1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 ******************************************************************************
5 *
6 *   Copyright (C) 1999-2014, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 ******************************************************************************
10 *   file name:  unames.c
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 1999oct04
16 *   created by: Markus W. Scherer
17 */
18 
19 #include "unicode/utypes.h"
20 #include "unicode/putil.h"
21 #include "unicode/uchar.h"
22 #include "unicode/udata.h"
23 #include "unicode/utf.h"
24 #include "unicode/utf16.h"
25 #include "uassert.h"
26 #include "ustr_imp.h"
27 #include "umutex.h"
28 #include "cmemory.h"
29 #include "cstring.h"
30 #include "ucln_cmn.h"
31 #include "udataswp.h"
32 #include "uprops.h"
33 
34 U_NAMESPACE_BEGIN
35 
36 /* prototypes ------------------------------------------------------------- */
37 
38 static const char DATA_NAME[] = "unames";
39 static const char DATA_TYPE[] = "icu";
40 
41 #define GROUP_SHIFT 5
42 #define LINES_PER_GROUP (1L<<GROUP_SHIFT)
43 #define GROUP_MASK (LINES_PER_GROUP-1)
44 
45 /*
46  * This struct was replaced by explicitly accessing equivalent
47  * fields from triples of uint16_t.
48  * The Group struct was padded to 8 bytes on compilers for early ARM CPUs,
49  * which broke the assumption that sizeof(Group)==6 and that the ++ operator
50  * would advance by 6 bytes (3 uint16_t).
51  *
52  * We can't just change the data structure because it's loaded from a data file,
53  * and we don't want to make it less compact, so we changed the access code.
54  *
55  * For details see ICU tickets 6331 and 6008.
56 typedef struct {
57     uint16_t groupMSB,
58              offsetHigh, offsetLow; / * avoid padding * /
59 } Group;
60  */
61 enum {
62     GROUP_MSB,
63     GROUP_OFFSET_HIGH,
64     GROUP_OFFSET_LOW,
65     GROUP_LENGTH
66 };
67 
68 /*
69  * Get the 32-bit group offset.
70  * @param group (const uint16_t *) pointer to a Group triple of uint16_t
71  * @return group offset (int32_t)
72  */
73 #define GET_GROUP_OFFSET(group) ((int32_t)(group)[GROUP_OFFSET_HIGH]<<16|(group)[GROUP_OFFSET_LOW])
74 
75 #define NEXT_GROUP(group) ((group)+GROUP_LENGTH)
76 #define PREV_GROUP(group) ((group)-GROUP_LENGTH)
77 
78 typedef struct {
79     uint32_t start, end;
80     uint8_t type, variant;
81     uint16_t size;
82 } AlgorithmicRange;
83 
84 typedef struct {
85     uint32_t tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset;
86 } UCharNames;
87 
88 /*
89  * Get the groups table from a UCharNames struct.
90  * The groups table consists of one uint16_t groupCount followed by
91  * groupCount groups. Each group is a triple of uint16_t, see GROUP_LENGTH
92  * and the comment for the old struct Group above.
93  *
94  * @param names (const UCharNames *) pointer to the UCharNames indexes
95  * @return (const uint16_t *) pointer to the groups table
96  */
97 #define GET_GROUPS(names) (const uint16_t *)((const char *)names+names->groupsOffset)
98 
99 typedef struct {
100     const char *otherName;
101     UChar32 code;
102 } FindName;
103 
104 #define DO_FIND_NAME NULL
105 
106 static UDataMemory *uCharNamesData=NULL;
107 static UCharNames *uCharNames=NULL;
108 static icu::UInitOnce gCharNamesInitOnce = U_INITONCE_INITIALIZER;
109 
110 /*
111  * Maximum length of character names (regular & 1.0).
112  */
113 static int32_t gMaxNameLength=0;
114 
115 /*
116  * Set of chars used in character names (regular & 1.0).
117  * Chars are platform-dependent (can be EBCDIC).
118  */
119 static uint32_t gNameSet[8]={ 0 };
120 
121 #define U_NONCHARACTER_CODE_POINT U_CHAR_CATEGORY_COUNT
122 #define U_LEAD_SURROGATE U_CHAR_CATEGORY_COUNT + 1
123 #define U_TRAIL_SURROGATE U_CHAR_CATEGORY_COUNT + 2
124 
125 #define U_CHAR_EXTENDED_CATEGORY_COUNT (U_CHAR_CATEGORY_COUNT + 3)
126 
127 static const char * const charCatNames[U_CHAR_EXTENDED_CATEGORY_COUNT] = {
128     "unassigned",
129     "uppercase letter",
130     "lowercase letter",
131     "titlecase letter",
132     "modifier letter",
133     "other letter",
134     "non spacing mark",
135     "enclosing mark",
136     "combining spacing mark",
137     "decimal digit number",
138     "letter number",
139     "other number",
140     "space separator",
141     "line separator",
142     "paragraph separator",
143     "control",
144     "format",
145     "private use area",
146     "surrogate",
147     "dash punctuation",
148     "start punctuation",
149     "end punctuation",
150     "connector punctuation",
151     "other punctuation",
152     "math symbol",
153     "currency symbol",
154     "modifier symbol",
155     "other symbol",
156     "initial punctuation",
157     "final punctuation",
158     "noncharacter",
159     "lead surrogate",
160     "trail surrogate"
161 };
162 
163 /* implementation ----------------------------------------------------------- */
164 
unames_cleanup(void)165 static UBool U_CALLCONV unames_cleanup(void)
166 {
167     if(uCharNamesData) {
168         udata_close(uCharNamesData);
169         uCharNamesData = NULL;
170     }
171     if(uCharNames) {
172         uCharNames = NULL;
173     }
174     gCharNamesInitOnce.reset();
175     gMaxNameLength=0;
176     return TRUE;
177 }
178 
179 static UBool U_CALLCONV
isAcceptable(void *,const char *,const char *,const UDataInfo * pInfo)180 isAcceptable(void * /*context*/,
181              const char * /*type*/, const char * /*name*/,
182              const UDataInfo *pInfo) {
183     return (UBool)(
184         pInfo->size>=20 &&
185         pInfo->isBigEndian==U_IS_BIG_ENDIAN &&
186         pInfo->charsetFamily==U_CHARSET_FAMILY &&
187         pInfo->dataFormat[0]==0x75 &&   /* dataFormat="unam" */
188         pInfo->dataFormat[1]==0x6e &&
189         pInfo->dataFormat[2]==0x61 &&
190         pInfo->dataFormat[3]==0x6d &&
191         pInfo->formatVersion[0]==1);
192 }
193 
194 static void U_CALLCONV
loadCharNames(UErrorCode & status)195 loadCharNames(UErrorCode &status) {
196     U_ASSERT(uCharNamesData == NULL);
197     U_ASSERT(uCharNames == NULL);
198 
199     uCharNamesData = udata_openChoice(NULL, DATA_TYPE, DATA_NAME, isAcceptable, NULL, &status);
200     if(U_FAILURE(status)) {
201         uCharNamesData = NULL;
202     } else {
203         uCharNames = (UCharNames *)udata_getMemory(uCharNamesData);
204     }
205     ucln_common_registerCleanup(UCLN_COMMON_UNAMES, unames_cleanup);
206 }
207 
208 
209 static UBool
isDataLoaded(UErrorCode * pErrorCode)210 isDataLoaded(UErrorCode *pErrorCode) {
211     umtx_initOnce(gCharNamesInitOnce, &loadCharNames, *pErrorCode);
212     return U_SUCCESS(*pErrorCode);
213 }
214 
215 #define WRITE_CHAR(buffer, bufferLength, bufferPos, c) UPRV_BLOCK_MACRO_BEGIN { \
216     if((bufferLength)>0) { \
217         *(buffer)++=c; \
218         --(bufferLength); \
219     } \
220     ++(bufferPos); \
221 } UPRV_BLOCK_MACRO_END
222 
223 #define U_ISO_COMMENT U_CHAR_NAME_CHOICE_COUNT
224 
225 /*
226  * Important: expandName() and compareName() are almost the same -
227  * apply fixes to both.
228  *
229  * UnicodeData.txt uses ';' as a field separator, so no
230  * field can contain ';' as part of its contents.
231  * In unames.dat, it is marked as token[';']==-1 only if the
232  * semicolon is used in the data file - which is iff we
233  * have Unicode 1.0 names or ISO comments or aliases.
234  * So, it will be token[';']==-1 if we store U1.0 names/ISO comments/aliases
235  * although we know that it will never be part of a name.
