1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #if V8_TARGET_ARCH_ARM
6 
7 #include "src/api/api-arguments.h"
8 #include "src/codegen/code-factory.h"
9 #include "src/codegen/interface-descriptors-inl.h"
10 // For interpreter_entry_return_pc_offset. TODO(jkummerow): Drop.
11 #include "src/codegen/macro-assembler-inl.h"
12 #include "src/codegen/register-configuration.h"
13 #include "src/debug/debug.h"
14 #include "src/deoptimizer/deoptimizer.h"
15 #include "src/execution/frame-constants.h"
16 #include "src/execution/frames.h"
17 #include "src/heap/heap-inl.h"
18 #include "src/logging/counters.h"
19 #include "src/objects/cell.h"
20 #include "src/objects/foreign.h"
21 #include "src/objects/heap-number.h"
22 #include "src/objects/js-generator.h"
23 #include "src/objects/objects-inl.h"
24 #include "src/objects/smi.h"
25 #include "src/runtime/runtime.h"
26 
27 #if V8_ENABLE_WEBASSEMBLY
28 #include "src/wasm/wasm-linkage.h"
29 #include "src/wasm/wasm-objects.h"
30 #endif  // V8_ENABLE_WEBASSEMBLY
31 
32 namespace v8 {
33 namespace internal {
34 
35 #define __ ACCESS_MASM(masm)
36 
Generate_Adaptor(MacroAssembler * masm,Address address)37 void Builtins::Generate_Adaptor(MacroAssembler* masm, Address address) {
38 #if defined(__thumb__)
39   // Thumb mode builtin.
40   DCHECK_EQ(1, reinterpret_cast<uintptr_t>(
41                    ExternalReference::Create(address).address()) &
42                    1);
43 #endif
44   __ Move(kJavaScriptCallExtraArg1Register, ExternalReference::Create(address));
45   __ Jump(BUILTIN_CODE(masm->isolate(), AdaptorWithBuiltinExitFrame),
46           RelocInfo::CODE_TARGET);
47 }
48 
GenerateTailCallToReturnedCode(MacroAssembler * masm,Runtime::FunctionId function_id)49 static void GenerateTailCallToReturnedCode(MacroAssembler* masm,
50                                            Runtime::FunctionId function_id) {
51   // ----------- S t a t e -------------
52   //  -- r0 : actual argument count
53   //  -- r1 : target function (preserved for callee)
54   //  -- r3 : new target (preserved for callee)
55   // -----------------------------------
56   {
57     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
58     // Push a copy of the target function, the new target and the actual
59     // argument count.
60     // Push function as parameter to the runtime call.
61     __ SmiTag(kJavaScriptCallArgCountRegister);
62     __ Push(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
63             kJavaScriptCallArgCountRegister, kJavaScriptCallTargetRegister);
64 
65     __ CallRuntime(function_id, 1);
66     __ mov(r2, r0);
67 
68     // Restore target function, new target and actual argument count.
69     __ Pop(kJavaScriptCallTargetRegister, kJavaScriptCallNewTargetRegister,
70            kJavaScriptCallArgCountRegister);
71     __ SmiUntag(kJavaScriptCallArgCountRegister);
72   }
73   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
74   __ JumpCodeObject(r2);
75 }
76 
77 namespace {
78 
79 enum class ArgumentsElementType {
80   kRaw,    // Push arguments as they are.
81   kHandle  // Dereference arguments before pushing.
82 };
83 
Generate_PushArguments(MacroAssembler * masm,Register array,Register argc,Register scratch,ArgumentsElementType element_type)84 void Generate_PushArguments(MacroAssembler* masm, Register array, Register argc,
85                             Register scratch,
86                             ArgumentsElementType element_type) {
87   DCHECK(!AreAliased(array, argc, scratch));
88   UseScratchRegisterScope temps(masm);
89   Register counter = scratch;
90   Register value = temps.Acquire();
91   Label loop, entry;
92   if (kJSArgcIncludesReceiver) {
93     __ sub(counter, argc, Operand(kJSArgcReceiverSlots));
94   } else {
95     __ mov(counter, argc);
96   }
97   __ b(&entry);
98   __ bind(&loop);
99   __ ldr(value, MemOperand(array, counter, LSL, kSystemPointerSizeLog2));
100   if (element_type == ArgumentsElementType::kHandle) {
101     __ ldr(value, MemOperand(value));
102   }
103   __ push(value);
104   __ bind(&entry);
105   __ sub(counter, counter, Operand(1), SetCC);
106   __ b(ge, &loop);
107 }
108 
Generate_JSBuiltinsConstructStubHelper(MacroAssembler * masm)109 void Generate_JSBuiltinsConstructStubHelper(MacroAssembler* masm) {
110   // ----------- S t a t e -------------
111   //  -- r0     : number of arguments
112   //  -- r1     : constructor function
113   //  -- r3     : new target
114   //  -- cp     : context
115   //  -- lr     : return address
116   //  -- sp[...]: constructor arguments
117   // -----------------------------------
118 
119   Register scratch = r2;
120 
121   Label stack_overflow;
122 
123   __ StackOverflowCheck(r0, scratch, &stack_overflow);
124 
125   // Enter a construct frame.
126   {
127     FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT);
128 
129     // Preserve the incoming parameters on the stack.
130     __ SmiTag(r0);
131     __ Push(cp, r0);
132     __ SmiUntag(r0);
133 
134     // TODO(victorgomes): When the arguments adaptor is completely removed, we
135     // should get the formal parameter count and copy the arguments in its
136     // correct position (including any undefined), instead of delaying this to
137     // InvokeFunction.
138 
139     // Set up pointer to first argument (skip receiver).
140     __ add(
141         r4, fp,
142         Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));
143     // Copy arguments and receiver to the expression stack.
144     // r4: Pointer to start of arguments.
145     // r0: Number of arguments.
146     Generate_PushArguments(masm, r4, r0, r5, ArgumentsElementType::kRaw);
147     // The receiver for the builtin/api call.
148     __ PushRoot(RootIndex::kTheHoleValue);
149 
150     // Call the function.
151     // r0: number of arguments (untagged)
152     // r1: constructor function
153     // r3: new target
154     __ InvokeFunctionWithNewTarget(r1, r3, r0, InvokeType::kCall);
155 
156     // Restore context from the frame.
157     __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
158     // Restore smi-tagged arguments count from the frame.
159     __ ldr(scratch, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
160     // Leave construct frame.
161   }
162 
163   // Remove caller arguments from the stack and return.
164   __ DropArguments(scratch, TurboAssembler::kCountIsSmi,
165                    kJSArgcIncludesReceiver
166                        ? TurboAssembler::kCountIncludesReceiver
167                        : TurboAssembler::kCountExcludesReceiver);
168   __ Jump(lr);
169 
170   __ bind(&stack_overflow);
171   {
172     FrameScope scope(masm, StackFrame::INTERNAL);
173     __ CallRuntime(Runtime::kThrowStackOverflow);
174     __ bkpt(0);  // Unreachable code.
175   }
176 }
177 
178 }  // namespace
179 
180 // The construct stub for ES5 constructor functions and ES6 class constructors.
