s1 - s2) * scale);
289     dst[3] = src[2];
290 }
291 
292 //////////////////////////////////////////////////////////////////////////////
293 ///// CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS // CUBICS /////
294 //////////////////////////////////////////////////////////////////////////////
295 
eval_cubic_derivative(const SkPoint src[4],SkScalar t)296 static SkVector eval_cubic_derivative(const SkPoint src[4], SkScalar t) {
297     SkQuadCoeff coeff;
298     Sk2s P0 = from_point(src[0]);
299     Sk2s P1 = from_point(src[1]);
300     Sk2s P2 = from_point(src[2]);
301     Sk2s P3 = from_point(src[3]);
302 
303     coeff.fA = P3 + Sk2s(3) * (P1 - P2) - P0;
304     coeff.fB = times_2(P2 - times_2(P1) + P0);
305     coeff.fC = P1 - P0;
306     return to_vector(coeff.eval(t));
307 }
308 
eval_cubic_2ndDerivative(const SkPoint src[4],SkScalar t)309 static SkVector eval_cubic_2ndDerivative(const SkPoint src[4], SkScalar t) {
310     Sk2s P0 = from_point(src[0]);
311     Sk2s P1 = from_point(src[1]);
312     Sk2s P2 = from_point(src[2]);
313     Sk2s P3 = from_point(src[3]);
314     Sk2s A = P3 + Sk2s(3) * (P1 - P2) - P0;
315     Sk2s B = P2 - times_2(P1) + P0;
316 
317     return to_vector(A * Sk2s(t) + B);
318 }
319 
SkEvalCubicAt(const SkPoint src[4],SkScalar t,SkPoint * loc,SkVector * tangent,SkVector * curvature)320 void SkEvalCubicAt(const SkPoint src[4], SkScalar t, SkPoint* loc,
321                    SkVector* tangent, SkVector* curvature) {
322     SkASSERT(src);
323     SkASSERT(t >= 0 && t <= SK_Scalar1);
324 
325     if (loc) {
326         *loc = to_point(SkCubicCoeff(src).eval(t));
327     }
328     if (tangent) {
329         // The derivative equation returns a zero tangent vector when t is 0 or 1, and the
330         // adjacent control point is equal to the end point. In this case, use the
331         // next control point or the end points to compute the tangent.
332         if ((t == 0 && src[0] == src[1]) || (t == 1 && src[2] == src[3])) {
333             if (t == 0) {
334                 *tangent = src[2] - src[0];
335             } else {
336                 *tangent = src[3] - src[1];
337             }
338             if (!tangent->fX && !tangent->fY) {
339                 *tangent = src[3] - src[0];
340             }
341         } else {
342             *tangent = eval_cubic_derivative(src, t);
343         }
344     }
345     if (curvature) {
346         *curvature = eval_cubic_2ndDerivative(src, t);
347     }
348 }
349 
350 /** Cubic'(t) = At^2 + Bt + C, where
351     A = 3(-a + 3(b - c) + d)
352     B = 6(a - 2b + c)
353     C = 3(b - a)
354     Solve for t, keeping only those that fit betwee 0 < t < 1
355 */
SkFindCubicExtrema(SkScalar a,SkScalar b,SkScalar c,SkScalar d,SkScalar tValues[2])356 int SkFindCubicExtrema(SkScalar a, SkScalar b, SkScalar c, SkScalar d,
357                        SkScalar tValues[2]) {
358     // we divide A,B,C by 3 to simplify
359     SkScalar A = d - a + 3*(b - c);
360     SkScalar B = 2*(a - b - b + c);
361     SkScalar C = b - a;
362 
363     return SkFindUnitQuadRoots(A, B, C, tValues);
364 }
365 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[7],SkScalar t)366 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[7], SkScalar t) {
367     SkASSERT(t > 0 && t < SK_Scalar1);
368 
369     Sk2s    p0 = from_point(src[0]);
370     Sk2s    p1 = from_point(src[1]);
371     Sk2s    p2 = from_point(src[2]);
372     Sk2s    p3 = from_point(src[3]);
373     Sk2s    tt(t);
374 
375     Sk2s    ab = interp(p0, p1, tt);
376     Sk2s    bc = interp(p1, p2, tt);
377     Sk2s    cd = interp(p2, p3, tt);
378     Sk2s    abc = interp(ab, bc, tt);
379     Sk2s    bcd = interp(bc, cd, tt);
380     Sk2s    abcd = interp(abc, bcd, tt);
381 
382     dst[0] = src[0];
383     dst[1] = to_point(ab);
384     dst[2] = to_point(abc);
385     dst[3] = to_point(abcd);
386     dst[4] = to_point(bcd);
387     dst[5] = to_point(cd);
388     dst[6] = src[3];
389 }
390 
391 /*  http://code.google.com/p/skia/issues/detail?id=32
392 
393     This test code would fail when we didn't check the return result of
394     valid_unit_divide in SkChopCubicAt(... tValues[], int roots). The reason is
395     that after the first chop, the parameters to valid_unit_divide are equal
396     (thanks to finite float precision and rounding in the subtracts). Thus
397     even though the 2nd tValue looks < 1.0, after we renormalize it, we end
398     up with 1.0, hence the need to check and just return the last cubic as
399     a degenerate clump of 4 points in the sampe place.
400 
401     static void test_cubic() {
402         SkPoint src[4] = {
403             { 556.25000, 523.03003 },
404             { 556.23999, 522.96002 },
405             { 556.21997, 522.89001 },
406             { 556.21997, 522.82001 }
407         };
408         SkPoint dst[10];
409         SkScalar tval[] = { 0.33333334f, 0.99999994f };
410         SkChopCubicAt(src, dst, tval, 2);
411     }
412  */
413 
SkChopCubicAt(const SkPoint src[4],SkPoint dst[],const SkScalar tValues[],int roots)414 void SkChopCubicAt(const SkPoint src[4], SkPoint dst[],
415                    const SkScalar tValues[], int roots) {
416 #ifdef SK_DEBUG
417     {
418         for (int i = 0; i < roots - 1; i++)
419         {
420             SkASSERT(is_unit_interval(tValues[i]));
421             SkASSERT(is_unit_interval(tValues[i+1]));
422             SkASSERT(tValues[i] < tValues[i+1]);
423         }
424     }
425 #endif
426 
427     if (dst) {
428         if (roots == 0) { // nothing to chop
429             memcpy(dst, src, 4*sizeof(SkPoint));
430         } else {
431             SkScalar    t = tValues[0];
432             SkPoint     tmp[4];
433 
434             for (int i = 0; i < roots; i++) {
435                 SkChopCubicAt(src, dst, t);
436                 if (i == roots - 1) {
437                     break;
438                 }
439 
440                 dst += 3;
441                 // have src point to the remaining cubic (after the chop)
442                 memcpy(tmp, dst, 4 * sizeof(SkPoint));
443                 src = tmp;
444 
445                 // watch out in case the renormalized t isn't in range
446                 if (!valid_unit_divide(tValues[i+1] - tValues[i],
447                                        SK_Scalar1 - tValues[i], &t)) {
448                     // if we can't, just create a degenerate cubic
449                     dst[4] = dst[5] = dst[6] = src[3];
450                     break;
451                 }
452             }
453         }
454     }
455 }
456 
SkChopCubicAtHalf(const SkPoint src[4],SkPoint dst[7])457 void SkChopCubicAtHalf(const SkPoint src[4], SkPoint dst[7]) {
458     SkChopCubicAt(src, dst, 0.5f);
459 }
460 
flatten_double_cubic_extrema(SkScalar coords[14])461 static void flatten_double_cubic_extrema(SkScalar coords[14]) {
462     coords[4] = coords[8] = coords[6];
463 }
464 
465 /** Given 4 points on a cubic bezier, chop it into 1, 2, 3 beziers such that
466     the resulting beziers are monotonic in Y. This is called by the scan
467     converter.  Depending on what is returned, dst[] is treated as follows:
468     0   dst[0..3] is the original cubic
469     1   dst[0..3] and dst[3..6] are the two new cubics
470     2   dst[0..3], dst[3..6], dst[6..9] are the three new cubics
471     If dst == null, it is ignored and only the count is returned.
472 */
SkChopCubicAtYExtrema(const SkPoint src[4],SkPoint dst[10])473 int SkChopCubicAtYExtrema(const SkPoint src[4], SkPoint dst[10]) {
474     SkScalar    tValues[2];
475     int         roots = SkFindCubicExtrema(src[0].fY, src[1].fY, src[2].fY,
476                                            src[3].fY, tValues);
477 
478     SkChopCubicAt(src, dst, tValues, roots);
479     if (dst && roots > 0) {
480         // we do some cleanup to ensure our Y extrema are flat
481         flatten_double_cubic_extrema(&dst[0].fY);
482         if (roots == 2) {
483             flatten_double_cubic_extrema(&dst[3].fY);
484         }
485     }
486     return roots;
487 }
488 
SkChopCubicAtXExtrema(const SkPoint src[4],SkPoint dst[10])489 int SkChopCubicAtXExtrema(const SkPoint src[4], SkPoint dst[10]) {
490     SkScalar    tValues[2];
491     int         roots = SkFindCubicExtrema(src[0].fX, src[1].fX, src[2].fX,
492                                            src[3].fX, tValues);
493 
494     SkChopCubicAt(src, dst, tValues, roots);
495     if (dst && roots > 0) {
496         // we do some cleanup to ensure our Y extrema are flat
497         flatten_double_cubic_extrema(&dst[0].fX);
498         if (roots == 2) {
499             flatten_double_cubic_extrema(&dst[3].fX);
500         }
501     }
502     return roots;
503 }
504 
505 /** http://www.faculty.idc.ac.il/arik/quality/appendixA.html
506 
507     Inflection means that curvature is zero.
508     Curvature is [F' x F''] / [F'^3]
509     So we solve F'x X F''y - F'y X F''y == 0
510     After some canceling of the cubic term, we get
511     A = b - a
512     B = c - 2b + a
513     C = d - 3c + 3b - a
514     (BxCy - ByCx)t^2 + (AxCy - AyCx)t + AxBy - AyBx == 0
515 */
SkFindCubicInflections(const SkPoint src[4],SkScalar tValues[])516 int SkFindCubicInflections(const SkPoint src[4], SkScalar tValues[]) {
517     SkScalar    Ax = src[1].fX - src[0].fX;
518     SkScalar    Ay = src[1].fY - src[0].fY;
519     SkScalar    Bx = src[2].fX - 2 * src[1].fX + src[0].fX;
520     SkScalar    By = src[2].fY - 2 * src[1].fY + src[0].fY;
521     SkScalar    Cx = src[3].fX + 3 * (src[1].fX - src[2].fX) - src[0].fX;
522     SkScalar    Cy = src[3].fY + 3 * (src[1].fY - src[2].fY) - src[0].fY;
523 
524     return SkFindUnitQuadRoots(Bx*Cy - By*Cx,
525                                Ax*Cy - Ay*Cx,
526                                Ax*By - Ay*Bx,
527                                tValues);
528 }
529 
SkChopCubicAtInflections(const SkPoint src[],SkPoint dst[10])530 int SkChopCubicAtInflections(const SkPoint src[], SkPoint dst[10]) {
531     SkScalar    tValues[2];
532     int         count = SkFindCubicInflections(src, tValues);
533 
534     if (dst) {
535         if (count == 0) {
536             memcpy(dst, src, 4 * sizeof(SkPoint));
537         } else {
538             SkChopCubicAt(src, dst, tValues, count);
539         }
540     }
541     return count + 1;
542 }
543 
544 // Assumes the third component of points is 1.
545 // Calcs p0 . (p1 x p2)
calc_dot_cross_cubic(const SkPoint & p0,const SkPoint & p1,const SkPoint & p2)546 static double calc_dot_cross_cubic(const SkPoint& p0, const SkPoint& p1, const SkPoint& p2) {
547     const double xComp = (double) p0.fX * ((double) p1.fY - (double) p2.fY);
548     const double yComp = (double) p0.fY * ((double) p2.fX - (double) p1.fX);
549     const double wComp = (double) p1.fX * (double) p2.fY - (double) p1.fY * (double) p2.fX;
550     return (xComp + yComp + wComp);
551 }
552 
553 // Calc coefficients of I(s,t) where roots of I are inflection points of curve
554 // I(s,t) = t*(3*d0*s^2 - 3*d1*s*t + d2*t^2)
555 // d0 = a1 - 2*a2+3*a3
556 // d1 = -a2 + 3*a3
557 // d2 = 3*a3
558 // a1 = p0 . (p3 x p2)
559 // a2 = p1 . (p0 x p3)
560 // a3 = p2 . (p1 x p0)
561 // Places the values of d1, d2, d3 in array d passed in
calc_cubic_inflection_func(const SkPoint p[4],double d[4])562 static void calc_cubic_inflection_func(const SkPoint p[4], double d[4]) {
563     const double a1 = calc_dot_cross_cubic(p[0], p[3], p[2]);
564     const double a2 = calc_dot_cross_cubic(p[1], p[0], p[3]);
565     const double a3 = calc_dot_cross_cubic(p[2], p[1], p[0]);
566 
567     d[3] = 3 * a3;
568     d[2] = d[3] - a2;
569     d[1] = d[2] - a2 + a1;
570     d[0] = 0;
571 }
572 
normalize_t_s(double t[],double s[],int count)573 static void normalize_t_s(double t[], double s[], int count) {
574     // Keep the exponents at or below zero to avoid overflow down the road.