236  */
237 static uint16_t
expandName(UCharNames * names,const uint8_t * name,uint16_t nameLength,UCharNameChoice nameChoice,char * buffer,uint16_t bufferLength)238 expandName(UCharNames *names,
239            const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
240            char *buffer, uint16_t bufferLength) {
241     uint16_t *tokens=(uint16_t *)names+8;
242     uint16_t token, tokenCount=*tokens++, bufferPos=0;
243     uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
244     uint8_t c;
245 
246     if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
247         /*
248          * skip the modern name if it is not requested _and_
249          * if the semicolon byte value is a character, not a token number
250          */
251         if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
252             int fieldIndex= nameChoice==U_ISO_COMMENT ? 2 : nameChoice;
253             do {
254                 while(nameLength>0) {
255                     --nameLength;
256                     if(*name++==';') {
257                         break;
258                     }
259                 }
260             } while(--fieldIndex>0);
261         } else {
262             /*
263              * the semicolon byte value is a token number, therefore
264              * only modern names are stored in unames.dat and there is no
265              * such requested alternate name here
266              */
267             nameLength=0;
268         }
269     }
270 
271     /* write each letter directly, and write a token word per token */
272     while(nameLength>0) {
273         --nameLength;
274         c=*name++;
275 
276         if(c>=tokenCount) {
277             if(c!=';') {
278                 /* implicit letter */
279                 WRITE_CHAR(buffer, bufferLength, bufferPos, c);
280             } else {
281                 /* finished */
282                 break;
283             }
284         } else {
285             token=tokens[c];
286             if(token==(uint16_t)(-2)) {
287                 /* this is a lead byte for a double-byte token */
288                 token=tokens[c<<8|*name++];
289                 --nameLength;
290             }
291             if(token==(uint16_t)(-1)) {
292                 if(c!=';') {
293                     /* explicit letter */
294                     WRITE_CHAR(buffer, bufferLength, bufferPos, c);
295                 } else {
296                     /* stop, but skip the semicolon if we are seeking
297                        extended names and there was no 2.0 name but there
298                        is a 1.0 name. */
299                     if(!bufferPos && nameChoice == U_EXTENDED_CHAR_NAME) {
300                         if ((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
301                             continue;
302                         }
303                     }
304                     /* finished */
305                     break;
306                 }
307             } else {
308                 /* write token word */
309                 uint8_t *tokenString=tokenStrings+token;
310                 while((c=*tokenString++)!=0) {
311                     WRITE_CHAR(buffer, bufferLength, bufferPos, c);
312                 }
313             }
314         }
315     }
316 
317     /* zero-terminate */
318     if(bufferLength>0) {
319         *buffer=0;
320     }
321 
322     return bufferPos;
323 }
324 
325 /*
326  * compareName() is almost the same as expandName() except that it compares
327  * the currently expanded name to an input name.
328  * It returns the match/no match result as soon as possible.
329  */
330 static UBool
compareName(UCharNames * names,const uint8_t * name,uint16_t nameLength,UCharNameChoice nameChoice,const char * otherName)331 compareName(UCharNames *names,
332             const uint8_t *name, uint16_t nameLength, UCharNameChoice nameChoice,
333             const char *otherName) {
334     uint16_t *tokens=(uint16_t *)names+8;
335     uint16_t token, tokenCount=*tokens++;
336     uint8_t *tokenStrings=(uint8_t *)names+names->tokenStringOffset;
337     uint8_t c;
338     const char *origOtherName = otherName;
339 
340     if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
341         /*
342          * skip the modern name if it is not requested _and_
343          * if the semicolon byte value is a character, not a token number
344          */
345         if((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
346             int fieldIndex= nameChoice==U_ISO_COMMENT ? 2 : nameChoice;
347             do {
348                 while(nameLength>0) {
349                     --nameLength;
350                     if(*name++==';') {
351                         break;
352                     }
353                 }
354             } while(--fieldIndex>0);
355         } else {
356             /*
357              * the semicolon byte value is a token number, therefore
358              * only modern names are stored in unames.dat and there is no
359              * such requested alternate name here
360              */
361             nameLength=0;
362         }
363     }
364 
365     /* compare each letter directly, and compare a token word per token */
366     while(nameLength>0) {
367         --nameLength;
368         c=*name++;
369 
370         if(c>=tokenCount) {
371             if(c!=';') {
372                 /* implicit letter */
373                 if((char)c!=*otherName++) {
374                     return FALSE;
375                 }
376             } else {
377                 /* finished */
378                 break;
379             }
380         } else {
381             token=tokens[c];
382             if(token==(uint16_t)(-2)) {
383                 /* this is a lead byte for a double-byte token */
384                 token=tokens[c<<8|*name++];
385                 --nameLength;
386             }
387             if(token==(uint16_t)(-1)) {
388                 if(c!=';') {
389                     /* explicit letter */
390                     if((char)c!=*otherName++) {
391                         return FALSE;
392                     }
393                 } else {
394                     /* stop, but skip the semicolon if we are seeking
395                        extended names and there was no 2.0 name but there
396                        is a 1.0 name. */
397                     if(otherName == origOtherName && nameChoice == U_EXTENDED_CHAR_NAME) {
398                         if ((uint8_t)';'>=tokenCount || tokens[(uint8_t)';']==(uint16_t)(-1)) {
399                             continue;
400                         }
401                     }
402                     /* finished */
403                     break;
404                 }
405             } else {
406                 /* write token word */
407                 uint8_t *tokenString=tokenStrings+token;
408                 while((c=*tokenString++)!=0) {
409                     if((char)c!=*otherName++) {
410                         return FALSE;
411                     }
412                 }
413             }
414         }
415     }
416 
417     /* complete match? */
418     return (UBool)(*otherName==0);
419 }
420 
getCharCat(UChar32 cp)421 static uint8_t getCharCat(UChar32 cp) {
422     uint8_t cat;
423 
424     if (U_IS_UNICODE_NONCHAR(cp)) {
425         return U_NONCHARACTER_CODE_POINT;
426     }
427 
428     if ((cat = u_charType(cp)) == U_SURROGATE) {
429         cat = U_IS_LEAD(cp) ? U_LEAD_SURROGATE : U_TRAIL_SURROGATE;
430     }
431 
432     return cat;
433 }
434 
getCharCatName(UChar32 cp)435 static const char *getCharCatName(UChar32 cp) {
436     uint8_t cat = getCharCat(cp);
437 
438     /* Return unknown if the table of names above is not up to
439        date. */
440 
441     if (cat >= UPRV_LENGTHOF(charCatNames)) {
442         return "unknown";
443     } else {
444         return charCatNames[cat];
445     }
446 }
447 
getExtName(uint32_t code,char * buffer,uint16_t bufferLength)448 static uint16_t getExtName(uint32_t code, char *buffer, uint16_t bufferLength) {
449     const char *catname = getCharCatName(code);
450     uint16_t length = 0;
451 
452     UChar32 cp;
453     int ndigits, i;
454 
455     WRITE_CHAR(buffer, bufferLength, length, '<');
456     while (catname[length - 1]) {
457         WRITE_CHAR(buffer, bufferLength, length, catname[length - 1]);
458     }
459     WRITE_CHAR(buffer, bufferLength, length, '-');
460     for (cp = code, ndigits = 0; cp; ++ndigits, cp >>= 4)
461         ;
462     if (ndigits < 4)
463         ndigits = 4;
464     for (cp = code, i = ndigits; (cp || i > 0) && bufferLength; cp >>= 4, bufferLength--) {
465         uint8_t v = (uint8_t)(cp & 0xf);
466         buffer[--i] = (v < 10 ? '0' + v : 'A' + v - 10);
467     }
468     buffer += ndigits;
469     length += static_cast<uint16_t>(ndigits);
470     WRITE_CHAR(buffer, bufferLength, length, '>');
471 
472     return length;
473 }
474 
475 /*
476  * getGroup() does a binary search for the group that contains the
477  * Unicode code point "code".
478  * The return value is always a valid Group* that may contain "code"
479  * or else is the highest group before "code".
480  * If the lowest group is after "code", then that one is returned.
481  */
482 static const uint16_t *
getGroup(UCharNames * names,uint32_t code)483 getGroup(UCharNames *names, uint32_t code) {
484     const uint16_t *groups=GET_GROUPS(names);
485     uint16_t groupMSB=(uint16_t)(code>>GROUP_SHIFT),
486              start=0,
487              limit=*groups++,
488              number;
489 
490     /* binary search for the group of names that contains the one for code */
491     while(start<limit-1) {
492         number=(uint16_t)((start+limit)/2);
493         if(groupMSB<groups[number*GROUP_LENGTH+GROUP_MSB]) {
494             limit=number;
495         } else {
496             start=number;
497         }
498     }
499 
500     /* return this regardless of whether it is an exact match */
501     return groups+start*GROUP_LENGTH;
502 }
503 
504 /*
505  * expandGroupLengths() reads a block of compressed lengths of 32 strings and
506  * expands them into offsets and lengths for each string.
507  * Lengths are stored with a variable-width encoding in consecutive nibbles:
508  * If a nibble<0xc, then it is the length itself (0=empty string).
509  * If a nibble>=0xc, then it forms a length value with the following nibble.
510  * Calculation see below.
511  * The offsets and lengths arrays must be at least 33 (one more) long because
512  * there is no check here at the end if the last nibble is still used.