Generate_JSConstructStubGeneric(MacroAssembler * masm)181 void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
182   // ----------- S t a t e -------------
183   //  --      r0: number of arguments (untagged)
184   //  --      r1: constructor function
185   //  --      r3: new target
186   //  --      cp: context
187   //  --      lr: return address
188   //  -- sp[...]: constructor arguments
189   // -----------------------------------
190 
191   FrameScope scope(masm, StackFrame::MANUAL);
192   // Enter a construct frame.
193   Label post_instantiation_deopt_entry, not_create_implicit_receiver;
194   __ EnterFrame(StackFrame::CONSTRUCT);
195 
196   // Preserve the incoming parameters on the stack.
197   __ LoadRoot(r4, RootIndex::kTheHoleValue);
198   __ SmiTag(r0);
199   __ Push(cp, r0, r1, r4, r3);
200 
201   // ----------- S t a t e -------------
202   //  --        sp[0*kPointerSize]: new target
203   //  --        sp[1*kPointerSize]: padding
204   //  -- r1 and sp[2*kPointerSize]: constructor function
205   //  --        sp[3*kPointerSize]: number of arguments (tagged)
206   //  --        sp[4*kPointerSize]: context
207   // -----------------------------------
208 
209   __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
210   __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
211   __ DecodeField<SharedFunctionInfo::FunctionKindBits>(r4);
212   __ JumpIfIsInRange(r4, kDefaultDerivedConstructor, kDerivedConstructor,
213                      &not_create_implicit_receiver);
214 
215   // If not derived class constructor: Allocate the new receiver object.
216   __ IncrementCounter(masm->isolate()->counters()->constructed_objects(), 1, r4,
217                       r5);
218   __ Call(BUILTIN_CODE(masm->isolate(), FastNewObject), RelocInfo::CODE_TARGET);
219   __ b(&post_instantiation_deopt_entry);
220 
221   // Else: use TheHoleValue as receiver for constructor call
222   __ bind(&not_create_implicit_receiver);
223   __ LoadRoot(r0, RootIndex::kTheHoleValue);
224 
225   // ----------- S t a t e -------------
226   //  --                          r0: receiver
227   //  -- Slot 3 / sp[0*kPointerSize]: new target
228   //  -- Slot 2 / sp[1*kPointerSize]: constructor function
229   //  -- Slot 1 / sp[2*kPointerSize]: number of arguments (tagged)
230   //  -- Slot 0 / sp[3*kPointerSize]: context
231   // -----------------------------------
232   // Deoptimizer enters here.
233   masm->isolate()->heap()->SetConstructStubCreateDeoptPCOffset(
234       masm->pc_offset());
235   __ bind(&post_instantiation_deopt_entry);
236 
237   // Restore new target.
238   __ Pop(r3);
239 
240   // Push the allocated receiver to the stack.
241   __ Push(r0);
242   // We need two copies because we may have to return the original one
243   // and the calling conventions dictate that the called function pops the
244   // receiver. The second copy is pushed after the arguments, we saved in r6
245   // since r0 needs to store the number of arguments before
246   // InvokingFunction.
247   __ mov(r6, r0);
248 
249   // Set up pointer to first argument (skip receiver).
250   __ add(r4, fp,
251          Operand(StandardFrameConstants::kCallerSPOffset + kSystemPointerSize));
252 
253   // Restore constructor function and argument count.
254   __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kConstructorOffset));
255   __ ldr(r0, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
256   __ SmiUntag(r0);
257 
258   Label stack_overflow;
259   __ StackOverflowCheck(r0, r5, &stack_overflow);
260 
261   // TODO(victorgomes): When the arguments adaptor is completely removed, we
262   // should get the formal parameter count and copy the arguments in its
263   // correct position (including any undefined), instead of delaying this to
264   // InvokeFunction.
265 
266   // Copy arguments to the expression stack.
267   // r4: Pointer to start of argument.
268   // r0: Number of arguments.
269   Generate_PushArguments(masm, r4, r0, r5, ArgumentsElementType::kRaw);
270 
271   // Push implicit receiver.
272   __ Push(r6);
273 
274   // Call the function.
275   __ InvokeFunctionWithNewTarget(r1, r3, r0, InvokeType::kCall);
276 
277   // ----------- S t a t e -------------
278   //  --                 r0: constructor result
279   //  -- sp[0*kPointerSize]: implicit receiver
280   //  -- sp[1*kPointerSize]: padding
281   //  -- sp[2*kPointerSize]: constructor function
282   //  -- sp[3*kPointerSize]: number of arguments
283   //  -- sp[4*kPointerSize]: context
284   // -----------------------------------
285 
286   // Store offset of return address for deoptimizer.
287   masm->isolate()->heap()->SetConstructStubInvokeDeoptPCOffset(
288       masm->pc_offset());
289 
290   // If the result is an object (in the ECMA sense), we should get rid
291   // of the receiver and use the result; see ECMA-262 section 13.2.2-7
292   // on page 74.
293   Label use_receiver, do_throw, leave_and_return, check_receiver;
294 
295   // If the result is undefined, we jump out to using the implicit receiver.
296   __ JumpIfNotRoot(r0, RootIndex::kUndefinedValue, &check_receiver);
297 
298   // Otherwise we do a smi check and fall through to check if the return value
299   // is a valid receiver.
300 
301   // Throw away the result of the constructor invocation and use the
302   // on-stack receiver as the result.
303   __ bind(&use_receiver);
304   __ ldr(r0, MemOperand(sp, 0 * kPointerSize));
305   __ JumpIfRoot(r0, RootIndex::kTheHoleValue, &do_throw);
306 
307   __ bind(&leave_and_return);
308   // Restore smi-tagged arguments count from the frame.
309   __ ldr(r1, MemOperand(fp, ConstructFrameConstants::kLengthOffset));
310   // Leave construct frame.
311   __ LeaveFrame(StackFrame::CONSTRUCT);
312 
313   // Remove caller arguments from the stack and return.
314   __ DropArguments(r1, TurboAssembler::kCountIsSmi,
315                    kJSArgcIncludesReceiver
316                        ? TurboAssembler::kCountIncludesReceiver
317                        : TurboAssembler::kCountExcludesReceiver);
318   __ Jump(lr);
319 
320   __ bind(&check_receiver);
321   // If the result is a smi, it is *not* an object in the ECMA sense.
322   __ JumpIfSmi(r0, &use_receiver);
323 
324   // If the type of the result (stored in its map) is less than
325   // FIRST_JS_RECEIVER_TYPE, it is not an object in the ECMA sense.
326   STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
327   __ CompareObjectType(r0, r4, r5, FIRST_JS_RECEIVER_TYPE);
328   __ b(ge, &leave_and_return);
329   __ b(&use_receiver);
330 
331   __ bind(&do_throw);
332   // Restore the context from the frame.
333   __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
334   __ CallRuntime(Runtime::kThrowConstructorReturnedNonObject);
335   __ bkpt(0);
336 
337   __ bind(&stack_overflow);
338   // Restore the context from the frame.
339   __ ldr(cp, MemOperand(fp, ConstructFrameConstants::kContextOffset));
340   __ CallRuntime(Runtime::kThrowStackOverflow);
341   // Unreachable code.
342   __ bkpt(0);
343 }
344 
Generate_JSBuiltinsConstructStub(MacroAssembler * masm)345 void Builtins::Generate_JSBuiltinsConstructStub(MacroAssembler* masm) {
346   Generate_JSBuiltinsConstructStubHelper(masm);
347 }
348 
AssertCodeIsBaseline(MacroAssembler * masm,Register code,Register scratch)349 static void AssertCodeIsBaseline(MacroAssembler* masm, Register code,
350                                  Register scratch) {
351   DCHECK(!AreAliased(code, scratch));
352   // Verify that the code kind is baseline code via the CodeKind.