575     for (int i = 0; i < count; ++i) {
576         SkASSERT(0 != s[i]); // classify_cubic should not call this method when s[i] is 0 or NaN.
577 
578         uint64_t bitsT, bitsS;
579         memcpy(&bitsT, &t[i], sizeof(double));
580         memcpy(&bitsS, &s[i], sizeof(double));
581 
582         uint64_t maxExponent = SkTMax(bitsT & 0x7ff0000000000000, bitsS & 0x7ff0000000000000);
583 
584 #ifdef SK_DEBUG
585         uint64_t maxExponentValue = maxExponent >> 52;
586         // Ensure max(absT,absS) is NOT in denormalized form. SkClassifyCubic is given fp32 points,
587         // and does not call this method when s==0, so this should never happen.
588         SkASSERT(0 != maxExponentValue);
589         // Ensure 1/max(absT,absS) will NOT be in denormalized form. SkClassifyCubic is given fp32
590         // points, so this should never happen.
591         SkASSERT(2046 != maxExponentValue);
592 #endif
593 
594         // Pick a normalizer that scales the larger exponent to 1 (aka 1023 in biased form), but
595         // does NOT change the mantissa (thus preserving accuracy).
596         double normalizer;
597         uint64_t normalizerExponent = (uint64_t(1023 * 2) << 52) - maxExponent;
598         memcpy(&normalizer, &normalizerExponent, sizeof(double));
599 
600         t[i] *= normalizer;
601         s[i] *= normalizer;
602     }
603 }
604 
sort_and_orient_t_s(double t[2],double s[2])605 static void sort_and_orient_t_s(double t[2], double s[2]) {
606     // This copysign/abs business orients the implicit function so positive values are always on the
607     // "left" side of the curve.
608     t[1] = -copysign(t[1], t[1] * s[1]);
609     s[1] = -fabs(s[1]);
610 
611     // Ensure t[0]/s[0] <= t[1]/s[1] (s[1] is negative from above).
612     if (copysign(s[1], s[0]) * t[0] > -fabs(s[0]) * t[1]) {
613         std::swap(t[0], t[1]);
614         std::swap(s[0], s[1]);
615     }
616 }
617 
618 // See "Resolution Independent Curve Rendering using Programmable Graphics Hardware"
619 // https://www.microsoft.com/en-us/research/wp-content/uploads/2005/01/p1000-loop.pdf
620 // discr(I) = 3*d2^2 - 4*d1*d3
621 // Classification:
622 // d1 != 0, discr(I) > 0        Serpentine
623 // d1 != 0, discr(I) < 0        Loop
624 // d1 != 0, discr(I) = 0        Cusp (with inflection at infinity)
625 // d1 = 0, d2 != 0              Cusp (with cusp at infinity)
626 // d1 = d2 = 0, d3 != 0         Quadratic
627 // d1 = d2 = d3 = 0             Line or Point
classify_cubic(const double d[4],double t[2],double s[2])628 static SkCubicType classify_cubic(const double d[4], double t[2], double s[2]) {
629     if (0 == d[1]) {
630         if (0 == d[2]) {
631             if (t && s) {
632                 t[0] = t[1] = 1;
633                 s[0] = s[1] = 0; // infinity
634             }
635             return 0 == d[3] ? SkCubicType::kLineOrPoint : SkCubicType::kQuadratic;
636         }
637         if (t && s) {
638             t[0] = d[3];
639             s[0] = 3 * d[2];
640             normalize_t_s(t, s, 1);
641             t[1] = 1;
642             s[1] = 0; // infinity
643         }
644         return SkCubicType::kCuspAtInfinity;
645     }
646 
647     const double discr = 3 * d[2] * d[2] - 4 * d[1] * d[3];
648     if (discr > 0) {
649         if (t && s) {
650             const double q = 3 * d[2] + copysign(sqrt(3 * discr), d[2]);
651             t[0] = q;
652             s[0] = 6 * d[1];
653             t[1] = 2 * d[3];
654             s[1] = q;
655             normalize_t_s(t, s, 2);
656             sort_and_orient_t_s(t, s);
657         }
658         return SkCubicType::kSerpentine;
659     } else if (discr < 0) {
660         if (t && s) {
661             const double q = d[2] + copysign(sqrt(-discr), d[2]);
662             t[0] = q;
663             s[0] = 2 * d[1];
664             t[1] = 2 * (d[2] * d[2] - d[3] * d[1]);
665             s[1] = d[1] * q;
666             normalize_t_s(t, s, 2);
667             sort_and_orient_t_s(t, s);
668         }
669         return SkCubicType::kLoop;
670     } else {
671         if (t && s) {
672             t[0] = d[2];
673             s[0] = 2 * d[1];
674             normalize_t_s(t, s, 1);
675             t[1] = t[0];
676             s[1] = s[0];
677             sort_and_orient_t_s(t, s);
678         }
679         return SkCubicType::kLocalCusp;
680     }
681 }
682 
SkClassifyCubic(const SkPoint src[4],double t[2],double s[2],double d[4])683 SkCubicType SkClassifyCubic(const SkPoint src[4], double t[2], double s[2], double d[4]) {
684     double localD[4];
685     double* dd = d ? d : localD;
686     calc_cubic_inflection_func(src, dd);
687     return classify_cubic(dd, t, s);
688 }
689 
bubble_sort(T array[],int count)690 template <typename T> void bubble_sort(T array[], int count) {
691     for (int i = count - 1; i > 0; --i)
692         for (int j = i; j > 0; --j)
693             if (array[j] < array[j-1])
694             {
695                 T   tmp(array[j]);
696                 array[j] = array[j-1];
697                 array[j-1] = tmp;
698             }
699 }
700 
701 /**
702  *  Given an array and count, remove all pair-wise duplicates from the array,
703  *  keeping the existing sorting, and return the new count
704  */
collaps_duplicates(SkScalar array[],int count)705 static int collaps_duplicates(SkScalar array[], int count) {
706     for (int n = count; n > 1; --n) {
707         if (array[0] == array[1]) {
708             for (int i = 1; i < n; ++i) {
709                 array[i - 1] = array[i];
710             }
711             count -= 1;
712         } else {
713             array += 1;
714         }
715     }
716     return count;
717 }
718 
719 #ifdef SK_DEBUG
720 
721 #define TEST_COLLAPS_ENTRY(array)   array, SK_ARRAY_COUNT(array)
722 
test_collaps_duplicates()723 static void test_collaps_duplicates() {
724     static bool gOnce;
725     if (gOnce) { return; }
726     gOnce = true;
727     const SkScalar src0[] = { 0 };
728     const SkScalar src1[] = { 0, 0 };
729     const SkScalar src2[] = { 0, 1 };
730     const SkScalar src3[] = { 0, 0, 0 };
731     const SkScalar src4[] = { 0, 0, 1 };
732     const SkScalar src5[] = { 0, 1, 1 };
733     const SkScalar src6[] = { 0, 1, 2 };
734     const struct {
735         const SkScalar* fData;
736         int fCount;
737         int fCollapsedCount;
738     } data[] = {
739         { TEST_COLLAPS_ENTRY(src0), 1 },
740         { TEST_COLLAPS_ENTRY(src1), 1 },
741         { TEST_COLLAPS_ENTRY(src2), 2 },
742         { TEST_COLLAPS_ENTRY(src3), 1 },
743         { TEST_COLLAPS_ENTRY(src4), 2 },
744         { TEST_COLLAPS_ENTRY(src5), 2 },
745         { TEST_COLLAPS_ENTRY(src6), 3 },
746     };
747     for (size_t i = 0; i < SK_ARRAY_COUNT(data); ++i) {
748         SkScalar dst[3];
749         memcpy(dst, data[i].fData, data[i].fCount * sizeof(dst[0]));
750         int count = collaps_duplicates(dst, data[i].fCount);
751         SkASSERT(data[i].fCollapsedCount == count);
752         for (int j = 1; j < count; ++j) {
753             SkASSERT(dst[j-1] < dst[j]);
754         }
755     }
756 }
757 #endif
758 
SkScalarCubeRoot(SkScalar x)759 static SkScalar SkScalarCubeRoot(SkScalar x) {
760     return SkScalarPow(x, 0.3333333f);
761 }
762 
763 /*  Solve coeff(t) == 0, returning the number of roots that
764     lie withing 0 < t < 1.