513  */
514 static const uint8_t *
expandGroupLengths(const uint8_t * s,uint16_t offsets[LINES_PER_GROUP+1],uint16_t lengths[LINES_PER_GROUP+1])515 expandGroupLengths(const uint8_t *s,
516                    uint16_t offsets[LINES_PER_GROUP+1], uint16_t lengths[LINES_PER_GROUP+1]) {
517     /* read the lengths of the 32 strings in this group and get each string's offset */
518     uint16_t i=0, offset=0, length=0;
519     uint8_t lengthByte;
520 
521     /* all 32 lengths must be read to get the offset of the first group string */
522     while(i<LINES_PER_GROUP) {
523         lengthByte=*s++;
524 
525         /* read even nibble - MSBs of lengthByte */
526         if(length>=12) {
527             /* double-nibble length spread across two bytes */
528             length=(uint16_t)(((length&0x3)<<4|lengthByte>>4)+12);
529             lengthByte&=0xf;
530         } else if((lengthByte /* &0xf0 */)>=0xc0) {
531             /* double-nibble length spread across this one byte */
532             length=(uint16_t)((lengthByte&0x3f)+12);
533         } else {
534             /* single-nibble length in MSBs */
535             length=(uint16_t)(lengthByte>>4);
536             lengthByte&=0xf;
537         }
538 
539         *offsets++=offset;
540         *lengths++=length;
541 
542         offset+=length;
543         ++i;
544 
545         /* read odd nibble - LSBs of lengthByte */
546         if((lengthByte&0xf0)==0) {
547             /* this nibble was not consumed for a double-nibble length above */
548             length=lengthByte;
549             if(length<12) {
550                 /* single-nibble length in LSBs */
551                 *offsets++=offset;
552                 *lengths++=length;
553 
554                 offset+=length;
555                 ++i;
556             }
557         } else {
558             length=0;   /* prevent double-nibble detection in the next iteration */
559         }
560     }
561 
562     /* now, s is at the first group string */
563     return s;
564 }
565 
566 static uint16_t
expandGroupName(UCharNames * names,const uint16_t * group,uint16_t lineNumber,UCharNameChoice nameChoice,char * buffer,uint16_t bufferLength)567 expandGroupName(UCharNames *names, const uint16_t *group,
568                 uint16_t lineNumber, UCharNameChoice nameChoice,
569                 char *buffer, uint16_t bufferLength) {
570     uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
571     const uint8_t *s=(uint8_t *)names+names->groupStringOffset+GET_GROUP_OFFSET(group);
572     s=expandGroupLengths(s, offsets, lengths);
573     return expandName(names, s+offsets[lineNumber], lengths[lineNumber], nameChoice,
574                       buffer, bufferLength);
575 }
576 
577 static uint16_t
getName(UCharNames * names,uint32_t code,UCharNameChoice nameChoice,char * buffer,uint16_t bufferLength)578 getName(UCharNames *names, uint32_t code, UCharNameChoice nameChoice,
579         char *buffer, uint16_t bufferLength) {
580     const uint16_t *group=getGroup(names, code);
581     if((uint16_t)(code>>GROUP_SHIFT)==group[GROUP_MSB]) {
582         return expandGroupName(names, group, (uint16_t)(code&GROUP_MASK), nameChoice,
583                                buffer, bufferLength);
584     } else {
585         /* group not found */
586         /* zero-terminate */
587         if(bufferLength>0) {
588             *buffer=0;
589         }
590         return 0;
591     }
592 }
593 
594 /*
595  * enumGroupNames() enumerates all the names in a 32-group
596  * and either calls the enumerator function or finds a given input name.
597  */
598 static UBool
enumGroupNames(UCharNames * names,const uint16_t * group,UChar32 start,UChar32 end,UEnumCharNamesFn * fn,void * context,UCharNameChoice nameChoice)599 enumGroupNames(UCharNames *names, const uint16_t *group,
600                UChar32 start, UChar32 end,
601                UEnumCharNamesFn *fn, void *context,
602                UCharNameChoice nameChoice) {
603     uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
604     const uint8_t *s=(uint8_t *)names+names->groupStringOffset+GET_GROUP_OFFSET(group);
605 
606     s=expandGroupLengths(s, offsets, lengths);
607     if(fn!=DO_FIND_NAME) {
608         char buffer[200];
609         uint16_t length;
610 
611         while(start<=end) {
612             length=expandName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice, buffer, sizeof(buffer));
613             if (!length && nameChoice == U_EXTENDED_CHAR_NAME) {
614                 buffer[length = getExtName(start, buffer, sizeof(buffer))] = 0;
615             }
616             /* here, we assume that the buffer is large enough */
617             if(length>0) {
618                 if(!fn(context, start, nameChoice, buffer, length)) {
619                     return FALSE;
620                 }
621             }
622             ++start;
623         }
624     } else {
625         const char *otherName=((FindName *)context)->otherName;
626         while(start<=end) {
627             if(compareName(names, s+offsets[start&GROUP_MASK], lengths[start&GROUP_MASK], nameChoice, otherName)) {
628                 ((FindName *)context)->code=start;
629                 return FALSE;
630             }
631             ++start;
632         }
633     }
634     return TRUE;
635 }
636 
637 /*
638  * enumExtNames enumerate extended names.
639  * It only needs to do it if it is called with a real function and not
640  * with the dummy DO_FIND_NAME, because u_charFromName() does a check
641  * for extended names by itself.
642  */
643 static UBool
enumExtNames(UChar32 start,UChar32 end,UEnumCharNamesFn * fn,void * context)644 enumExtNames(UChar32 start, UChar32 end,
645              UEnumCharNamesFn *fn, void *context)
646 {
647     if(fn!=DO_FIND_NAME) {
648         char buffer[200];
649         uint16_t length;
650 
651         while(start<=end) {
652             buffer[length = getExtName(start, buffer, sizeof(buffer))] = 0;
653             /* here, we assume that the buffer is large enough */
654             if(length>0) {
655                 if(!fn(context, start, U_EXTENDED_CHAR_NAME, buffer, length)) {
656                     return FALSE;
657                 }
658             }
659             ++start;
660         }
661     }
662 
663     return TRUE;
664 }
665 
666 static UBool
enumNames(UCharNames * names,UChar32 start,UChar32 limit,UEnumCharNamesFn * fn,void * context,UCharNameChoice nameChoice)667 enumNames(UCharNames *names,
668           UChar32 start, UChar32 limit,
669           UEnumCharNamesFn *fn, void *context,
670           UCharNameChoice nameChoice) {
671     uint16_t startGroupMSB, endGroupMSB, groupCount;
672     const uint16_t *group, *groupLimit;
673 
674     startGroupMSB=(uint16_t)(start>>GROUP_SHIFT);
675     endGroupMSB=(uint16_t)((limit-1)>>GROUP_SHIFT);
676 
677     /* find the group that contains start, or the highest before it */
678     group=getGroup(names, start);
679 
680     if(startGroupMSB<group[GROUP_MSB] && nameChoice==U_EXTENDED_CHAR_NAME) {
681         /* enumerate synthetic names between start and the group start */
682         UChar32 extLimit=((UChar32)group[GROUP_MSB]<<GROUP_SHIFT);
683         if(extLimit>limit) {
684             extLimit=limit;
685         }
686         if(!enumExtNames(start, extLimit-1, fn, context)) {
687             return FALSE;
688         }
689         start=extLimit;
690     }
691 
692     if(startGroupMSB==endGroupMSB) {
693         if(startGroupMSB==group[GROUP_MSB]) {
694             /* if start and limit-1 are in the same group, then enumerate only in that one */
695             return enumGroupNames(names, group, start, limit-1, fn, context, nameChoice);
696         }
697     } else {
698         const uint16_t *groups=GET_GROUPS(names);
699         groupCount=*groups++;
700         groupLimit=groups+groupCount*GROUP_LENGTH;
701 
702         if(startGroupMSB==group[GROUP_MSB]) {
703             /* enumerate characters in the partial start group */
704             if((start&GROUP_MASK)!=0) {
705                 if(!enumGroupNames(names, group,
706                                    start, ((UChar32)startGroupMSB<<GROUP_SHIFT)+LINES_PER_GROUP-1,
707                                    fn, context, nameChoice)) {
708                     return FALSE;
709                 }
710                 group=NEXT_GROUP(group); /* continue with the next group */
711             }
712         } else if(startGroupMSB>group[GROUP_MSB]) {
713             /* make sure that we start enumerating with the first group after start */
714             const uint16_t *nextGroup=NEXT_GROUP(group);
715             if (nextGroup < groupLimit && nextGroup[GROUP_MSB] > startGroupMSB && nameChoice == U_EXTENDED_CHAR_NAME) {
716                 UChar32 end = nextGroup[GROUP_MSB] << GROUP_SHIFT;
717                 if (end > limit) {
718                     end = limit;
719                 }
720                 if (!enumExtNames(start, end - 1, fn, context)) {
721                     return FALSE;
722                 }
723             }
724             group=nextGroup;
725         }
726 
727         /* enumerate entire groups between the start- and end-groups */
728         while(group<groupLimit && group[GROUP_MSB]<endGroupMSB) {
729             const uint16_t *nextGroup;
730             start=(UChar32)group[GROUP_MSB]<<GROUP_SHIFT;
731             if(!enumGroupNames(names, group, start, start+LINES_PER_GROUP-1, fn, context, nameChoice)) {
732                 return FALSE;
733             }
734             nextGroup=NEXT_GROUP(group);
735             if (nextGroup < groupLimit && nextGroup[GROUP_MSB] > group[GROUP_MSB] + 1 && nameChoice == U_EXTENDED_CHAR_NAME) {
736                 UChar32 end = nextGroup[GROUP_MSB] << GROUP_SHIFT;
737                 if (end > limit) {
738                     end = limit;
739                 }
740                 if (!enumExtNames((group[GROUP_MSB] + 1) << GROUP_SHIFT, end - 1, fn, context)) {
741                     return FALSE;
742                 }
743             }
744             group=nextGroup;
745         }
746 
747         /* enumerate within the end group (group[GROUP_MSB]==endGroupMSB) */
748         if(group<groupLimit && group[GROUP_MSB]==endGroupMSB) {
749             return enumGroupNames(names, group, (limit-1)&~GROUP_MASK, limit-1, fn, context, nameChoice);
750         } else if (nameChoice == U_EXTENDED_CHAR_NAME && group == groupLimit) {
751             UChar32 next = (PREV_GROUP(group)[GROUP_MSB] + 1) << GROUP_SHIFT;
752             if (next > start) {
753                 start = next;
754             }
755         } else {
756             return TRUE;
757         }
758     }
759 
760     /* we have not found a group, which means everything is made of
761        extended names. */
762     if (nameChoice == U_EXTENDED_CHAR_NAME) {
763         if (limit > UCHAR_MAX_VALUE + 1) {
764             limit = UCHAR_MAX_VALUE + 1;
765         }
766         return enumExtNames(start, limit - 1, fn, context);
767     }
768 
769     return TRUE;
770 }
771 
772 static uint16_t
writeFactorSuffix(const uint16_t * factors,uint16_t count,const char * s,uint32_t code,uint16_t indexes[8],const char * elementBases[8],const char * elements[8],char * buffer,uint16_t bufferLength)773 writeFactorSuffix(const uint16_t *factors, uint16_t count,
774                   const char *s, /* suffix elements */
775                   uint32_t code,
776                   uint16_t indexes[8], /* output fields from here */
777                   const char *elementBases[8], const char *elements[8],
778                   char *buffer, uint16_t bufferLength) {
779     uint16_t i, factor, bufferPos=0;
780     char c;
781 
782     /* write elements according to the factors */
783 
784     /*
785      * the factorized elements are determined by modulo arithmetic
786      * with the factors of this algorithm
787      *
788      * note that for fewer operations, count is decremented here
789      */
790     --count;
791     for(i=count; i>0; --i) {
792         factor=factors[i];
793         indexes[i]=(uint16_t)(code%factor);
794         code/=factor;
795     }
796     /*
797      * we don't need to calculate the last modulus because start<=code<=end
798      * guarantees here that code<=factors[0]
799      */
800     indexes[0]=(uint16_t)code;
801 
802     /* write each element */
803     for(;;) {
804         if(elementBases!=NULL) {
805             *elementBases++=s;
806         }
807 
808         /* skip indexes[i] strings */
809         factor=indexes[i];
810         while(factor>0) {
811             while(*s++!=0) {}
812             --factor;
813         }
814         if(elements!=NULL) {
815             *elements++=s;
816         }
817 
818         /* write element */
819         while((c=*s++)!=0) {
820             WRITE_CHAR(buffer, bufferLength, bufferPos, c);
821         }
822 
823         /* we do not need to perform the rest of this loop for i==count - break here */
824         if(i>=count) {
825             break;
826         }
827 
828         /* skip the rest of the strings for this factors[i] */
829         factor=(uint16_t)(factors[i]-indexes[i]-1);
830         while(factor>0) {
831             while(*s++!=0) {}
832             --factor;
833         }
834 
835         ++i;
836     }
837 
838     /* zero-terminate */
839     if(bufferLength>0) {
840         *buffer=0;
841     }
842 
843     return bufferPos;
844 }
845 
846 /*
847  * Important:
848  * Parts of findAlgName() are almost the same as some of getAlgName().