353   __ ldr(scratch, FieldMemOperand(code, Code::kFlagsOffset));
354   __ DecodeField<Code::KindField>(scratch);
355   __ cmp(scratch, Operand(static_cast<int>(CodeKind::BASELINE)));
356   __ Assert(eq, AbortReason::kExpectedBaselineData);
357 }
358 
GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler * masm,Register sfi_data,Register scratch1,Label * is_baseline)359 static void GetSharedFunctionInfoBytecodeOrBaseline(MacroAssembler* masm,
360                                                     Register sfi_data,
361                                                     Register scratch1,
362                                                     Label* is_baseline) {
363   ASM_CODE_COMMENT(masm);
364   Label done;
365   __ CompareObjectType(sfi_data, scratch1, scratch1, CODET_TYPE);
366   if (FLAG_debug_code) {
367     Label not_baseline;
368     __ b(ne, &not_baseline);
369     AssertCodeIsBaseline(masm, sfi_data, scratch1);
370     __ b(eq, is_baseline);
371     __ bind(&not_baseline);
372   } else {
373     __ b(eq, is_baseline);
374   }
375   __ cmp(scratch1, Operand(INTERPRETER_DATA_TYPE));
376   __ b(ne, &done);
377   __ ldr(sfi_data,
378          FieldMemOperand(sfi_data, InterpreterData::kBytecodeArrayOffset));
379 
380   __ bind(&done);
381 }
382 
383 // static
Generate_ResumeGeneratorTrampoline(MacroAssembler * masm)384 void Builtins::Generate_ResumeGeneratorTrampoline(MacroAssembler* masm) {
385   // ----------- S t a t e -------------
386   //  -- r0 : the value to pass to the generator
387   //  -- r1 : the JSGeneratorObject to resume
388   //  -- lr : return address
389   // -----------------------------------
390   // Store input value into generator object.
391   __ str(r0, FieldMemOperand(r1, JSGeneratorObject::kInputOrDebugPosOffset));
392   __ RecordWriteField(r1, JSGeneratorObject::kInputOrDebugPosOffset, r0,
393                       kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore);
394   // Check that r1 is still valid, RecordWrite might have clobbered it.
395   __ AssertGeneratorObject(r1);
396 
397   // Load suspended function and context.
398   __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
399   __ ldr(cp, FieldMemOperand(r4, JSFunction::kContextOffset));
400 
401   Label prepare_step_in_if_stepping, prepare_step_in_suspended_generator;
402   Label stepping_prepared;
403   Register scratch = r5;
404 
405   // Flood function if we are stepping.
406   ExternalReference debug_hook =
407       ExternalReference::debug_hook_on_function_call_address(masm->isolate());
408   __ Move(scratch, debug_hook);
409   __ ldrsb(scratch, MemOperand(scratch));
410   __ cmp(scratch, Operand(0));
411   __ b(ne, &prepare_step_in_if_stepping);
412 
413   // Flood function if we need to continue stepping in the suspended
414   // generator.
415   ExternalReference debug_suspended_generator =
416       ExternalReference::debug_suspended_generator_address(masm->isolate());
417   __ Move(scratch, debug_suspended_generator);
418   __ ldr(scratch, MemOperand(scratch));
419   __ cmp(scratch, Operand(r1));
420   __ b(eq, &prepare_step_in_suspended_generator);
421   __ bind(&stepping_prepared);
422 
423   // Check the stack for overflow. We are not trying to catch interruptions
424   // (i.e. debug break and preemption) here, so check the "real stack limit".
425   Label stack_overflow;
426   __ LoadStackLimit(scratch, StackLimitKind::kRealStackLimit);
427   __ cmp(sp, scratch);
428   __ b(lo, &stack_overflow);
429 
430   // ----------- S t a t e -------------
431   //  -- r1    : the JSGeneratorObject to resume
432   //  -- r4    : generator function
433   //  -- cp    : generator context
434   //  -- lr    : return address
435   //  -- sp[0] : generator receiver
436   // -----------------------------------
437 
438   // Copy the function arguments from the generator object's register file.
439   __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
440   __ ldrh(r3,
441           FieldMemOperand(r3, SharedFunctionInfo::kFormalParameterCountOffset));
442   if (kJSArgcIncludesReceiver) {
443     __ sub(r3, r3, Operand(kJSArgcReceiverSlots));
444   }
445   __ ldr(r2,
446          FieldMemOperand(r1, JSGeneratorObject::kParametersAndRegistersOffset));
447   {
448     Label done_loop, loop;
449     __ bind(&loop);
450     __ sub(r3, r3, Operand(1), SetCC);
451     __ b(lt, &done_loop);
452     __ add(scratch, r2, Operand(r3, LSL, kTaggedSizeLog2));
453     __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
454     __ Push(scratch);
455     __ b(&loop);
456     __ bind(&done_loop);
457 
458     // Push receiver.
459     __ ldr(scratch, FieldMemOperand(r1, JSGeneratorObject::kReceiverOffset));
460     __ Push(scratch);
461   }
462 
463   // Underlying function needs to have bytecode available.
464   if (FLAG_debug_code) {
465     Label is_baseline;
466     __ ldr(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
467     __ ldr(r3, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset));
468     GetSharedFunctionInfoBytecodeOrBaseline(masm, r3, r0, &is_baseline);
469     __ CompareObjectType(r3, r3, r3, BYTECODE_ARRAY_TYPE);
470     __ Assert(eq, AbortReason::kMissingBytecodeArray);
471     __ bind(&is_baseline);
472   }
473 
474   // Resume (Ignition/TurboFan) generator object.
475   {
476     __ ldr(r0, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset));
477     __ ldrh(r0, FieldMemOperand(
478                     r0, SharedFunctionInfo::kFormalParameterCountOffset));
479     // We abuse new.target both to indicate that this is a resume call and to
480     // pass in the generator object.  In ordinary calls, new.target is always
481     // undefined because generator functions are non-constructable.
482     __ Move(r3, r1);
483     __ Move(r1, r4);
484     static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
485     __ ldr(r2, FieldMemOperand(r1, JSFunction::kCodeOffset));
486     __ JumpCodeObject(r2);
487   }
488 
489   __ bind(&prepare_step_in_if_stepping);
490   {
491     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
492     __ Push(r1, r4);
493     // Push hole as receiver since we do not use it for stepping.
494     __ PushRoot(RootIndex::kTheHoleValue);
495     __ CallRuntime(Runtime::kDebugOnFunctionCall);
496     __ Pop(r1);
497     __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
498   }
499   __ b(&stepping_prepared);
500 
501   __ bind(&prepare_step_in_suspended_generator);
502   {
503     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
504     __ Push(r1);
505     __ CallRuntime(Runtime::kDebugPrepareStepInSuspendedGenerator);
506     __ Pop(r1);
507     __ ldr(r4, FieldMemOperand(r1, JSGeneratorObject::kFunctionOffset));
508   }
509   __ b(&stepping_prepared);
510 
511   __ bind(&stack_overflow);
512   {
513     FrameScope scope(masm, StackFrame::INTERNAL);
514     __ CallRuntime(Runtime::kThrowStackOverflow);
515     __ bkpt(0);  // This should be unreachable.