765     coeff[0]t^3 + coeff[1]t^2 + coeff[2]t + coeff[3]
766 
767     Eliminates repeated roots (so that all tValues are distinct, and are always
768     in increasing order.
769 */
solve_cubic_poly(const SkScalar coeff[4],SkScalar tValues[3])770 static int solve_cubic_poly(const SkScalar coeff[4], SkScalar tValues[3]) {
771     if (SkScalarNearlyZero(coeff[0])) {  // we're just a quadratic
772         return SkFindUnitQuadRoots(coeff[1], coeff[2], coeff[3], tValues);
773     }
774 
775     SkScalar a, b, c, Q, R;
776 
777     {
778         SkASSERT(coeff[0] != 0);
779 
780         SkScalar inva = SkScalarInvert(coeff[0]);
781         a = coeff[1] * inva;
782         b = coeff[2] * inva;
783         c = coeff[3] * inva;
784     }
785     Q = (a*a - b*3) / 9;
786     R = (2*a*a*a - 9*a*b + 27*c) / 54;
787 
788     SkScalar Q3 = Q * Q * Q;
789     SkScalar R2MinusQ3 = R * R - Q3;
790     SkScalar adiv3 = a / 3;
791 
792     SkScalar*   roots = tValues;
793     SkScalar    r;
794 
795     if (R2MinusQ3 < 0) { // we have 3 real roots
796         // the divide/root can, due to finite precisions, be slightly outside of -1...1
797         SkScalar theta = SkScalarACos(SkScalarPin(R / SkScalarSqrt(Q3), -1, 1));
798         SkScalar neg2RootQ = -2 * SkScalarSqrt(Q);
799 
800         r = neg2RootQ * SkScalarCos(theta/3) - adiv3;
801         if (is_unit_interval(r)) {
802             *roots++ = r;
803         }
804         r = neg2RootQ * SkScalarCos((theta + 2*SK_ScalarPI)/3) - adiv3;
805         if (is_unit_interval(r)) {
806             *roots++ = r;
807         }
808         r = neg2RootQ * SkScalarCos((theta - 2*SK_ScalarPI)/3) - adiv3;
809         if (is_unit_interval(r)) {
810             *roots++ = r;
811         }
812         SkDEBUGCODE(test_collaps_duplicates();)
813 
814         // now sort the roots
815         int count = (int)(roots - tValues);
816         SkASSERT((unsigned)count <= 3);
817         bubble_sort(tValues, count);
818         count = collaps_duplicates(tValues, count);
819         roots = tValues + count;    // so we compute the proper count below
820     } else {              // we have 1 real root
821         SkScalar A = SkScalarAbs(R) + SkScalarSqrt(R2MinusQ3);
822         A = SkScalarCubeRoot(A);
823         if (R > 0) {
824             A = -A;
825         }
826         if (A != 0) {
827             A += Q / A;
828         }
829         r = A - adiv3;
830         if (is_unit_interval(r)) {
831             *roots++ = r;
832         }
833     }
834 
835     return (int)(roots - tValues);
836 }
837 
838 /*  Looking for F' dot F'' == 0
839 
840     A = b - a
841     B = c - 2b + a
842     C = d - 3c + 3b - a
843 
844     F' = 3Ct^2 + 6Bt + 3A
845     F'' = 6Ct + 6B
846 
847     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
848 */
formulate_F1DotF2(const SkScalar src[],SkScalar coeff[4])849 static void formulate_F1DotF2(const SkScalar src[], SkScalar coeff[4]) {
850     SkScalar    a = src[2] - src[0];
851     SkScalar    b = src[4] - 2 * src[2] + src[0];
852     SkScalar    c = src[6] + 3 * (src[2] - src[4]) - src[0];
853 
854     coeff[0] = c * c;
855     coeff[1] = 3 * b * c;
856     coeff[2] = 2 * b * b + c * a;
857     coeff[3] = a * b;
858 }
859 
860 /*  Looking for F' dot F'' == 0
861 
862     A = b - a
863     B = c - 2b + a
864     C = d - 3c + 3b - a
865 
866     F' = 3Ct^2 + 6Bt + 3A
867     F'' = 6Ct + 6B
868 
869     F' dot F'' -> CCt^3 + 3BCt^2 + (2BB + CA)t + AB
870 */
SkFindCubicMaxCurvature(const SkPoint src[4],SkScalar tValues[3])871 int SkFindCubicMaxCurvature(const SkPoint src[4], SkScalar tValues[3]) {
872     SkScalar coeffX[4], coeffY[4];
873     int      i;
874 
875     formulate_F1DotF2(&src[0].fX, coeffX);
876     formulate_F1DotF2(&src[0].fY, coeffY);
877 
878     for (i = 0; i < 4; i++) {
879         coeffX[i] += coeffY[i];
880     }
881 
882     SkScalar    t[3];
883     int         count = solve_cubic_poly(coeffX, t);
884     int         maxCount = 0;
885 
886     // now remove extrema where the curvature is zero (mins)
887     // !!!! need a test for this !!!!