849  * Fixes must be applied to both.
850  */
851 static uint16_t
getAlgName(AlgorithmicRange * range,uint32_t code,UCharNameChoice nameChoice,char * buffer,uint16_t bufferLength)852 getAlgName(AlgorithmicRange *range, uint32_t code, UCharNameChoice nameChoice,
853         char *buffer, uint16_t bufferLength) {
854     uint16_t bufferPos=0;
855 
856     /* Only the normative character name can be algorithmic. */
857     if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
858         /* zero-terminate */
859         if(bufferLength>0) {
860             *buffer=0;
861         }
862         return 0;
863     }
864 
865     switch(range->type) {
866     case 0: {
867         /* name = prefix hex-digits */
868         const char *s=(const char *)(range+1);
869         char c;
870 
871         uint16_t i, count;
872 
873         /* copy prefix */
874         while((c=*s++)!=0) {
875             WRITE_CHAR(buffer, bufferLength, bufferPos, c);
876         }
877 
878         /* write hexadecimal code point value */
879         count=range->variant;
880 
881         /* zero-terminate */
882         if(count<bufferLength) {
883             buffer[count]=0;
884         }
885 
886         for(i=count; i>0;) {
887             if(--i<bufferLength) {
888                 c=(char)(code&0xf);
889                 if(c<10) {
890                     c+='0';
891                 } else {
892                     c+='A'-10;
893                 }
894                 buffer[i]=c;
895             }
896             code>>=4;
897         }
898 
899         bufferPos+=count;
900         break;
901     }
902     case 1: {
903         /* name = prefix factorized-elements */
904         uint16_t indexes[8];
905         const uint16_t *factors=(const uint16_t *)(range+1);
906         uint16_t count=range->variant;
907         const char *s=(const char *)(factors+count);
908         char c;
909 
910         /* copy prefix */
911         while((c=*s++)!=0) {
912             WRITE_CHAR(buffer, bufferLength, bufferPos, c);
913         }
914 
915         bufferPos+=writeFactorSuffix(factors, count,
916                                      s, code-range->start, indexes, NULL, NULL, buffer, bufferLength);
917         break;
918     }
919     default:
920         /* undefined type */
921         /* zero-terminate */
922         if(bufferLength>0) {
923             *buffer=0;
924         }
925         break;
926     }
927 
928     return bufferPos;
929 }
930 
931 /*
932  * Important: enumAlgNames() and findAlgName() are almost the same.
933  * Any fix must be applied to both.
934  */
935 static UBool
enumAlgNames(AlgorithmicRange * range,UChar32 start,UChar32 limit,UEnumCharNamesFn * fn,void * context,UCharNameChoice nameChoice)936 enumAlgNames(AlgorithmicRange *range,
937              UChar32 start, UChar32 limit,
938              UEnumCharNamesFn *fn, void *context,
939              UCharNameChoice nameChoice) {
940     char buffer[200];
941     uint16_t length;
942 
943     if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
944         return TRUE;
945     }
946 
947     switch(range->type) {
948     case 0: {
949         char *s, *end;
950         char c;
951 
952         /* get the full name of the start character */
953         length=getAlgName(range, (uint32_t)start, nameChoice, buffer, sizeof(buffer));
954         if(length<=0) {
955             return TRUE;
956         }
957 
958         /* call the enumerator function with this first character */
959         if(!fn(context, start, nameChoice, buffer, length)) {
960             return FALSE;
961         }
962 
963         /* go to the end of the name; all these names have the same length */
964         end=buffer;
965         while(*end!=0) {
966             ++end;
967         }
968 
969         /* enumerate the rest of the names */
970         while(++start<limit) {
971             /* increment the hexadecimal number on a character-basis */
972             s=end;
973             for (;;) {
974                 c=*--s;
975                 if(('0'<=c && c<'9') || ('A'<=c && c<'F')) {
976                     *s=(char)(c+1);
977                     break;
978                 } else if(c=='9') {
979                     *s='A';
980                     break;
981                 } else if(c=='F') {
982                     *s='0';
983                 }
984             }
985 
986             if(!fn(context, start, nameChoice, buffer, length)) {
987                 return FALSE;
988             }
989         }
990         break;
991     }
992     case 1: {
993         uint16_t indexes[8];
994         const char *elementBases[8], *elements[8];
995         const uint16_t *factors=(const uint16_t *)(range+1);
996         uint16_t count=range->variant;
997         const char *s=(const char *)(factors+count);
998         char *suffix, *t;
999         uint16_t prefixLength, i, idx;
1000 
1001         char c;
1002 
1003         /* name = prefix factorized-elements */
1004 
1005         /* copy prefix */
1006         suffix=buffer;
1007         prefixLength=0;
1008         while((c=*s++)!=0) {
1009             *suffix++=c;
1010             ++prefixLength;
1011         }
1012 
1013         /* append the suffix of the start character */
1014         length=(uint16_t)(prefixLength+writeFactorSuffix(factors, count,
1015                                               s, (uint32_t)start-range->start,
1016                                               indexes, elementBases, elements,
1017                                               suffix, (uint16_t)(sizeof(buffer)-prefixLength)));
1018 
1019         /* call the enumerator function with this first character */
1020         if(!fn(context, start, nameChoice, buffer, length)) {
1021             return FALSE;
1022         }
1023 
1024         /* enumerate the rest of the names */
1025         while(++start<limit) {
1026             /* increment the indexes in lexical order bound by the factors */
1027             i=count;
1028             for (;;) {
1029                 idx=(uint16_t)(indexes[--i]+1);
1030                 if(idx<factors[i]) {
1031                     /* skip one index and its element string */
1032                     indexes[i]=idx;
1033                     s=elements[i];
1034                     while(*s++!=0) {
1035                     }
1036                     elements[i]=s;
1037                     break;
1038                 } else {
1039                     /* reset this index to 0 and its element string to the first one */
1040                     indexes[i]=0;
1041                     elements[i]=elementBases[i];
1042                 }
1043             }
1044 
1045             /* to make matters a little easier, just append all elements to the suffix */
1046             t=suffix;
1047             length=prefixLength;
1048             for(i=0; i<count; ++i) {
1049                 s=elements[i];
1050                 while((c=*s++)!=0) {
1051                     *t++=c;
1052                     ++length;
1053                 }
1054             }
1055             /* zero-terminate */
1056             *t=0;
1057 
1058             if(!fn(context, start, nameChoice, buffer, length)) {
1059                 return FALSE;
1060             }
1061         }
1062         break;
1063     }
1064     default:
1065         /* undefined type */
1066         break;
1067     }
1068 
1069     return TRUE;
1070 }
1071 
1072 /*
1073  * findAlgName() is almost the same as enumAlgNames() except that it
1074  * returns the code point for a name if it fits into the range.
1075  * It returns 0xffff otherwise.