516   }
517 }
518 
Generate_ConstructedNonConstructable(MacroAssembler * masm)519 void Builtins::Generate_ConstructedNonConstructable(MacroAssembler* masm) {
520   FrameScope scope(masm, StackFrame::INTERNAL);
521   __ push(r1);
522   __ CallRuntime(Runtime::kThrowConstructedNonConstructable);
523 }
524 
525 namespace {
526 
527 // Total size of the stack space pushed by JSEntryVariant.
528 // JSEntryTrampoline uses this to access on stack arguments passed to
529 // JSEntryVariant.
530 constexpr int kPushedStackSpace = kNumCalleeSaved * kPointerSize -
531                                   kPointerSize /* FP */ +
532                                   kNumDoubleCalleeSaved * kDoubleSize +
533                                   5 * kPointerSize /* r5, r6, r7, fp, lr */ +
534                                   EntryFrameConstants::kCallerFPOffset;
535 
536 // Assert that the EntryFrameConstants are in sync with the builtin.
537 static_assert(kPushedStackSpace == EntryFrameConstants::kDirectCallerSPOffset +
538                                        3 * kPointerSize /* r5, r6, r7*/ +
539                                        EntryFrameConstants::kCallerFPOffset,
540               "Pushed stack space and frame constants do not match. See "
541               "frame-constants-arm.h");
542 
543 // Called with the native C calling convention. The corresponding function
544 // signature is either:
545 //
546 //   using JSEntryFunction = GeneratedCode<Address(
547 //       Address root_register_value, Address new_target, Address target,
548 //       Address receiver, intptr_t argc, Address** argv)>;
549 // or
550 //   using JSEntryFunction = GeneratedCode<Address(
551 //       Address root_register_value, MicrotaskQueue* microtask_queue)>;
Generate_JSEntryVariant(MacroAssembler * masm,StackFrame::Type type,Builtin entry_trampoline)552 void Generate_JSEntryVariant(MacroAssembler* masm, StackFrame::Type type,
553                              Builtin entry_trampoline) {
554   // The register state is either:
555   //   r0:                            root_register_value
556   //   r1:                            code entry
557   //   r2:                            function
558   //   r3:                            receiver
559   //   [sp + 0 * kSystemPointerSize]: argc
560   //   [sp + 1 * kSystemPointerSize]: argv
561   // or
562   //   r0: root_register_value
563   //   r1: microtask_queue
564   // Preserve all but r0 and pass them to entry_trampoline.
565   Label invoke, handler_entry, exit;
566   const RegList kCalleeSavedWithoutFp = kCalleeSaved & ~fp.bit();
567 
568   // Update |pushed_stack_space| when we manipulate the stack.
569   int pushed_stack_space = EntryFrameConstants::kCallerFPOffset;
570   {
571     NoRootArrayScope no_root_array(masm);
572 
573     // Called from C, so do not pop argc and args on exit (preserve sp)
574     // No need to save register-passed args
575     // Save callee-saved registers (incl. cp), but without fp
576     __ stm(db_w, sp, kCalleeSavedWithoutFp);
577     pushed_stack_space +=
578         kNumCalleeSaved * kPointerSize - kPointerSize /* FP */;
579 
580     // Save callee-saved vfp registers.
581     __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
582     pushed_stack_space += kNumDoubleCalleeSaved * kDoubleSize;
583 
584     // Set up the reserved register for 0.0.
585     __ vmov(kDoubleRegZero, base::Double(0.0));
586 
587     // Initialize the root register.
588     // C calling convention. The first argument is passed in r0.
589     __ mov(kRootRegister, r0);
590   }
591 
592   // Push a frame with special values setup to mark it as an entry frame.
593   // r0: root_register_value
594   __ mov(r7, Operand(StackFrame::TypeToMarker(type)));
595   __ mov(r6, Operand(StackFrame::TypeToMarker(type)));
596   __ Move(r4, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
597                                         masm->isolate()));
598   __ ldr(r5, MemOperand(r4));
599 
600   __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | fp.bit() | lr.bit());
601   pushed_stack_space += 5 * kPointerSize /* r5, r6, r7, fp, lr */;
602 
603   // Clear c_entry_fp, now we've pushed its previous value to the stack.
604   // If the c_entry_fp is not already zero and we don't clear it, the
605   // SafeStackFrameIterator will assume we are executing C++ and miss the JS
606   // frames on top.
607   __ mov(r5, Operand::Zero());
608   __ str(r5, MemOperand(r4));
609 
610   Register scratch = r6;
611 
612   // Set up frame pointer for the frame to be pushed.
613   __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset));
614 
615   // If this is the outermost JS call, set js_entry_sp value.
616   Label non_outermost_js;
617   ExternalReference js_entry_sp = ExternalReference::Create(
618       IsolateAddressId::kJSEntrySPAddress, masm->isolate());
619   __ Move(r5, js_entry_sp);
620   __ ldr(scratch, MemOperand(r5));
621   __ cmp(scratch, Operand::Zero());
622   __ b(ne, &non_outermost_js);
623   __ str(fp, MemOperand(r5));
624   __ mov(scratch, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
625   Label cont;
626   __ b(&cont);
627   __ bind(&non_outermost_js);
628   __ mov(scratch, Operand(StackFrame::INNER_JSENTRY_FRAME));
629   __ bind(&cont);
630   __ push(scratch);
631 
632   // Jump to a faked try block that does the invoke, with a faked catch
633   // block that sets the pending exception.
634   __ jmp(&invoke);
635 
636   // Block literal pool emission whilst taking the position of the handler
637   // entry. This avoids making the assumption that literal pools are always
638   // emitted after an instruction is emitted, rather than before.
639   {
640     Assembler::BlockConstPoolScope block_const_pool(masm);
641     __ bind(&handler_entry);
642 
643     // Store the current pc as the handler offset. It's used later to create the
644     // handler table.
645     masm->isolate()->builtins()->SetJSEntryHandlerOffset(handler_entry.pos());
646 
647     // Caught exception: Store result (exception) in the pending exception
648     // field in the JSEnv and return a failure sentinel.  Coming in here the
649     // fp will be invalid because the PushStackHandler below sets it to 0 to
650     // signal the existence of the JSEntry frame.
651     __ Move(scratch,
652             ExternalReference::Create(
653                 IsolateAddressId::kPendingExceptionAddress, masm->isolate()));
654   }
655   __ str(r0, MemOperand(scratch));
656   __ LoadRoot(r0, RootIndex::kException);
657   __ b(&exit);
658 
659   // Invoke: Link this frame into the handler chain.
660   __ bind(&invoke);
661   // Must preserve r0-r4, r5-r6 are available.
662   __ PushStackHandler();
663   // If an exception not caught by another handler occurs, this handler
664   // returns control to the code after the bl(&invoke) above, which
665   // restores all kCalleeSaved registers (including cp and fp) to their
666   // saved values before returning a failure to C.
667   //
668   // Invoke the function by calling through JS entry trampoline builtin and
669   // pop the faked function when we return.
670   Handle<Code> trampoline_code =
671       masm->isolate()->builtins()->code_handle(entry_trampoline);
672   DCHECK_EQ(kPushedStackSpace, pushed_stack_space);
673   USE(pushed_stack_space);
674   __ Call(trampoline_code, RelocInfo::CODE_TARGET);
675 
676   // Unlink this frame from the handler chain.