888     for (i = 0; i < count; i++) {
889         // if (not_min_curvature())
890         if (t[i] > 0 && t[i] < SK_Scalar1) {
891             tValues[maxCount++] = t[i];
892         }
893     }
894     return maxCount;
895 }
896 
SkChopCubicAtMaxCurvature(const SkPoint src[4],SkPoint dst[13],SkScalar tValues[3])897 int SkChopCubicAtMaxCurvature(const SkPoint src[4], SkPoint dst[13],
898                               SkScalar tValues[3]) {
899     SkScalar    t_storage[3];
900 
901     if (tValues == nullptr) {
902         tValues = t_storage;
903     }
904 
905     int count = SkFindCubicMaxCurvature(src, tValues);
906 
907     if (dst) {
908         if (count == 0) {
909             memcpy(dst, src, 4 * sizeof(SkPoint));
910         } else {
911             SkChopCubicAt(src, dst, tValues, count);
912         }
913     }
914     return count + 1;
915 }
916 
917 #include "../pathops/SkPathOpsCubic.h"
918 
919 typedef int (SkDCubic::*InterceptProc)(double intercept, double roots[3]) const;
920 
cubic_dchop_at_intercept(const SkPoint src[4],SkScalar intercept,SkPoint dst[7],InterceptProc method)921 static bool cubic_dchop_at_intercept(const SkPoint src[4], SkScalar intercept, SkPoint dst[7],
922                                      InterceptProc method) {
923     SkDCubic cubic;
924     double roots[3];
925     int count = (cubic.set(src).*method)(intercept, roots);
926     if (count > 0) {
927         SkDCubicPair pair = cubic.chopAt(roots[0]);
928         for (int i = 0; i < 7; ++i) {
929             dst[i] = pair.pts[i].asSkPoint();
930         }
931         return true;
932     }
933     return false;
934 }
935 
SkChopMonoCubicAtY(SkPoint src[4],SkScalar y,SkPoint dst[7])936 bool SkChopMonoCubicAtY(SkPoint src[4], SkScalar y, SkPoint dst[7]) {
937     return cubic_dchop_at_intercept(src, y, dst, &SkDCubic::horizontalIntersect);
938 }
939 
SkChopMonoCubicAtX(SkPoint src[4],SkScalar x,SkPoint dst[7])940 bool SkChopMonoCubicAtX(SkPoint src[4], SkScalar x, SkPoint dst[7]) {
941     return cubic_dchop_at_intercept(src, x, dst, &SkDCubic::verticalIntersect);
942 }
943 
944 ///////////////////////////////////////////////////////////////////////////////
945 //
946 // NURB representation for conics.  Helpful explanations at:
947 //
948 // http://citeseerx.ist.psu.edu/viewdoc/
949 //   download?doi=10.1.1.44.5740&rep=rep1&type=ps
950 // and
951 // http://www.cs.mtu.edu/~shene/COURSES/cs3621/NOTES/spline/NURBS/RB-conics.html
952 //
953 // F = (A (1 - t)^2 + C t^2 + 2 B (1 - t) t w)
954 //     ------------------------------------------
955 //         ((1 - t)^2 + t^2 + 2 (1 - t) t w)
956 //
957 //   = {t^2 (P0 + P2 - 2 P1 w), t (-2 P0 + 2 P1 w), P0}
958 //     ------------------------------------------------
959 //             {t^2 (2 - 2 w), t (-2 + 2 w), 1}
960 //
961 
962 // F' = 2 (C t (1 + t (-1 + w)) - A (-1 + t) (t (-1 + w) - w) + B (1 - 2 t) w)
963 //
964 //  t^2 : (2 P0 - 2 P2 - 2 P0 w + 2 P2 w)
965 //  t^1 : (-2 P0 + 2 P2 + 4 P0 w - 4 P1 w)
966 //  t^0 : -2 P0 w + 2 P1 w
967 //
968 //  We disregard magnitude, so we can freely ignore the denominator of F', and
969 //  divide the numerator by 2
970 //
971 //    coeff[0] for t^2
972 //    coeff[1] for t^1
973 //    coeff[2] for t^0
974 //
conic_deriv_coeff(const SkScalar src[],SkScalar w,SkScalar coeff[3])975 static void conic_deriv_coeff(const SkScalar src[],
976                               SkScalar w,
977                               SkScalar coeff[3]) {
978     const SkScalar P20 = src[4] - src[0];
979     const SkScalar P10 = src[2] - src[0];
980     const SkScalar wP10 = w * P10;
981     coeff[0] = w * P20 - P20;
982     coeff[1] = P20 - 2 * wP10;
983     coeff[2] = wP10;
984 }
985 
conic_find_extrema(const SkScalar src[],SkScalar w,SkScalar * t)986 static bool conic_find_extrema(const SkScalar src[], SkScalar w, SkScalar* t) {
987     SkScalar coeff[3];
988     conic_deriv_coeff(src, w, coeff);
989 
990     SkScalar tValues[2];
991     int roots = SkFindUnitQuadRoots(coeff[0], coeff[1], coeff[2], tValues);
992     SkASSERT(0 == roots || 1 == roots);
993 
994     if (1 == roots) {
995         *t = tValues[0];
996         return true;
997     }
998     return false;
999 }
1000 
1001 // We only interpolate one dimension at a time (the first, at +0, +3, +6).
p3d_interp(const SkScalar src[7],SkScalar dst[7],SkScalar t)1002 static void p3d_interp(const SkScalar src[7], SkScalar dst[7], SkScalar t) {
1003     SkScalar ab = SkScalarInterp(src[0], src[3], t);
1004     SkScalar bc = SkScalarInterp(src[3], src[6], t);
1005     dst[0] = ab;
1006     dst[3] = SkScalarInterp(ab, bc, t);
1007     dst[6] = bc;
1008 }
1009 
ratquad_mapTo3D(const SkPoint src[3],SkScalar w,SkPoint3 dst[3])1010 static void ratquad_mapTo3D(const SkPoint src[3], SkScalar w, SkPoint3 dst[3]) {
1011     dst[0].set(src[0].fX * 1, src[0].fY * 1, 1);
1012     dst[1].set(src[1].fX * w, src[1].fY * w, w);
1013     dst[2].set(src[2].fX * 1, src[2].fY * 1, 1);
1014 }
1015 
project_down(const SkPoint3 & src)1016 static SkPoint project_down(const SkPoint3& src) {
1017     return {src.fX / src.fZ, src.fY / src.fZ};
1018 }
1019 
1020 // return false if infinity or NaN is generated; caller must check
chopAt(SkScalar t,SkConic dst[2]) const1021 bool SkConic::chopAt(SkScalar t, SkConic dst[2]) const {
1022     SkPoint3 tmp[3], tmp2[3];
1023 
1024     ratquad_mapTo3D(fPts, fW, tmp);
1025 
1026     p3d_interp(&tmp[0].fX, &tmp2[0].fX, t);
1027     p3d_interp(&tmp[0].fY, &tmp2[0].fY, t);
1028     p3d_interp(&tmp[0].fZ, &tmp2[0].fZ, t);
1029 
1030     dst[0].fPts[0] = fPts[0];
1031     dst[0].fPts[1] = project_down(tmp2[0]);
1032     dst[0].fPts[2] = project_down(tmp2[1]); dst[1].fPts[0] = dst[0].fPts[2];
1033     dst[1].fPts[1] = project_down(tmp2[2]);
1034     dst[1].fPts[2] = fPts[2];
1035 
1036     // to put in "standard form", where w0 and w2 are both 1, we compute the