1076  */
1077 static UChar32
findAlgName(AlgorithmicRange * range,UCharNameChoice nameChoice,const char * otherName)1078 findAlgName(AlgorithmicRange *range, UCharNameChoice nameChoice, const char *otherName) {
1079     UChar32 code;
1080 
1081     if(nameChoice!=U_UNICODE_CHAR_NAME && nameChoice!=U_EXTENDED_CHAR_NAME) {
1082         return 0xffff;
1083     }
1084 
1085     switch(range->type) {
1086     case 0: {
1087         /* name = prefix hex-digits */
1088         const char *s=(const char *)(range+1);
1089         char c;
1090 
1091         uint16_t i, count;
1092 
1093         /* compare prefix */
1094         while((c=*s++)!=0) {
1095             if((char)c!=*otherName++) {
1096                 return 0xffff;
1097             }
1098         }
1099 
1100         /* read hexadecimal code point value */
1101         count=range->variant;
1102         code=0;
1103         for(i=0; i<count; ++i) {
1104             c=*otherName++;
1105             if('0'<=c && c<='9') {
1106                 code=(code<<4)|(c-'0');
1107             } else if('A'<=c && c<='F') {
1108                 code=(code<<4)|(c-'A'+10);
1109             } else {
1110                 return 0xffff;
1111             }
1112         }
1113 
1114         /* does it fit into the range? */
1115         if(*otherName==0 && range->start<=(uint32_t)code && (uint32_t)code<=range->end) {
1116             return code;
1117         }
1118         break;
1119     }
1120     case 1: {
1121         char buffer[64];
1122         uint16_t indexes[8];
1123         const char *elementBases[8], *elements[8];
1124         const uint16_t *factors=(const uint16_t *)(range+1);
1125         uint16_t count=range->variant;
1126         const char *s=(const char *)(factors+count), *t;
1127         UChar32 start, limit;
1128         uint16_t i, idx;
1129 
1130         char c;
1131 
1132         /* name = prefix factorized-elements */
1133 
1134         /* compare prefix */
1135         while((c=*s++)!=0) {
1136             if((char)c!=*otherName++) {
1137                 return 0xffff;
1138             }
1139         }
1140 
1141         start=(UChar32)range->start;
1142         limit=(UChar32)(range->end+1);
1143 
1144         /* initialize the suffix elements for enumeration; indexes should all be set to 0 */
1145         writeFactorSuffix(factors, count, s, 0,
1146                           indexes, elementBases, elements, buffer, sizeof(buffer));
1147 
1148         /* compare the first suffix */
1149         if(0==uprv_strcmp(otherName, buffer)) {
1150             return start;
1151         }
1152 
1153         /* enumerate and compare the rest of the suffixes */
1154         while(++start<limit) {
1155             /* increment the indexes in lexical order bound by the factors */
1156             i=count;
1157             for (;;) {
1158                 idx=(uint16_t)(indexes[--i]+1);
1159                 if(idx<factors[i]) {
1160                     /* skip one index and its element string */
1161                     indexes[i]=idx;
1162                     s=elements[i];
1163                     while(*s++!=0) {}
1164                     elements[i]=s;
1165                     break;
1166                 } else {
1167                     /* reset this index to 0 and its element string to the first one */
1168                     indexes[i]=0;
1169                     elements[i]=elementBases[i];
1170                 }
1171             }
1172 
1173             /* to make matters a little easier, just compare all elements of the suffix */
1174             t=otherName;
1175             for(i=0; i<count; ++i) {
1176                 s=elements[i];
1177                 while((c=*s++)!=0) {
1178                     if(c!=*t++) {
1179                         s=""; /* does not match */
1180                         i=99;
1181                     }
1182                 }
1183             }
1184             if(i<99 && *t==0) {
1185                 return start;
1186             }
1187         }
1188         break;
1189     }
1190     default:
1191         /* undefined type */
1192         break;
1193     }
1194 
1195     return 0xffff;
1196 }
1197 
1198 /* sets of name characters, maximum name lengths ---------------------------- */
1199 
1200 #define SET_ADD(set, c) ((set)[(uint8_t)c>>5]|=((uint32_t)1<<((uint8_t)c&0x1f)))
1201 #define SET_CONTAINS(set, c) (((set)[(uint8_t)c>>5]&((uint32_t)1<<((uint8_t)c&0x1f)))!=0)
1202 
1203 static int32_t
calcStringSetLength(uint32_t set[8],const char * s)1204 calcStringSetLength(uint32_t set[8], const char *s) {
1205     int32_t length=0;
1206     char c;
1207 
1208     while((c=*s++)!=0) {
1209         SET_ADD(set, c);
1210         ++length;
1211     }
1212     return length;
1213 }
1214 
1215 static int32_t
calcAlgNameSetsLengths(int32_t maxNameLength)1216 calcAlgNameSetsLengths(int32_t maxNameLength) {
1217     AlgorithmicRange *range;
1218     uint32_t *p;
1219     uint32_t rangeCount;
1220     int32_t length;
1221 
1222     /* enumerate algorithmic ranges */
1223     p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
1224     rangeCount=*p;
1225     range=(AlgorithmicRange *)(p+1);
1226     while(rangeCount>0) {
1227         switch(range->type) {
1228         case 0:
1229             /* name = prefix + (range->variant times) hex-digits */
1230             /* prefix */
1231             length=calcStringSetLength(gNameSet, (const char *)(range+1))+range->variant;
1232             if(length>maxNameLength) {
1233                 maxNameLength=length;
1234             }
1235             break;
1236         case 1: {
1237             /* name = prefix factorized-elements */
1238             const uint16_t *factors=(const uint16_t *)(range+1);
1239             const char *s;
1240             int32_t i, count=range->variant, factor, factorLength, maxFactorLength;
1241 
1242             /* prefix length */
1243             s=(const char *)(factors+count);
1244             length=calcStringSetLength(gNameSet, s);
1245             s+=length+1; /* start of factor suffixes */
1246 
1247             /* get the set and maximum factor suffix length for each factor */
1248             for(i=0; i<count; ++i) {
1249                 maxFactorLength=0;
1250                 for(factor=factors[i]; factor>0; --factor) {
1251                     factorLength=calcStringSetLength(gNameSet, s);
1252                     s+=factorLength+1;
1253                     if(factorLength>maxFactorLength) {
1254                         maxFactorLength=factorLength;
1255                     }
1256                 }
1257                 length+=maxFactorLength;
1258             }
1259 
1260             if(length>maxNameLength) {
1261                 maxNameLength=length;
1262             }
1263             break;
1264         }
1265         default:
1266             /* unknown type */
1267             break;
1268         }
1269 
1270         range=(AlgorithmicRange *)((uint8_t *)range+range->size);
1271         --rangeCount;
1272     }
1273     return maxNameLength;
1274 }
1275 
1276 static int32_t
calcExtNameSetsLengths(int32_t maxNameLength)1277 calcExtNameSetsLengths(int32_t maxNameLength) {
1278     int32_t i, length;
1279 
1280     for(i=0; i<UPRV_LENGTHOF(charCatNames); ++i) {
1281         /*
1282          * for each category, count the length of the category name
1283          * plus 9=
1284          * 2 for <>
1285          * 1 for -
1286          * 6 for most hex digits per code point
1287          */
1288         length=9+calcStringSetLength(gNameSet, charCatNames[i]);
1289         if(length>maxNameLength) {
1290             maxNameLength=length;
1291         }
1292     }
1293     return maxNameLength;
1294 }
1295 
1296 static int32_t
calcNameSetLength(const uint16_t * tokens,uint16_t tokenCount,const uint8_t * tokenStrings,int8_t * tokenLengths,uint32_t set[8],const uint8_t ** pLine,const uint8_t * lineLimit)1297 calcNameSetLength(const uint16_t *tokens, uint16_t tokenCount, const uint8_t *tokenStrings, int8_t *tokenLengths,
1298                   uint32_t set[8],
1299                   const uint8_t **pLine, const uint8_t *lineLimit) {
1300     const uint8_t *line=*pLine;
1301     int32_t length=0, tokenLength;
1302     uint16_t c, token;
1303 
1304     while(line!=lineLimit && (c=*line++)!=(uint8_t)';') {
1305         if(c>=tokenCount) {
1306             /* implicit letter */
1307             SET_ADD(set, c);
1308             ++length;
1309         } else {
1310             token=tokens[c];
1311             if(token==(uint16_t)(-2)) {
1312                 /* this is a lead byte for a double-byte token */
1313                 c=c<<8|*line++;
1314                 token=tokens[c];
1315             }
1316             if(token==(uint16_t)(-1)) {
1317                 /* explicit letter */
1318                 SET_ADD(set, c);
1319                 ++length;
1320             } else {
1321                 /* count token word */
1322                 if(tokenLengths!=NULL) {
1323                     /* use cached token length */
1324                     tokenLength=tokenLengths[c];
1325                     if(tokenLength==0) {
1326                         tokenLength=calcStringSetLength(set, (const char *)tokenStrings+token);
1327                         tokenLengths[c]=(int8_t)tokenLength;
1328                     }
1329                 } else {
1330                     tokenLength=calcStringSetLength(set, (const char *)tokenStrings+token);
1331                 }
1332                 length+=tokenLength;
1333             }
1334         }
1335     }
1336 