677   __ PopStackHandler();
678 
679   __ bind(&exit);  // r0 holds result
680   // Check if the current stack frame is marked as the outermost JS frame.
681   Label non_outermost_js_2;
682   __ pop(r5);
683   __ cmp(r5, Operand(StackFrame::OUTERMOST_JSENTRY_FRAME));
684   __ b(ne, &non_outermost_js_2);
685   __ mov(r6, Operand::Zero());
686   __ Move(r5, js_entry_sp);
687   __ str(r6, MemOperand(r5));
688   __ bind(&non_outermost_js_2);
689 
690   // Restore the top frame descriptors from the stack.
691   __ pop(r3);
692   __ Move(scratch, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress,
693                                              masm->isolate()));
694   __ str(r3, MemOperand(scratch));
695 
696   // Reset the stack to the callee saved registers.
697   __ add(sp, sp,
698          Operand(-EntryFrameConstants::kCallerFPOffset -
699                  kSystemPointerSize /* already popped one */));
700 
701   __ ldm(ia_w, sp, fp.bit() | lr.bit());
702 
703   // Restore callee-saved vfp registers.
704   __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg);
705 
706   __ ldm(ia_w, sp, kCalleeSavedWithoutFp);
707 
708   __ mov(pc, lr);
709 
710   // Emit constant pool.
711   __ CheckConstPool(true, false);
712 }
713 
714 }  // namespace
715 
Generate_JSEntry(MacroAssembler * masm)716 void Builtins::Generate_JSEntry(MacroAssembler* masm) {
717   Generate_JSEntryVariant(masm, StackFrame::ENTRY, Builtin::kJSEntryTrampoline);
718 }
719 
Generate_JSConstructEntry(MacroAssembler * masm)720 void Builtins::Generate_JSConstructEntry(MacroAssembler* masm) {
721   Generate_JSEntryVariant(masm, StackFrame::CONSTRUCT_ENTRY,
722                           Builtin::kJSConstructEntryTrampoline);
723 }
724 
Generate_JSRunMicrotasksEntry(MacroAssembler * masm)725 void Builtins::Generate_JSRunMicrotasksEntry(MacroAssembler* masm) {
726   Generate_JSEntryVariant(masm, StackFrame::ENTRY,
727                           Builtin::kRunMicrotasksTrampoline);
728 }
729 
Generate_JSEntryTrampolineHelper(MacroAssembler * masm,bool is_construct)730 static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
731                                              bool is_construct) {
732   // Called from Generate_JS_Entry
733   // r0:                                                root_register_value
734   // r1:                                                new.target
735   // r2:                                                function
736   // r3:                                                receiver
737   // [fp + kPushedStackSpace + 0 * kSystemPointerSize]: argc
738   // [fp + kPushedStackSpace + 1 * kSystemPointerSize]: argv
739   // r5-r6, r8 and cp may be clobbered
740 
741   __ ldr(r0,
742          MemOperand(fp, kPushedStackSpace + EntryFrameConstants::kArgcOffset));
743   __ ldr(r4,
744          MemOperand(fp, kPushedStackSpace + EntryFrameConstants::kArgvOffset));
745 
746   // r1: new.target
747   // r2: function
748   // r3: receiver
749   // r0: argc
750   // r4: argv
751 
752   // Enter an internal frame.
753   {
754     FrameScope scope(masm, StackFrame::INTERNAL);
755 
756     // Setup the context (we need to use the caller context from the isolate).
757     ExternalReference context_address = ExternalReference::Create(
758         IsolateAddressId::kContextAddress, masm->isolate());
759     __ Move(cp, context_address);
760     __ ldr(cp, MemOperand(cp));
761 
762     // Push the function.
763     __ Push(r2);
764 
765     // Check if we have enough stack space to push all arguments + receiver.
766     // Clobbers r5.
767     Label enough_stack_space, stack_overflow;
768     if (kJSArgcIncludesReceiver) {
769       __ mov(r6, r0);
770     } else {
771       __ add(r6, r0, Operand(1));  // Add one for receiver.
772     }
773     __ StackOverflowCheck(r6, r5, &stack_overflow);
774     __ b(&enough_stack_space);
775     __ bind(&stack_overflow);
776     __ CallRuntime(Runtime::kThrowStackOverflow);
777     // Unreachable code.
778     __ bkpt(0);
779 
780     __ bind(&enough_stack_space);
781 
782     // Copy arguments to the stack.
783     // r1: new.target
784     // r2: function
785     // r3: receiver
786     // r0: argc
787     // r4: argv, i.e. points to first arg
788     Generate_PushArguments(masm, r4, r0, r5, ArgumentsElementType::kHandle);
789 
790     // Push the receiver.
791     __ Push(r3);
792 
793     // Setup new.target and function.
794     __ mov(r3, r1);
795     __ mov(r1, r2);
796     // r0: argc
797     // r1: function
798     // r3: new.target
799 
800     // Initialize all JavaScript callee-saved registers, since they will be seen
801     // by the garbage collector as part of handlers.
802     __ LoadRoot(r4, RootIndex::kUndefinedValue);
803     __ mov(r2, r4);
804     __ mov(r5, r4);
805     __ mov(r6, r4);
806     __ mov(r8, r4);
807     if (kR9Available == 1) {
808       __ mov(r9, r4);
809     }
810 
811     // Invoke the code.
812     Handle<Code> builtin = is_construct
813                                ? BUILTIN_CODE(masm->isolate(), Construct)
814                                : masm->isolate()->builtins()->Call();
815     __ Call(builtin, RelocInfo::CODE_TARGET);
816 
817     // Exit the JS frame and remove the parameters (except function), and
818     // return.
819     // Respect ABI stack constraint.
820   }
821   __ Jump(lr);
822 
823   // r0: result
824 }
825 
Generate_JSEntryTrampoline(MacroAssembler * masm)826 void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) {
827   Generate_JSEntryTrampolineHelper(masm, false);
828 }
829 
Generate_JSConstructEntryTrampoline(MacroAssembler * masm)830 void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
831   Generate_JSEntryTrampolineHelper(masm, true);
832 }
833 
Generate_RunMicrotasksTrampoline(MacroAssembler * masm)834 void Builtins::Generate_RunMicrotasksTrampoline(MacroAssembler* masm) {
835   // This expects two C++ function parameters passed by Invoke() in
836   // execution.cc.
837   //   r0: root_register_value
838   //   r1: microtask_queue
839 
840   __ mov(RunMicrotasksDescriptor::MicrotaskQueueRegister(), r1);
841   __ Jump(BUILTIN_CODE(masm->isolate(), RunMicrotasks), RelocInfo::CODE_TARGET);
842 }
843 
ReplaceClosureCodeWithOptimizedCode(MacroAssembler * masm,Register optimized_code,Register closure)844 static void ReplaceClosureCodeWithOptimizedCode(MacroAssembler* masm,
845                                                 Register optimized_code,
846                                                 Register closure) {
847   ASM_CODE_COMMENT(masm);
848   DCHECK(!AreAliased(optimized_code, closure));
849   // Store code entry in the closure.