1037     // new w1 as sqrt(w1*w1/w0*w2)
1038     // or
1039     // w1 /= sqrt(w0*w2)
1040     //
1041     // However, in our case, we know that for dst[0]:
1042     //     w0 == 1, and for dst[1], w2 == 1
1043     //
1044     SkScalar root = SkScalarSqrt(tmp2[1].fZ);
1045     dst[0].fW = tmp2[0].fZ / root;
1046     dst[1].fW = tmp2[2].fZ / root;
1047     SkASSERT(sizeof(dst[0]) == sizeof(SkScalar) * 7);
1048     SkASSERT(0 == offsetof(SkConic, fPts[0].fX));
1049     return SkScalarsAreFinite(&dst[0].fPts[0].fX, 7 * 2);
1050 }
1051 
chopAt(SkScalar t1,SkScalar t2,SkConic * dst) const1052 void SkConic::chopAt(SkScalar t1, SkScalar t2, SkConic* dst) const {
1053     if (0 == t1 || 1 == t2) {
1054         if (0 == t1 && 1 == t2) {
1055             *dst = *this;
1056             return;
1057         } else {
1058             SkConic pair[2];
1059             if (this->chopAt(t1 ? t1 : t2, pair)) {
1060                 *dst = pair[SkToBool(t1)];
1061                 return;
1062             }
1063         }
1064     }
1065     SkConicCoeff coeff(*this);
1066     Sk2s tt1(t1);
1067     Sk2s aXY = coeff.fNumer.eval(tt1);
1068     Sk2s aZZ = coeff.fDenom.eval(tt1);
1069     Sk2s midTT((t1 + t2) / 2);
1070     Sk2s dXY = coeff.fNumer.eval(midTT);
1071     Sk2s dZZ = coeff.fDenom.eval(midTT);
1072     Sk2s tt2(t2);
1073     Sk2s cXY = coeff.fNumer.eval(tt2);
1074     Sk2s cZZ = coeff.fDenom.eval(tt2);
1075     Sk2s bXY = times_2(dXY) - (aXY + cXY) * Sk2s(0.5f);
1076     Sk2s bZZ = times_2(dZZ) - (aZZ + cZZ) * Sk2s(0.5f);
1077     dst->fPts[0] = to_point(aXY / aZZ);
1078     dst->fPts[1] = to_point(bXY / bZZ);
1079     dst->fPts[2] = to_point(cXY / cZZ);
1080     Sk2s ww = bZZ / (aZZ * cZZ).sqrt();
1081     dst->fW = ww[0];
1082 }
1083 
evalAt(SkScalar t) const1084 SkPoint SkConic::evalAt(SkScalar t) const {
1085     return to_point(SkConicCoeff(*this).eval(t));
1086 }
1087 
evalTangentAt(SkScalar t) const1088 SkVector SkConic::evalTangentAt(SkScalar t) const {
1089     // The derivative equation returns a zero tangent vector when t is 0 or 1,
1090     // and the control point is equal to the end point.
1091     // In this case, use the conic endpoints to compute the tangent.
1092     if ((t == 0 && fPts[0] == fPts[1]) || (t == 1 && fPts[1] == fPts[2])) {
1093         return fPts[2] - fPts[0];
1094     }
1095     Sk2s p0 = from_point(fPts[0]);
1096     Sk2s p1 = from_point(fPts[1]);
1097     Sk2s p2 = from_point(fPts[2]);
1098     Sk2s ww(fW);
1099 
1100     Sk2s p20 = p2 - p0;
1101     Sk2s p10 = p1 - p0;
1102 
1103     Sk2s C = ww * p10;
1104     Sk2s A = ww * p20 - p20;
1105     Sk2s B = p20 - C - C;
1106 
1107     return to_vector(SkQuadCoeff(A, B, C).eval(t));
1108 }
1109 
evalAt(SkScalar t,SkPoint * pt,SkVector * tangent) const1110 void SkConic::evalAt(SkScalar t, SkPoint* pt, SkVector* tangent) const {
1111     SkASSERT(t >= 0 && t <= SK_Scalar1);
1112 
1113     if (pt) {
1114         *pt = this->evalAt(t);
1115     }
1116     if (tangent) {
1117         *tangent = this->evalTangentAt(t);
1118     }
1119 }
1120 
subdivide_w_value(SkScalar w)1121 static SkScalar subdivide_w_value(SkScalar w) {
1122     return SkScalarSqrt(SK_ScalarHalf + w * SK_ScalarHalf);
1123 }
1124 
chop(SkConic * SK_RESTRICT dst) const1125 void SkConic::chop(SkConic * SK_RESTRICT dst) const {
1126     Sk2s scale = Sk2s(SkScalarInvert(SK_Scalar1 + fW));
1127     SkScalar newW = subdivide_w_value(fW);
1128 
1129     Sk2s p0 = from_point(fPts[0]);
1130     Sk2s p1 = from_point(fPts[1]);
1131     Sk2s p2 = from_point(fPts[2]);
1132     Sk2s ww(fW);
1133 
1134     Sk2s wp1 = ww * p1;
1135     Sk2s m = (p0 + times_2(wp1) + p2) * scale * Sk2s(0.5f);
1136     SkPoint mPt = to_point(m);
1137     if (!mPt.isFinite()) {
1138         double w_d = fW;
1139         double w_2 = w_d * 2;
1140         double scale_half = 1 / (1 + w_d) * 0.5;
1141         mPt.fX = SkDoubleToScalar((fPts[0].fX + w_2 * fPts[1].fX + fPts[2].fX) * scale_half);
1142         mPt.fY = SkDoubleToScalar((fPts[0].fY + w_2 * fPts[1].fY + fPts[2].fY) * scale_half);
1143     }
1144     dst[0].fPts[0] = fPts[0];
1145     dst[0].fPts[1] = to_point((p0 + wp1) * scale);
1146     dst[0].fPts[2] = dst[1].fPts[0] = mPt;
1147     dst[1].fPts[1] = to_point((wp1 + p2) * scale);
1148     dst[1].fPts[2] = fPts[2];
1149 
1150     dst[0].fW = dst[1].fW = newW;
1151 }
1152 
1153 /*
1154  *  "High order approximation of conic sections by quadratic splines"
1155  *      by Michael Floater, 1993
1156  */
1157 #define AS_QUAD_ERROR_SETUP                                         \
1158     SkScalar a = fW - 1;                                            \
1159     SkScalar k = a / (4 * (2 + a));                                 \
1160     SkScalar x = k * (fPts[0].fX - 2 * fPts[1].fX + fPts[2].fX);    \
1161     SkScalar y = k * (fPts[0].fY - 2 * fPts[1].fY + fPts[2].fY);
1162 
computeAsQuadError(SkVector * err) const1163 void SkConic::computeAsQuadError(SkVector* err) const {
1164     AS_QUAD_ERROR_SETUP
1165     err->set(x, y);
1166 }
1167 
asQuadTol(SkScalar tol) const1168 bool SkConic::asQuadTol(SkScalar tol) const {
1169     AS_QUAD_ERROR_SETUP
1170     return (x * x + y * y) <= tol * tol;
1171 }
1172 
1173 // Limit the number of suggested quads to approximate a conic
1174 #define kMaxConicToQuadPOW2     5
1175 
computeQuadPOW2(SkScalar tol) const1176 int SkConic::computeQuadPOW2(SkScalar tol) const {
1177     if (tol < 0 || !SkScalarIsFinite(tol) || !SkPointPriv::AreFinite(fPts, 3)) {
1178         return 0;
1179     }
1180 
1181     AS_QUAD_ERROR_SETUP
1182 
1183     SkScalar error = SkScalarSqrt(x * x + y * y);
1184     int pow2;
1185     for (pow2 = 0; pow2 < kMaxConicToQuadPOW2; ++pow2) {
1186         if (error <= tol) {
1187             break;
1188         }
1189         error *= 0.25f;
1190     }
1191     // float version -- using ceil gives the same results as the above.