1337     *pLine=line;
1338     return length;
1339 }
1340 
1341 static void
calcGroupNameSetsLengths(int32_t maxNameLength)1342 calcGroupNameSetsLengths(int32_t maxNameLength) {
1343     uint16_t offsets[LINES_PER_GROUP+2], lengths[LINES_PER_GROUP+2];
1344 
1345     uint16_t *tokens=(uint16_t *)uCharNames+8;
1346     uint16_t tokenCount=*tokens++;
1347     uint8_t *tokenStrings=(uint8_t *)uCharNames+uCharNames->tokenStringOffset;
1348 
1349     int8_t *tokenLengths;
1350 
1351     const uint16_t *group;
1352     const uint8_t *s, *line, *lineLimit;
1353 
1354     int32_t groupCount, lineNumber, length;
1355 
1356     tokenLengths=(int8_t *)uprv_malloc(tokenCount);
1357     if(tokenLengths!=NULL) {
1358         uprv_memset(tokenLengths, 0, tokenCount);
1359     }
1360 
1361     group=GET_GROUPS(uCharNames);
1362     groupCount=*group++;
1363 
1364     /* enumerate all groups */
1365     while(groupCount>0) {
1366         s=(uint8_t *)uCharNames+uCharNames->groupStringOffset+GET_GROUP_OFFSET(group);
1367         s=expandGroupLengths(s, offsets, lengths);
1368 
1369         /* enumerate all lines in each group */
1370         for(lineNumber=0; lineNumber<LINES_PER_GROUP; ++lineNumber) {
1371             line=s+offsets[lineNumber];
1372             length=lengths[lineNumber];
1373             if(length==0) {
1374                 continue;
1375             }
1376 
1377             lineLimit=line+length;
1378 
1379             /* read regular name */
1380             length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gNameSet, &line, lineLimit);
1381             if(length>maxNameLength) {
1382                 maxNameLength=length;
1383             }
1384             if(line==lineLimit) {
1385                 continue;
1386             }
1387 
1388             /* read Unicode 1.0 name */
1389             length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gNameSet, &line, lineLimit);
1390             if(length>maxNameLength) {
1391                 maxNameLength=length;
1392             }
1393             if(line==lineLimit) {
1394                 continue;
1395             }
1396 
1397             /* read ISO comment */
1398             /*length=calcNameSetLength(tokens, tokenCount, tokenStrings, tokenLengths, gISOCommentSet, &line, lineLimit);*/
1399         }
1400 
1401         group=NEXT_GROUP(group);
1402         --groupCount;
1403     }
1404 
1405     if(tokenLengths!=NULL) {
1406         uprv_free(tokenLengths);
1407     }
1408 
1409     /* set gMax... - name length last for threading */
1410     gMaxNameLength=maxNameLength;
1411 }
1412 
1413 static UBool
calcNameSetsLengths(UErrorCode * pErrorCode)1414 calcNameSetsLengths(UErrorCode *pErrorCode) {
1415     static const char extChars[]="0123456789ABCDEF<>-";
1416     int32_t i, maxNameLength;
1417 
1418     if(gMaxNameLength!=0) {
1419         return TRUE;
1420     }
1421 
1422     if(!isDataLoaded(pErrorCode)) {
1423         return FALSE;
1424     }
1425 
1426     /* set hex digits, used in various names, and <>-, used in extended names */
1427     for(i=0; i<(int32_t)sizeof(extChars)-1; ++i) {
1428         SET_ADD(gNameSet, extChars[i]);
1429     }
1430 
1431     /* set sets and lengths from algorithmic names */
1432     maxNameLength=calcAlgNameSetsLengths(0);
1433 
1434     /* set sets and lengths from extended names */
1435     maxNameLength=calcExtNameSetsLengths(maxNameLength);
1436 
1437     /* set sets and lengths from group names, set global maximum values */
1438     calcGroupNameSetsLengths(maxNameLength);
1439 
1440     return TRUE;
1441 }
1442 
1443 U_NAMESPACE_END
1444 
1445 /* public API --------------------------------------------------------------- */
1446 
1447 U_NAMESPACE_USE
1448 
1449 U_CAPI int32_t U_EXPORT2
u_charName(UChar32 code,UCharNameChoice nameChoice,char * buffer,int32_t bufferLength,UErrorCode * pErrorCode)1450 u_charName(UChar32 code, UCharNameChoice nameChoice,
1451            char *buffer, int32_t bufferLength,
1452            UErrorCode *pErrorCode) {
1453      AlgorithmicRange *algRange;
1454     uint32_t *p;
1455     uint32_t i;
1456     int32_t length;
1457 
1458     /* check the argument values */
1459     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
1460         return 0;
1461     } else if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT ||
1462               bufferLength<0 || (bufferLength>0 && buffer==NULL)
1463     ) {
1464         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1465         return 0;
1466     }
1467 
1468     if((uint32_t)code>UCHAR_MAX_VALUE || !isDataLoaded(pErrorCode)) {
1469         return u_terminateChars(buffer, bufferLength, 0, pErrorCode);
1470     }
1471 
1472     length=0;
1473 
1474     /* try algorithmic names first */
1475     p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
1476     i=*p;
1477     algRange=(AlgorithmicRange *)(p+1);
1478     while(i>0) {
1479         if(algRange->start<=(uint32_t)code && (uint32_t)code<=algRange->end) {
1480             length=getAlgName(algRange, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
1481             break;
1482         }
1483         algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
1484         --i;
1485     }
1486 
1487     if(i==0) {
1488         if (nameChoice == U_EXTENDED_CHAR_NAME) {
1489             length = getName(uCharNames, (uint32_t )code, U_EXTENDED_CHAR_NAME, buffer, (uint16_t) bufferLength);
1490             if (!length) {
1491                 /* extended character name */
1492                 length = getExtName((uint32_t) code, buffer, (uint16_t) bufferLength);
1493             }
1494         } else {
1495             /* normal character name */
1496             length=getName(uCharNames, (uint32_t)code, nameChoice, buffer, (uint16_t)bufferLength);
1497         }
1498     }
1499 
1500     return u_terminateChars(buffer, bufferLength, length, pErrorCode);
1501 }
1502 
1503 U_CAPI int32_t U_EXPORT2
u_getISOComment(UChar32,char * dest,int32_t destCapacity,UErrorCode * pErrorCode)1504 u_getISOComment(UChar32 /*c*/,
1505                 char *dest, int32_t destCapacity,
1506                 UErrorCode *pErrorCode) {
1507     /* check the argument values */
1508     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
1509         return 0;
1510     } else if(destCapacity<0 || (destCapacity>0 && dest==NULL)) {
1511         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1512         return 0;
1513     }
1514 
1515     return u_terminateChars(dest, destCapacity, 0, pErrorCode);
1516 }
1517 
1518 U_CAPI UChar32 U_EXPORT2
u_charFromName(UCharNameChoice nameChoice,const char * name,UErrorCode * pErrorCode)1519 u_charFromName(UCharNameChoice nameChoice,
1520                const char *name,
1521                UErrorCode *pErrorCode) {
1522     char upper[120] = {0};
1523     char lower[120] = {0};
1524     FindName findName;
1525     AlgorithmicRange *algRange;
1526     uint32_t *p;
1527     uint32_t i;
1528     UChar32 cp = 0;
1529     char c0;
1530     static constexpr UChar32 error = 0xffff;     /* Undefined, but use this for backwards compatibility. */
1531 
1532     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
1533         return error;
1534     }
1535 
1536     if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || name==NULL || *name==0) {
1537         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1538         return error;
1539     }
1540 
1541     if(!isDataLoaded(pErrorCode)) {
1542         return error;
1543     }
1544 
1545     /* construct the uppercase and lowercase of the name first */
1546     for(i=0; i<sizeof(upper); ++i) {
1547         if((c0=*name++)!=0) {
1548             upper[i]=uprv_toupper(c0);
1549             lower[i]=uprv_tolower(c0);
1550         } else {
1551             upper[i]=lower[i]=0;
1552             break;
1553         }
1554     }
1555     if(i==sizeof(upper)) {
1556         /* name too long, there is no such character */
1557         *pErrorCode = U_ILLEGAL_CHAR_FOUND;
1558         return error;
1559     }
1560     // i==strlen(name)==strlen(lower)==strlen(upper)
1561 
1562     /* try extended names first */
1563     if (lower[0] == '<') {
1564         if (nameChoice == U_EXTENDED_CHAR_NAME && lower[--i] == '>') {
1565             // Parse a string like "<category-HHHH>" where HHHH is a hex code point.
1566             uint32_t limit = i;
1567             while (i >= 3 && lower[--i] != '-') {}
1568 
1569             // There should be 1 to 8 hex digits.
1570             int32_t hexLength = limit - (i + 1);
1571             if (i >= 2 && lower[i] == '-' && 1 <= hexLength && hexLength <= 8) {
1572                 uint32_t cIdx;
1573 
1574                 lower[i] = 0;
1575 
1576                 for (++i; i < limit; ++i) {
1577                     if (lower[i] >= '0' && lower[i] <= '9') {
1578                         cp = (cp << 4) + lower[i] - '0';
1579                     } else if (lower[i] >= 'a' && lower[i] <= 'f') {
1580                         cp = (cp << 4) + lower[i] - 'a' + 10;
1581                     } else {
1582                         *pErrorCode = U_ILLEGAL_CHAR_FOUND;
1583                         return error;
1584                     }
1585                     // Prevent signed-integer overflow and out-of-range code points.
1586                     if (cp > UCHAR_MAX_VALUE) {
1587                         *pErrorCode = U_ILLEGAL_CHAR_FOUND;
1588                         return error;
1589                     }
1590                 }
1591 
1592                 /* Now validate the category name.