850   __ str(optimized_code, FieldMemOperand(closure, JSFunction::kCodeOffset));
851   __ RecordWriteField(closure, JSFunction::kCodeOffset, optimized_code,
852                       kLRHasNotBeenSaved, SaveFPRegsMode::kIgnore,
853                       RememberedSetAction::kOmit, SmiCheck::kOmit);
854 }
855 
LeaveInterpreterFrame(MacroAssembler * masm,Register scratch1,Register scratch2)856 static void LeaveInterpreterFrame(MacroAssembler* masm, Register scratch1,
857                                   Register scratch2) {
858   ASM_CODE_COMMENT(masm);
859   Register params_size = scratch1;
860   // Get the size of the formal parameters + receiver (in bytes).
861   __ ldr(params_size,
862          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
863   __ ldr(params_size,
864          FieldMemOperand(params_size, BytecodeArray::kParameterSizeOffset));
865 
866   Register actual_params_size = scratch2;
867   // Compute the size of the actual parameters + receiver (in bytes).
868   __ ldr(actual_params_size,
869          MemOperand(fp, StandardFrameConstants::kArgCOffset));
870   __ lsl(actual_params_size, actual_params_size, Operand(kPointerSizeLog2));
871   if (!kJSArgcIncludesReceiver) {
872     __ add(actual_params_size, actual_params_size, Operand(kSystemPointerSize));
873   }
874 
875   // If actual is bigger than formal, then we should use it to free up the stack
876   // arguments.
877   __ cmp(params_size, actual_params_size);
878   __ mov(params_size, actual_params_size, LeaveCC, lt);
879 
880   // Leave the frame (also dropping the register file).
881   __ LeaveFrame(StackFrame::INTERPRETED);
882 
883   // Drop receiver + arguments.
884   __ DropArguments(params_size, TurboAssembler::kCountIsBytes,
885                    TurboAssembler::kCountIncludesReceiver);
886 }
887 
888 // Tail-call |function_id| if |actual_marker| == |expected_marker|
TailCallRuntimeIfMarkerEquals(MacroAssembler * masm,Register actual_marker,OptimizationMarker expected_marker,Runtime::FunctionId function_id)889 static void TailCallRuntimeIfMarkerEquals(MacroAssembler* masm,
890                                           Register actual_marker,
891                                           OptimizationMarker expected_marker,
892                                           Runtime::FunctionId function_id) {
893   ASM_CODE_COMMENT(masm);
894   Label no_match;
895   __ cmp_raw_immediate(actual_marker, expected_marker);
896   __ b(ne, &no_match);
897   GenerateTailCallToReturnedCode(masm, function_id);
898   __ bind(&no_match);
899 }
900 
TailCallOptimizedCodeSlot(MacroAssembler * masm,Register optimized_code_entry,Register scratch)901 static void TailCallOptimizedCodeSlot(MacroAssembler* masm,
902                                       Register optimized_code_entry,
903                                       Register scratch) {
904   // ----------- S t a t e -------------
905   //  -- r0 : actual argument count
906   //  -- r3 : new target (preserved for callee if needed, and caller)
907   //  -- r1 : target function (preserved for callee if needed, and caller)
908   // -----------------------------------
909   DCHECK(!AreAliased(r1, r3, optimized_code_entry, scratch));
910 
911   Register closure = r1;
912   Label heal_optimized_code_slot;
913 
914   // If the optimized code is cleared, go to runtime to update the optimization
915   // marker field.
916   __ LoadWeakValue(optimized_code_entry, optimized_code_entry,
917                    &heal_optimized_code_slot);
918 
919   // Check if the optimized code is marked for deopt. If it is, call the
920   // runtime to clear it.
921   __ ldr(scratch,
922          FieldMemOperand(optimized_code_entry, Code::kCodeDataContainerOffset));
923   __ ldr(scratch,
924          FieldMemOperand(scratch, CodeDataContainer::kKindSpecificFlagsOffset));
925   __ tst(scratch, Operand(1 << Code::kMarkedForDeoptimizationBit));
926   __ b(ne, &heal_optimized_code_slot);
927 
928   // Optimized code is good, get it into the closure and link the closure
929   // into the optimized functions list, then tail call the optimized code.
930   ReplaceClosureCodeWithOptimizedCode(masm, optimized_code_entry, closure);
931   static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
932   __ LoadCodeObjectEntry(r2, optimized_code_entry);
933   __ Jump(r2);
934 
935   // Optimized code slot contains deoptimized code or code is cleared and
936   // optimized code marker isn't updated. Evict the code, update the marker
937   // and re-enter the closure's code.
938   __ bind(&heal_optimized_code_slot);
939   GenerateTailCallToReturnedCode(masm, Runtime::kHealOptimizedCodeSlot);
940 }
941 
MaybeOptimizeCode(MacroAssembler * masm,Register feedback_vector,Register optimization_marker)942 static void MaybeOptimizeCode(MacroAssembler* masm, Register feedback_vector,
943                               Register optimization_marker) {
944   // ----------- S t a t e -------------
945   //  -- r0 : actual argument count
946   //  -- r3 : new target (preserved for callee if needed, and caller)
947   //  -- r1 : target function (preserved for callee if needed, and caller)
948   //  -- feedback vector (preserved for caller if needed)
949   //  -- optimization_marker : a int32 containing a non-zero optimization
950   //  marker.
951   // -----------------------------------
952   DCHECK(!AreAliased(feedback_vector, r1, r3, optimization_marker));
953 
954   // TODO(v8:8394): The logging of first execution will break if
955   // feedback vectors are not allocated. We need to find a different way of
956   // logging these events if required.
957   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
958                                 OptimizationMarker::kLogFirstExecution,
959                                 Runtime::kFunctionFirstExecution);
960   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
961                                 OptimizationMarker::kCompileOptimized,
962                                 Runtime::kCompileOptimized_NotConcurrent);
963   TailCallRuntimeIfMarkerEquals(masm, optimization_marker,
964                                 OptimizationMarker::kCompileOptimizedConcurrent,
965                                 Runtime::kCompileOptimized_Concurrent);
966 
967   // Marker should be one of LogFirstExecution / CompileOptimized /
968   // CompileOptimizedConcurrent. InOptimizationQueue and None shouldn't reach
969   // here.
970   if (FLAG_debug_code) {
971     __ stop();
972   }
973 }
974 
975 // Advance the current bytecode offset. This simulates what all bytecode
976 // handlers do upon completion of the underlying operation. Will bail out to a
977 // label if the bytecode (without prefix) is a return bytecode. Will not advance
978 // the bytecode offset if the current bytecode is a JumpLoop, instead just
979 // re-executing the JumpLoop to jump to the correct bytecode.
AdvanceBytecodeOffsetOrReturn(MacroAssembler * masm,Register bytecode_array,Register bytecode_offset,Register bytecode,Register scratch1,Register scratch2,Label * if_return)980 static void AdvanceBytecodeOffsetOrReturn(MacroAssembler* masm,
981                                           Register bytecode_array,
982                                           Register bytecode_offset,
983                                           Register bytecode, Register scratch1,
984                                           Register scratch2, Label* if_return) {
985   ASM_CODE_COMMENT(masm);
986   Register bytecode_size_table = scratch1;
987 
988   // The bytecode offset value will be increased by one in wide and extra wide
989   // cases. In the case of having a wide or extra wide JumpLoop bytecode, we
990   // will restore the original bytecode. In order to simplify the code, we have
991   // a backup of it.