1192     if (false) {
1193         SkScalar err = SkScalarSqrt(x * x + y * y);
1194         if (err <= tol) {
1195             return 0;
1196         }
1197         SkScalar tol2 = tol * tol;
1198         if (tol2 == 0) {
1199             return kMaxConicToQuadPOW2;
1200         }
1201         SkScalar fpow2 = SkScalarLog2((x * x + y * y) / tol2) * 0.25f;
1202         int altPow2 = SkScalarCeilToInt(fpow2);
1203         if (altPow2 != pow2) {
1204             SkDebugf("pow2 %d altPow2 %d fbits %g err %g tol %g\n", pow2, altPow2, fpow2, err, tol);
1205         }
1206         pow2 = altPow2;
1207     }
1208     return pow2;
1209 }
1210 
1211 // This was originally developed and tested for pathops: see SkOpTypes.h
1212 // returns true if (a <= b <= c) || (a >= b >= c)
between(SkScalar a,SkScalar b,SkScalar c)1213 static bool between(SkScalar a, SkScalar b, SkScalar c) {
1214     return (a - b) * (c - b) <= 0;
1215 }
1216 
subdivide(const SkConic & src,SkPoint pts[],int level)1217 static SkPoint* subdivide(const SkConic& src, SkPoint pts[], int level) {
1218     SkASSERT(level >= 0);
1219 
1220     if (0 == level) {
1221         memcpy(pts, &src.fPts[1], 2 * sizeof(SkPoint));
1222         return pts + 2;
1223     } else {
1224         SkConic dst[2];
1225         src.chop(dst);
1226         const SkScalar startY = src.fPts[0].fY;
1227         SkScalar endY = src.fPts[2].fY;
1228         if (between(startY, src.fPts[1].fY, endY)) {
1229             // If the input is monotonic and the output is not, the scan converter hangs.
1230             // Ensure that the chopped conics maintain their y-order.
1231             SkScalar midY = dst[0].fPts[2].fY;
1232             if (!between(startY, midY, endY)) {
1233                 // If the computed midpoint is outside the ends, move it to the closer one.
1234                 SkScalar closerY = SkTAbs(midY - startY) < SkTAbs(midY - endY) ? startY : endY;
1235                 dst[0].fPts[2].fY = dst[1].fPts[0].fY = closerY;
1236             }
1237             if (!between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY)) {
1238                 // If the 1st control is not between the start and end, put it at the start.
1239                 // This also reduces the quad to a line.
1240                 dst[0].fPts[1].fY = startY;
1241             }
1242             if (!between(dst[1].fPts[0].fY, dst[1].fPts[1].fY, endY)) {
1243                 // If the 2nd control is not between the start and end, put it at the end.
1244                 // This also reduces the quad to a line.
1245                 dst[1].fPts[1].fY = endY;
1246             }
1247             // Verify that all five points are in order.
1248             SkASSERT(between(startY, dst[0].fPts[1].fY, dst[0].fPts[2].fY));
1249             SkASSERT(between(dst[0].fPts[1].fY, dst[0].fPts[2].fY, dst[1].fPts[1].fY));
1250             SkASSERT(between(dst[0].fPts[2].fY, dst[1].fPts[1].fY, endY));
1251         }
1252         --level;
1253         pts = subdivide(dst[0], pts, level);
1254         return subdivide(dst[1], pts, level);
1255     }
1256 }
1257 
chopIntoQuadsPOW2(SkPoint pts[],int pow2) const1258 int SkConic::chopIntoQuadsPOW2(SkPoint pts[], int pow2) const {
1259     SkASSERT(pow2 >= 0);
1260     *pts = fPts[0];
1261     SkDEBUGCODE(SkPoint* endPts);
1262     if (pow2 == kMaxConicToQuadPOW2) {  // If an extreme weight generates many quads ...
1263         SkConic dst[2];
1264         this->chop(dst);
1265         // check to see if the first chop generates a pair of lines
1266         if (SkPointPriv::EqualsWithinTolerance(dst[0].fPts[1], dst[0].fPts[2]) &&
1267                 SkPointPriv::EqualsWithinTolerance(dst[1].fPts[0], dst[1].fPts[1])) {
1268             pts[1] = pts[2] = pts[3] = dst[0].fPts[1];  // set ctrl == end to make lines
1269             pts[4] = dst[1].fPts[2];
1270             pow2 = 1;
1271             SkDEBUGCODE(endPts = &pts[5]);
1272             goto commonFinitePtCheck;
1273         }
1274     }
1275     SkDEBUGCODE(endPts = ) subdivide(*this, pts + 1, pow2);
1276 commonFinitePtCheck:
1277     const int quadCount = 1 << pow2;
1278     const int ptCount = 2 * quadCount + 1;
1279     SkASSERT(endPts - pts == ptCount);
1280     if (!SkPointPriv::AreFinite(pts, ptCount)) {
1281         // if we generated a non-finite, pin ourselves to the middle of the hull,
1282         // as our first and last are already on the first/last pts of the hull.