1593                    We could use a binary search, or a trie, if
1594                    we really wanted to. */
1595                 uint8_t cat = getCharCat(cp);
1596                 for (lower[i] = 0, cIdx = 0; cIdx < UPRV_LENGTHOF(charCatNames); ++cIdx) {
1597 
1598                     if (!uprv_strcmp(lower + 1, charCatNames[cIdx])) {
1599                         if (cat == cIdx) {
1600                             return cp;
1601                         }
1602                         break;
1603                     }
1604                 }
1605             }
1606         }
1607 
1608         *pErrorCode = U_ILLEGAL_CHAR_FOUND;
1609         return error;
1610     }
1611 
1612     /* try algorithmic names now */
1613     p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
1614     i=*p;
1615     algRange=(AlgorithmicRange *)(p+1);
1616     while(i>0) {
1617         if((cp=findAlgName(algRange, nameChoice, upper))!=0xffff) {
1618             return cp;
1619         }
1620         algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
1621         --i;
1622     }
1623 
1624     /* normal character name */
1625     findName.otherName=upper;
1626     findName.code=error;
1627     enumNames(uCharNames, 0, UCHAR_MAX_VALUE + 1, DO_FIND_NAME, &findName, nameChoice);
1628     if (findName.code == error) {
1629          *pErrorCode = U_ILLEGAL_CHAR_FOUND;
1630     }
1631     return findName.code;
1632 }
1633 
1634 U_CAPI void U_EXPORT2
u_enumCharNames(UChar32 start,UChar32 limit,UEnumCharNamesFn * fn,void * context,UCharNameChoice nameChoice,UErrorCode * pErrorCode)1635 u_enumCharNames(UChar32 start, UChar32 limit,
1636                 UEnumCharNamesFn *fn,
1637                 void *context,
1638                 UCharNameChoice nameChoice,
1639                 UErrorCode *pErrorCode) {
1640     AlgorithmicRange *algRange;
1641     uint32_t *p;
1642     uint32_t i;
1643 
1644     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
1645         return;
1646     }
1647 
1648     if(nameChoice>=U_CHAR_NAME_CHOICE_COUNT || fn==NULL) {
1649         *pErrorCode=U_ILLEGAL_ARGUMENT_ERROR;
1650         return;
1651     }
1652 
1653     if((uint32_t) limit > UCHAR_MAX_VALUE + 1) {
1654         limit = UCHAR_MAX_VALUE + 1;
1655     }
1656     if((uint32_t)start>=(uint32_t)limit) {
1657         return;
1658     }
1659 
1660     if(!isDataLoaded(pErrorCode)) {
1661         return;
1662     }
1663 
1664     /* interleave the data-driven ones with the algorithmic ones */
1665     /* iterate over all algorithmic ranges; assume that they are in ascending order */
1666     p=(uint32_t *)((uint8_t *)uCharNames+uCharNames->algNamesOffset);
1667     i=*p;
1668     algRange=(AlgorithmicRange *)(p+1);
1669     while(i>0) {
1670         /* enumerate the character names before the current algorithmic range */
1671         /* here: start<limit */
1672         if((uint32_t)start<algRange->start) {
1673             if((uint32_t)limit<=algRange->start) {
1674                 enumNames(uCharNames, start, limit, fn, context, nameChoice);
1675                 return;
1676             }
1677             if(!enumNames(uCharNames, start, (UChar32)algRange->start, fn, context, nameChoice)) {
1678                 return;
1679             }
1680             start=(UChar32)algRange->start;
1681         }
1682         /* enumerate the character names in the current algorithmic range */
1683         /* here: algRange->start<=start<limit */
1684         if((uint32_t)start<=algRange->end) {
1685             if((uint32_t)limit<=(algRange->end+1)) {
1686                 enumAlgNames(algRange, start, limit, fn, context, nameChoice);
1687                 return;
1688             }
1689             if(!enumAlgNames(algRange, start, (UChar32)algRange->end+1, fn, context, nameChoice)) {
1690                 return;
1691             }
1692             start=(UChar32)algRange->end+1;
1693         }
1694         /* continue to the next algorithmic range (here: start<limit) */
1695         algRange=(AlgorithmicRange *)((uint8_t *)algRange+algRange->size);
1696         --i;
1697     }
1698     /* enumerate the character names after the last algorithmic range */
1699     enumNames(uCharNames, start, limit, fn, context, nameChoice);
1700 }
1701 
1702 U_CAPI int32_t U_EXPORT2
uprv_getMaxCharNameLength()1703 uprv_getMaxCharNameLength() {
1704     UErrorCode errorCode=U_ZERO_ERROR;
1705     if(calcNameSetsLengths(&errorCode)) {
1706         return gMaxNameLength;
1707     } else {
1708         return 0;
1709     }
1710 }
1711 
1712 /**
1713  * Converts the char set cset into a Unicode set uset.
1714  * @param cset Set of 256 bit flags corresponding to a set of chars.
1715  * @param uset USet to receive characters. Existing contents are deleted.
1716  */
1717 static void
charSetToUSet(uint32_t cset[8],const USetAdder * sa)1718 charSetToUSet(uint32_t cset[8], const USetAdder *sa) {
1719     UChar us[256];
1720     char cs[256];
1721 
1722     int32_t i, length;
1723     UErrorCode errorCode;
1724 
1725     errorCode=U_ZERO_ERROR;
1726 
1727     if(!calcNameSetsLengths(&errorCode)) {
1728         return;
1729     }
1730 
1731     /* build a char string with all chars that are used in character names */
1732     length=0;
1733     for(i=0; i<256; ++i) {
1734         if(SET_CONTAINS(cset, i)) {
1735             cs[length++]=(char)i;
1736         }
1737     }
1738 
1739     /* convert the char string to a UChar string */
1740     u_charsToUChars(cs, us, length);
1741 
1742     /* add each UChar to the USet */
1743     for(i=0; i<length; ++i) {
1744         if(us[i]!=0 || cs[i]==0) { /* non-invariant chars become (UChar)0 */
1745             sa->add(sa->set, us[i]);
1746         }
1747     }
1748 }
1749 
1750 /**
1751  * Fills set with characters that are used in Unicode character names.
1752  * @param set USet to receive characters.
1753  */
1754 U_CAPI void U_EXPORT2
uprv_getCharNameCharacters(const USetAdder * sa)1755 uprv_getCharNameCharacters(const USetAdder *sa) {
1756     charSetToUSet(gNameSet, sa);
1757 }
1758 
1759 /* data swapping ------------------------------------------------------------ */
1760 
1761 /*
1762  * The token table contains non-negative entries for token bytes,
1763  * and -1 for bytes that represent themselves in the data file's charset.
1764  * -2 entries are used for lead bytes.
1765  *
1766  * Direct bytes (-1 entries) must be translated from the input charset family
1767  * to the output charset family.
1768  * makeTokenMap() writes a permutation mapping for this.
1769  * Use it once for single-/lead-byte tokens and once more for all trail byte
1770  * tokens. (';' is an unused trail byte marked with -1.)
1771  */
1772 static void
makeTokenMap(const UDataSwapper * ds,int16_t tokens[],uint16_t tokenCount,uint8_t map[256],UErrorCode * pErrorCode)1773 makeTokenMap(const UDataSwapper *ds,
1774              int16_t tokens[], uint16_t tokenCount,
1775              uint8_t map[256],
1776              UErrorCode *pErrorCode) {
1777     UBool usedOutChar[256];
1778     uint16_t i, j;
1779     uint8_t c1, c2;
1780 
1781     if(U_FAILURE(*pErrorCode)) {
1782         return;
1783     }
1784 
1785     if(ds->inCharset==ds->outCharset) {
1786         /* Same charset family: identity permutation */
1787         for(i=0; i<256; ++i) {
1788             map[i]=(uint8_t)i;
1789         }
1790     } else {
1791         uprv_memset(map, 0, 256);
1792         uprv_memset(usedOutChar, 0, 256);
1793 
1794         if(tokenCount>256) {
1795             tokenCount=256;
1796         }
1797 
1798         /* set the direct bytes (byte 0 always maps to itself) */
1799         for(i=1; i<tokenCount; ++i) {
1800             if(tokens[i]==-1) {
1801                 /* convert the direct byte character */
1802                 c1=(uint8_t)i;
1803                 ds->swapInvChars(ds, &c1, 1, &c2, pErrorCode);
1804                 if(U_FAILURE(*pErrorCode)) {
1805                     udata_printError(ds, "unames/makeTokenMap() finds variant character 0x%02x used (input charset family %d)\n",
1806                                      i, ds->inCharset);
1807                     return;
1808                 }
1809 
1810                 /* enter the converted character into the map and mark it used */
1811                 map[c1]=c2;
1812                 usedOutChar[c2]=TRUE;
1813             }
1814         }
1815 
1816         /* set the mappings for the rest of the permutation */
1817         for(i=j=1; i<tokenCount; ++i) {
1818             /* set mappings that were not set for direct bytes */
1819             if(map[i]==0) {
1820                 /* set an output byte value that was not used as an output byte above */
1821                 while(usedOutChar[j]) {
1822                     ++j;
1823                 }
1824                 map[i]=(uint8_t)j++;
1825             }
1826         }
1827 
1828         /*
1829          * leave mappings at tokenCount and above unset if tokenCount<256
1830          * because they won't be used
1831          */
1832     }
1833 }
1834 
1835 U_CAPI int32_t U_EXPORT2
uchar_swapNames(const UDataSwapper * ds,const void * inData,int32_t length,void * outData,UErrorCode * pErrorCode)1836 uchar_swapNames(const UDataSwapper *ds,
1837                 const void *inData, int32_t length, void *outData,
1838                 UErrorCode *pErrorCode) {
1839     const UDataInfo *pInfo;
1840     int32_t headerSize;
1841 
1842     const uint8_t *inBytes;
1843     uint8_t *outBytes;
1844 
1845     uint32_t tokenStringOffset, groupsOffset, groupStringOffset, algNamesOffset,
1846              offset, i, count, stringsCount;
1847 
1848     const AlgorithmicRange *inRange;
1849     AlgorithmicRange *outRange;
1850 
1851     /* udata_swapDataHeader checks the arguments */
1852     headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode);
1853     if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) {
1854         return 0;
1855     }
1856 
1857     /* check data format and format version */
1858     pInfo=(const UDataInfo *)((const char *)inData+4);
1859     if(!(
1860         pInfo->dataFormat[0]==0x75 &&   /* dataFormat="unam" */
1861         pInfo->dataFormat[1]==0x6e &&
1862         pInfo->dataFormat[2]==0x61 &&
1863         pInfo->dataFormat[3]==0x6d &&