992   Register original_bytecode_offset = scratch2;
993   DCHECK(!AreAliased(bytecode_array, bytecode_offset, bytecode_size_table,
994                      bytecode, original_bytecode_offset));
995 
996   __ Move(bytecode_size_table,
997           ExternalReference::bytecode_size_table_address());
998   __ Move(original_bytecode_offset, bytecode_offset);
999 
1000   // Check if the bytecode is a Wide or ExtraWide prefix bytecode.
1001   Label process_bytecode;
1002   STATIC_ASSERT(0 == static_cast<int>(interpreter::Bytecode::kWide));
1003   STATIC_ASSERT(1 == static_cast<int>(interpreter::Bytecode::kExtraWide));
1004   STATIC_ASSERT(2 == static_cast<int>(interpreter::Bytecode::kDebugBreakWide));
1005   STATIC_ASSERT(3 ==
1006                 static_cast<int>(interpreter::Bytecode::kDebugBreakExtraWide));
1007   __ cmp(bytecode, Operand(0x3));
1008   __ b(hi, &process_bytecode);
1009   __ tst(bytecode, Operand(0x1));
1010   // Load the next bytecode.
1011   __ add(bytecode_offset, bytecode_offset, Operand(1));
1012   __ ldrb(bytecode, MemOperand(bytecode_array, bytecode_offset));
1013 
1014   // Update table to the wide scaled table.
1015   __ add(bytecode_size_table, bytecode_size_table,
1016          Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount));
1017   // Conditionally update table to the extra wide scaled table. We are taking
1018   // advantage of the fact that the extra wide follows the wide one.
1019   __ add(bytecode_size_table, bytecode_size_table,
1020          Operand(kByteSize * interpreter::Bytecodes::kBytecodeCount), LeaveCC,
1021          ne);
1022 
1023   __ bind(&process_bytecode);
1024 
1025   // Bailout to the return label if this is a return bytecode.
1026 
1027   // Create cmp, cmpne, ..., cmpne to check for a return bytecode.
1028   Condition flag = al;
1029 #define JUMP_IF_EQUAL(NAME)                                                   \
1030   __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::k##NAME)), \
1031          flag);                                                               \
1032   flag = ne;
1033   RETURN_BYTECODE_LIST(JUMP_IF_EQUAL)
1034 #undef JUMP_IF_EQUAL
1035 
1036   __ b(if_return, eq);
1037 
1038   // If this is a JumpLoop, re-execute it to perform the jump to the beginning
1039   // of the loop.
1040   Label end, not_jump_loop;
1041   __ cmp(bytecode, Operand(static_cast<int>(interpreter::Bytecode::kJumpLoop)));
1042   __ b(ne, &not_jump_loop);
1043   // We need to restore the original bytecode_offset since we might have
1044   // increased it to skip the wide / extra-wide prefix bytecode.
1045   __ Move(bytecode_offset, original_bytecode_offset);
1046   __ b(&end);
1047 
1048   __ bind(&not_jump_loop);
1049   // Otherwise, load the size of the current bytecode and advance the offset.
1050   __ ldrb(scratch1, MemOperand(bytecode_size_table, bytecode));
1051   __ add(bytecode_offset, bytecode_offset, scratch1);
1052 
1053   __ bind(&end);
1054 }
1055 
1056 // Read off the optimization state in the feedback vector and check if there
1057 // is optimized code or a optimization marker that needs to be processed.
LoadOptimizationStateAndJumpIfNeedsProcessing(MacroAssembler * masm,Register optimization_state,Register feedback_vector,Label * has_optimized_code_or_marker)1058 static void LoadOptimizationStateAndJumpIfNeedsProcessing(
1059     MacroAssembler* masm, Register optimization_state, Register feedback_vector,
1060     Label* has_optimized_code_or_marker) {
1061   ASM_CODE_COMMENT(masm);
1062   DCHECK(!AreAliased(optimization_state, feedback_vector));
1063   __ ldr(optimization_state,
1064          FieldMemOperand(feedback_vector, FeedbackVector::kFlagsOffset));
1065   __ tst(
1066       optimization_state,
1067       Operand(FeedbackVector::kHasOptimizedCodeOrCompileOptimizedMarkerMask));
1068   __ b(ne, has_optimized_code_or_marker);
1069 }
1070 
MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(MacroAssembler * masm,Register optimization_state,Register feedback_vector)1071 static void MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(
1072     MacroAssembler* masm, Register optimization_state,
1073     Register feedback_vector) {
1074   ASM_CODE_COMMENT(masm);
1075   DCHECK(!AreAliased(optimization_state, feedback_vector));
1076   Label maybe_has_optimized_code;
1077   // Check if optimized code is available
1078   __ tst(
1079       optimization_state,
1080       Operand(FeedbackVector::kHasCompileOptimizedOrLogFirstExecutionMarker));
1081   __ b(eq, &maybe_has_optimized_code);
1082 
1083   Register optimization_marker = optimization_state;
1084   __ DecodeField<FeedbackVector::OptimizationMarkerBits>(optimization_marker);
1085   MaybeOptimizeCode(masm, feedback_vector, optimization_marker);
1086 
1087   __ bind(&maybe_has_optimized_code);
1088   Register optimized_code_entry = optimization_state;
1089   __ ldr(optimization_marker,
1090          FieldMemOperand(feedback_vector,
1091                          FeedbackVector::kMaybeOptimizedCodeOffset));
1092   TailCallOptimizedCodeSlot(masm, optimized_code_entry, r6);
1093 }
1094 
1095 // static
Generate_BaselineOutOfLinePrologue(MacroAssembler * masm)1096 void Builtins::Generate_BaselineOutOfLinePrologue(MacroAssembler* masm) {
1097   UseScratchRegisterScope temps(masm);
1098   // Need a few extra registers
1099   temps.Include(r8, r9);
1100 
1101   auto descriptor =
1102       Builtins::CallInterfaceDescriptorFor(Builtin::kBaselineOutOfLinePrologue);
1103   Register closure = descriptor.GetRegisterParameter(
1104       BaselineOutOfLinePrologueDescriptor::kClosure);
1105   // Load the feedback vector from the closure.
1106   Register feedback_vector = temps.Acquire();
1107   __ ldr(feedback_vector,
1108          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1109   __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
1110   if (FLAG_debug_code) {
1111     UseScratchRegisterScope temps(masm);
1112     Register scratch = temps.Acquire();
1113     __ CompareObjectType(feedback_vector, scratch, scratch,
1114                          FEEDBACK_VECTOR_TYPE);
1115     __ Assert(eq, AbortReason::kExpectedFeedbackVector);
1116   }
1117 
1118   // Check for an optimization marker.
1119   Label has_optimized_code_or_marker;
1120   Register optimization_state = no_reg;
1121   {
1122     UseScratchRegisterScope temps(masm);
1123     // optimization_state will be used only in |has_optimized_code_or_marker|
1124     // and outside it can be reused.
1125     optimization_state = temps.Acquire();
1126     LoadOptimizationStateAndJumpIfNeedsProcessing(
1127         masm, optimization_state, feedback_vector,
1128         &has_optimized_code_or_marker);
1129   }
1130 
1131   // Increment invocation count for the function.