1283         for (int i = 1; i < ptCount - 1; ++i) {
1284             pts[i] = fPts[1];
1285         }
1286     }
1287     return 1 << pow2;
1288 }
1289 
findXExtrema(SkScalar * t) const1290 bool SkConic::findXExtrema(SkScalar* t) const {
1291     return conic_find_extrema(&fPts[0].fX, fW, t);
1292 }
1293 
findYExtrema(SkScalar * t) const1294 bool SkConic::findYExtrema(SkScalar* t) const {
1295     return conic_find_extrema(&fPts[0].fY, fW, t);
1296 }
1297 
chopAtXExtrema(SkConic dst[2]) const1298 bool SkConic::chopAtXExtrema(SkConic dst[2]) const {
1299     SkScalar t;
1300     if (this->findXExtrema(&t)) {
1301         if (!this->chopAt(t, dst)) {
1302             // if chop can't return finite values, don't chop
1303             return false;
1304         }
1305         // now clean-up the middle, since we know t was meant to be at
1306         // an X-extrema
1307         SkScalar value = dst[0].fPts[2].fX;
1308         dst[0].fPts[1].fX = value;
1309         dst[1].fPts[0].fX = value;
1310         dst[1].fPts[1].fX = value;
1311         return true;
1312     }
1313     return false;
1314 }
1315 
chopAtYExtrema(SkConic dst[2]) const1316 bool SkConic::chopAtYExtrema(SkConic dst[2]) const {
1317     SkScalar t;
1318     if (this->findYExtrema(&t)) {
1319         if (!this->chopAt(t, dst)) {
1320             // if chop can't return finite values, don't chop
1321             return false;
1322         }
1323         // now clean-up the middle, since we know t was meant to be at
1324         // an Y-extrema
1325         SkScalar value = dst[0].fPts[2].fY;
1326         dst[0].fPts[1].fY = value;
1327         dst[1].fPts[0].fY = value;
1328         dst[1].fPts[1].fY = value;
1329         return true;
1330     }
1331     return false;
1332 }
1333 
computeTightBounds(SkRect * bounds) const1334 void SkConic::computeTightBounds(SkRect* bounds) const {
1335     SkPoint pts[4];
1336     pts[0] = fPts[0];
1337     pts[1] = fPts[2];
1338     int count = 2;
1339 
1340     SkScalar t;
1341     if (this->findXExtrema(&t)) {
1342         this->evalAt(t, &pts[count++]);
1343     }
1344     if (this->findYExtrema(&t)) {
1345         this->evalAt(t, &pts[count++]);
1346     }
1347     bounds->set(pts, count);
1348 }
1349 
computeFastBounds(SkRect * bounds) const1350 void SkConic::computeFastBounds(SkRect* bounds) const {
1351     bounds->set(fPts, 3);
1352 }
1353 
1354 #if 0  // unimplemented
1355 bool SkConic::findMaxCurvature(SkScalar* t) const {
1356     // TODO: Implement me
1357     return false;
1358 }
1359 #endif
1360 
TransformW(const SkPoint pts[],SkScalar w,const SkMatrix & matrix)1361 SkScalar SkConic::TransformW(const SkPoint pts[], SkScalar w, const SkMatrix& matrix) {
1362     if (!matrix.hasPerspective()) {
1363         return w;
1364     }
1365 
1366     SkPoint3 src[3], dst[3];
1367 
1368     ratquad_mapTo3D(pts, w, src);
1369 
1370     matrix.mapHomogeneousPoints(dst, src, 3);
1371 
1372     // w' = sqrt(w1*w1/w0*w2)
1373     // use doubles temporarily, to handle small numer/denom
1374     double w0 = dst[0].fZ;
1375     double w1 = dst[1].fZ;
1376     double w2 = dst[2].fZ;
1377     return sk_double_to_float(sqrt((w1 * w1) / (w0 * w2)));
1378 }
1379 
BuildUnitArc(const SkVector & uStart,const SkVector & uStop,SkRotationDirection dir,const SkMatrix * userMatrix,SkConic dst[kMaxConicsForArc])1380 int SkConic::BuildUnitArc(const SkVector& uStart, const SkVector& uStop, SkRotationDirection dir,
1381                           const SkMatrix* userMatrix, SkConic dst[kMaxConicsForArc]) {
1382     // rotate by x,y so that uStart is (1.0)
1383     SkScalar x = SkPoint::DotProduct(uStart, uStop);
1384     SkScalar y = SkPoint::CrossProduct(uStart, uStop);
1385 
1386     SkScalar absY = SkScalarAbs(y);
1387 
1388     // check for (effectively) coincident vectors
1389     // this can happen if our angle is nearly 0 or nearly 180 (y == 0)
1390     // ... we use the dot-prod to distinguish between 0 and 180 (x > 0)
1391     if (absY <= SK_ScalarNearlyZero && x > 0 && ((y >= 0 && kCW_SkRotationDirection == dir) ||
1392                                                  (y <= 0 && kCCW_SkRotationDirection == dir))) {
1393         return 0;
1394     }
1395 
1396     if (dir == kCCW_SkRotationDirection) {
1397         y = -y;
1398     }
1399 
1400     // We decide to use 1-conic per quadrant of a circle. What quadrant does [xy] lie in?
1401     //      0 == [0  .. 90)
1402     //      1 == [90 ..180)
1403     //      2 == [180..270)
1404     //      3 == [270..360)
1405     //
1406     int quadrant = 0;
1407     if (0 == y) {
1408         quadrant = 2;        // 180
1409         SkASSERT(SkScalarAbs(x + SK_Scalar1) <= SK_ScalarNearlyZero);
1410     } else if (0 == x) {
1411         SkASSERT(absY - SK_Scalar1 <= SK_ScalarNearlyZero);
1412         quadrant = y > 0 ? 1 : 3; // 90 : 270
1413     } else {
1414         if (y < 0) {
1415             quadrant += 2;
1416         }
1417         if ((x < 0) != (y < 0)) {
1418             quadrant += 1;
1419         }
1420     }
1421 
1422     const SkPoint quadrantPts[] = {
1423         { 1, 0 }, { 1, 1 }, { 0, 1 }, { -1, 1 }, { -1, 0 }, { -1, -1 }, { 0, -1 }, { 1, -1 }
1424     };
1425     const SkScalar quadrantWeight = SK_ScalarRoot2Over2;
1426 
1427     int conicCount = quadrant;
1428     for (int i = 0; i < conicCount; ++i) {
1429         dst[i].set(&quadrantPts[i * 2], quadrantWeight);
1430     }
1431 
1432     // Now compute any remaing (sub-90-degree) arc for the last conic
1433     const SkPoint finalP = { x, y };
1434     const SkPoint& lastQ = quadrantPts[quadrant * 2];  // will already be a unit-vector
1435     const SkScalar dot = SkVector::DotProduct(lastQ, finalP);
1436     if (!SkScalarIsFinite(dot)) {
1437         return 0;
1438     }
1439     SkASSERT(0 <= dot && dot <= SK_Scalar1 + SK_ScalarNearlyZero);
1440 
1441     if (dot < 1) {
1442         SkVector offCurve = { lastQ.x() + x, lastQ.y() + y };
1443         // compute the bisector vector, and then rescale to be the off-curve point.
1444         // we compute its length from cos(theta/2) = length / 1, using half-angle identity we get
1445         // length = sqrt(2 / (1 + cos(theta)). We already have cos() when to computed the dot.
1446         // This is nice, since our computed weight is cos(theta/2) as well!
1447         //
1448         const SkScalar cosThetaOver2 = SkScalarSqrt((1 + dot) / 2);
1449         offCurve.setLength(SkScalarInvert(cosThetaOver2));
1450         if (!SkPointPriv::EqualsWithinTolerance(lastQ, offCurve)) {
1451             dst[conicCount].set(lastQ, offCurve, finalP, cosThetaOver2);
1452             conicCount += 1;
1453         }
1454     }
1455 
1456     // now handle counter-clockwise and the initial unitStart rotation
1457     SkMatrix    matrix;
1458     matrix.setSinCos(uStart.fY, uStart.fX);
1459     if (dir == kCCW_SkRotationDirection) {
1460         matrix.preScale(SK_Scalar1, -SK_Scalar1);
1461     }
1462     if (userMatrix) {
1463         matrix.postConcat(*userMatrix);
1464     }
1465     for (int i = 0; i < conicCount; ++i) {
1466         matrix.mapPoints(dst[i].fPts, 3);
1467     }
1468     return conicCount;
1469 }
1470