1864         pInfo->formatVersion[0]==1
1865     )) {
1866         udata_printError(ds, "uchar_swapNames(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as unames.icu\n",
1867                          pInfo->dataFormat[0], pInfo->dataFormat[1],
1868                          pInfo->dataFormat[2], pInfo->dataFormat[3],
1869                          pInfo->formatVersion[0]);
1870         *pErrorCode=U_UNSUPPORTED_ERROR;
1871         return 0;
1872     }
1873 
1874     inBytes=(const uint8_t *)inData+headerSize;
1875     outBytes=(uint8_t *)outData+headerSize;
1876     if(length<0) {
1877         algNamesOffset=ds->readUInt32(((const uint32_t *)inBytes)[3]);
1878     } else {
1879         length-=headerSize;
1880         if( length<20 ||
1881             (uint32_t)length<(algNamesOffset=ds->readUInt32(((const uint32_t *)inBytes)[3]))
1882         ) {
1883             udata_printError(ds, "uchar_swapNames(): too few bytes (%d after header) for unames.icu\n",
1884                              length);
1885             *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
1886             return 0;
1887         }
1888     }
1889 
1890     if(length<0) {
1891         /* preflighting: iterate through algorithmic ranges */
1892         offset=algNamesOffset;
1893         count=ds->readUInt32(*((const uint32_t *)(inBytes+offset)));
1894         offset+=4;
1895 
1896         for(i=0; i<count; ++i) {
1897             inRange=(const AlgorithmicRange *)(inBytes+offset);
1898             offset+=ds->readUInt16(inRange->size);
1899         }
1900     } else {
1901         /* swap data */
1902         const uint16_t *p;
1903         uint16_t *q, *temp;
1904 
1905         int16_t tokens[512];
1906         uint16_t tokenCount;
1907 
1908         uint8_t map[256], trailMap[256];
1909 
1910         /* copy the data for inaccessible bytes */
1911         if(inBytes!=outBytes) {
1912             uprv_memcpy(outBytes, inBytes, length);
1913         }
1914 
1915         /* the initial 4 offsets first */
1916         tokenStringOffset=ds->readUInt32(((const uint32_t *)inBytes)[0]);
1917         groupsOffset=ds->readUInt32(((const uint32_t *)inBytes)[1]);
1918         groupStringOffset=ds->readUInt32(((const uint32_t *)inBytes)[2]);
1919         ds->swapArray32(ds, inBytes, 16, outBytes, pErrorCode);
1920 
1921         /*
1922          * now the tokens table
1923          * it needs to be permutated along with the compressed name strings
1924          */
1925         p=(const uint16_t *)(inBytes+16);
1926         q=(uint16_t *)(outBytes+16);
1927 
1928         /* read and swap the tokenCount */
1929         tokenCount=ds->readUInt16(*p);
1930         ds->swapArray16(ds, p, 2, q, pErrorCode);
1931         ++p;
1932         ++q;
1933 
1934         /* read the first 512 tokens and make the token maps */
1935         if(tokenCount<=512) {
1936             count=tokenCount;
1937         } else {
1938             count=512;
1939         }
1940         for(i=0; i<count; ++i) {
1941             tokens[i]=udata_readInt16(ds, p[i]);
1942         }
1943         for(; i<512; ++i) {
1944             tokens[i]=0; /* fill the rest of the tokens array if tokenCount<512 */
1945         }
1946         makeTokenMap(ds, tokens, tokenCount, map, pErrorCode);
1947         makeTokenMap(ds, tokens+256, (uint16_t)(tokenCount>256 ? tokenCount-256 : 0), trailMap, pErrorCode);
1948         if(U_FAILURE(*pErrorCode)) {
1949             return 0;
1950         }
1951 
1952         /*
1953          * swap and permutate the tokens
1954          * go through a temporary array to support in-place swapping
1955          */
1956         temp=(uint16_t *)uprv_malloc(tokenCount*2);
1957         if(temp==NULL) {
1958             udata_printError(ds, "out of memory swapping %u unames.icu tokens\n",
1959                              tokenCount);
1960             *pErrorCode=U_MEMORY_ALLOCATION_ERROR;
1961             return 0;
1962         }
1963 
1964         /* swap and permutate single-/lead-byte tokens */
1965         for(i=0; i<tokenCount && i<256; ++i) {
1966             ds->swapArray16(ds, p+i, 2, temp+map[i], pErrorCode);
1967         }
1968 
1969         /* swap and permutate trail-byte tokens */
1970         for(; i<tokenCount; ++i) {
1971             ds->swapArray16(ds, p+i, 2, temp+(i&0xffffff00)+trailMap[i&0xff], pErrorCode);
1972         }
1973 
1974         /* copy the result into the output and free the temporary array */
1975         uprv_memcpy(q, temp, tokenCount*2);
1976         uprv_free(temp);
1977 
1978         /*
1979          * swap the token strings but not a possible padding byte after
1980          * the terminating NUL of the last string
1981          */
1982         udata_swapInvStringBlock(ds, inBytes+tokenStringOffset, (int32_t)(groupsOffset-tokenStringOffset),
1983                                     outBytes+tokenStringOffset, pErrorCode);
1984         if(U_FAILURE(*pErrorCode)) {
1985             udata_printError(ds, "uchar_swapNames(token strings) failed\n");
1986             return 0;
1987         }
1988 
1989         /* swap the group table */
1990         count=ds->readUInt16(*((const uint16_t *)(inBytes+groupsOffset)));
1991         ds->swapArray16(ds, inBytes+groupsOffset, (int32_t)((1+count*3)*2),
1992                            outBytes+groupsOffset, pErrorCode);
1993 
1994         /*
1995          * swap the group strings
1996          * swap the string bytes but not the nibble-encoded string lengths
1997          */
1998         if(ds->inCharset!=ds->outCharset) {
1999             uint16_t offsets[LINES_PER_GROUP+1], lengths[LINES_PER_GROUP+1];
2000 
2001             const uint8_t *inStrings, *nextInStrings;
2002             uint8_t *outStrings;
2003 
2004             uint8_t c;
2005 
2006             inStrings=inBytes+groupStringOffset;
2007             outStrings=outBytes+groupStringOffset;
2008 
2009             stringsCount=algNamesOffset-groupStringOffset;
2010 
2011             /* iterate through string groups until only a few padding bytes are left */
2012             while(stringsCount>32) {
2013                 nextInStrings=expandGroupLengths(inStrings, offsets, lengths);
2014 
2015                 /* move past the length bytes */
2016                 stringsCount-=(uint32_t)(nextInStrings-inStrings);
2017                 outStrings+=nextInStrings-inStrings;
2018                 inStrings=nextInStrings;
2019 
2020                 count=offsets[31]+lengths[31]; /* total number of string bytes in this group */
2021                 stringsCount-=count;
2022 
2023                 /* swap the string bytes using map[] and trailMap[] */
2024                 while(count>0) {
2025                     c=*inStrings++;
2026                     *outStrings++=map[c];
2027                     if(tokens[c]!=-2) {
2028                         --count;
2029                     } else {
2030                         /* token lead byte: swap the trail byte, too */
2031                         *outStrings++=trailMap[*inStrings++];
2032                         count-=2;
2033                     }
2034                 }
2035             }
2036         }
2037 
2038         /* swap the algorithmic ranges */
2039         offset=algNamesOffset;
2040         count=ds->readUInt32(*((const uint32_t *)(inBytes+offset)));
2041         ds->swapArray32(ds, inBytes+offset, 4, outBytes+offset, pErrorCode);
2042         offset+=4;
2043 
2044         for(i=0; i<count; ++i) {
2045             if(offset>(uint32_t)length) {
2046                 udata_printError(ds, "uchar_swapNames(): too few bytes (%d after header) for unames.icu algorithmic range %u\n",
2047                                  length, i);
2048                 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR;
2049                 return 0;
2050             }
2051 
2052             inRange=(const AlgorithmicRange *)(inBytes+offset);
2053             outRange=(AlgorithmicRange *)(outBytes+offset);
2054             offset+=ds->readUInt16(inRange->size);
2055 
2056             ds->swapArray32(ds, inRange, 8, outRange, pErrorCode);
2057             ds->swapArray16(ds, &inRange->size, 2, &outRange->size, pErrorCode);
2058             switch(inRange->type) {
2059             case 0:
2060                 /* swap prefix string */
2061                 ds->swapInvChars(ds, inRange+1, (int32_t)uprv_strlen((const char *)(inRange+1)),
2062                                     outRange+1, pErrorCode);
2063                 if(U_FAILURE(*pErrorCode)) {
2064                     udata_printError(ds, "uchar_swapNames(prefix string of algorithmic range %u) failed\n",
2065                                      i);
2066                     return 0;
2067                 }
2068                 break;
2069             case 1:
2070                 {
2071                     /* swap factors and the prefix and factor strings */
2072                     uint32_t factorsCount;
2073 
2074                     factorsCount=inRange->variant;
2075                     p=(const uint16_t *)(inRange+1);
2076                     q=(uint16_t *)(outRange+1);
2077                     ds->swapArray16(ds, p, (int32_t)(factorsCount*2), q, pErrorCode);
2078 
2079                     /* swap the strings, up to the last terminating NUL */
2080                     p+=factorsCount;
2081                     q+=factorsCount;
2082                     stringsCount=(uint32_t)((inBytes+offset)-(const uint8_t *)p);
2083                     while(stringsCount>0 && ((const uint8_t *)p)[stringsCount-1]!=0) {
2084                         --stringsCount;
2085                     }
2086                     ds->swapInvChars(ds, p, (int32_t)stringsCount, q, pErrorCode);
2087                 }
2088                 break;
2089             default:
2090                 udata_printError(ds, "uchar_swapNames(): unknown type %u of algorithmic range %u\n",
2091                                  inRange->type, i);
2092                 *pErrorCode=U_UNSUPPORTED_ERROR;
2093                 return 0;
2094             }
2095         }
2096     }
2097 
2098     return headerSize+(int32_t)offset;
2099 }
2100 
2101 /*
2102  * Hey, Emacs, please set the following:
2103  *
2104  * Local Variables:
2105  * indent-tabs-mode: nil
2106  * End:
2107  *
2108  */
2109