1132   {
1133     UseScratchRegisterScope temps(masm);
1134     Register invocation_count = temps.Acquire();
1135     __ ldr(invocation_count,
1136            FieldMemOperand(feedback_vector,
1137                            FeedbackVector::kInvocationCountOffset));
1138     __ add(invocation_count, invocation_count, Operand(1));
1139     __ str(invocation_count,
1140            FieldMemOperand(feedback_vector,
1141                            FeedbackVector::kInvocationCountOffset));
1142   }
1143 
1144   FrameScope frame_scope(masm, StackFrame::MANUAL);
1145   {
1146     ASM_CODE_COMMENT_STRING(masm, "Frame Setup");
1147     // Normally the first thing we'd do here is Push(lr, fp), but we already
1148     // entered the frame in BaselineCompiler::Prologue, as we had to use the
1149     // value lr before the call to this BaselineOutOfLinePrologue builtin.
1150 
1151     Register callee_context = descriptor.GetRegisterParameter(
1152         BaselineOutOfLinePrologueDescriptor::kCalleeContext);
1153     Register callee_js_function = descriptor.GetRegisterParameter(
1154         BaselineOutOfLinePrologueDescriptor::kClosure);
1155     __ Push(callee_context, callee_js_function);
1156     DCHECK_EQ(callee_js_function, kJavaScriptCallTargetRegister);
1157     DCHECK_EQ(callee_js_function, kJSFunctionRegister);
1158 
1159     Register argc = descriptor.GetRegisterParameter(
1160         BaselineOutOfLinePrologueDescriptor::kJavaScriptCallArgCount);
1161     // We'll use the bytecode for both code age/OSR resetting, and pushing onto
1162     // the frame, so load it into a register.
1163     Register bytecodeArray = descriptor.GetRegisterParameter(
1164         BaselineOutOfLinePrologueDescriptor::kInterpreterBytecodeArray);
1165 
1166     // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset
1167     // are 8-bit fields next to each other, so we could just optimize by writing
1168     // a 16-bit. These static asserts guard our assumption is valid.
1169     STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1170                   BytecodeArray::kOsrLoopNestingLevelOffset + kCharSize);
1171     STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
1172     {
1173       UseScratchRegisterScope temps(masm);
1174       Register scratch = temps.Acquire();
1175       __ mov(scratch, Operand(0));
1176       __ strh(scratch,
1177               FieldMemOperand(bytecodeArray,
1178                               BytecodeArray::kOsrLoopNestingLevelOffset));
1179     }
1180 
1181     __ Push(argc, bytecodeArray);
1182 
1183     // Baseline code frames store the feedback vector where interpreter would
1184     // store the bytecode offset.
1185     if (FLAG_debug_code) {
1186       UseScratchRegisterScope temps(masm);
1187       Register scratch = temps.Acquire();
1188       __ CompareObjectType(feedback_vector, scratch, scratch,
1189                            FEEDBACK_VECTOR_TYPE);
1190       __ Assert(eq, AbortReason::kExpectedFeedbackVector);
1191     }
1192     __ Push(feedback_vector);
1193   }
1194 
1195   Label call_stack_guard;
1196   Register frame_size = descriptor.GetRegisterParameter(
1197       BaselineOutOfLinePrologueDescriptor::kStackFrameSize);
1198   {
1199     ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt check");
1200     // Stack check. This folds the checks for both the interrupt stack limit
1201     // check and the real stack limit into one by just checking for the
1202     // interrupt limit. The interrupt limit is either equal to the real stack
1203     // limit or tighter. By ensuring we have space until that limit after
1204     // building the frame we can quickly precheck both at once.
1205     UseScratchRegisterScope temps(masm);
1206 
1207     Register sp_minus_frame_size = temps.Acquire();
1208     __ sub(sp_minus_frame_size, sp, frame_size);
1209     Register interrupt_limit = temps.Acquire();
1210     __ LoadStackLimit(interrupt_limit, StackLimitKind::kInterruptStackLimit);
1211     __ cmp(sp_minus_frame_size, interrupt_limit);
1212     __ b(&call_stack_guard, lo);
1213   }
1214 
1215   // Do "fast" return to the caller pc in lr.
1216   __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1217   __ Ret();
1218 
1219   __ bind(&has_optimized_code_or_marker);
1220   {
1221     ASM_CODE_COMMENT_STRING(masm, "Optimized marker check");
1222     UseScratchRegisterScope temps(masm);
1223     // Ensure the optimization_state is not allocated again.
1224     temps.Exclude(optimization_state);
1225 
1226     // Drop the frame created by the baseline call.
1227     __ ldm(ia_w, sp, fp.bit() | lr.bit());
1228     MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
1229                                                  feedback_vector);
1230     __ Trap();
1231   }
1232 
1233   __ bind(&call_stack_guard);
1234   {
1235     ASM_CODE_COMMENT_STRING(masm, "Stack/interrupt call");
1236     FrameScope frame_scope(masm, StackFrame::INTERNAL);
1237     // Save incoming new target or generator
1238     __ Push(kJavaScriptCallNewTargetRegister);
1239     __ SmiTag(frame_size);
1240     __ Push(frame_size);
1241     __ CallRuntime(Runtime::kStackGuardWithGap);
1242     __ Pop(kJavaScriptCallNewTargetRegister);
1243   }
1244 
1245   __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1246   __ Ret();
1247 }
1248 
1249 // Generate code for entering a JS function with the interpreter.
1250 // On entry to the function the receiver and arguments have been pushed on the
1251 // stack left to right.
1252 //
1253 // The live registers are:
1254 //   o r0: actual argument count
1255 //   o r1: the JS function object being called.
1256 //   o r3: the incoming new target or generator object
1257 //   o cp: our context
1258 //   o fp: the caller's frame pointer
1259 //   o sp: stack pointer
1260 //   o lr: return address
1261 //
1262 // The function builds an interpreter frame. See InterpreterFrameConstants in
1263 // frame-constants.h for its layout.
Generate_InterpreterEntryTrampoline(MacroAssembler * masm)1264 void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) {
1265   Register closure = r1;
1266   Register feedback_vector = r2;
1267 
1268   // Get the bytecode array from the function object and load it into
1269   // kInterpreterBytecodeArrayRegister.
1270   __ ldr(r4, FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
1271   __ ldr(kInterpreterBytecodeArrayRegister,
1272          FieldMemOperand(r4, SharedFunctionInfo::kFunctionDataOffset));
1273 
1274   Label is_baseline;
1275   GetSharedFunctionInfoBytecodeOrBaseline(
1276       masm, kInterpreterBytecodeArrayRegister, r8, &is_baseline);
1277 
1278   // The bytecode array could have been flushed from the shared function info,
1279   // if so, call into CompileLazy.
1280   Label compile_lazy;
1281   __ CompareObjectType(kInterpreterBytecodeArrayRegister, r4, no_reg,
1282                        BYTECODE_ARRAY_TYPE);
1283   __ b(ne, &compile_lazy);
1284 
1285   // Load the feedback vector from the closure.
1286   __ ldr(feedback_vector,
1287          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1288   __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
1289 
1290   Label push_stack_frame;
1291   // Check if feedback vector is valid. If valid, check for optimized code
1292   // and update invocation count. Otherwise, setup the stack frame.
1293   __ ldr(r4, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
1294   __ ldrh(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset));
1295   __ cmp(r4, Operand(FEEDBACK_VECTOR_TYPE));
1296   __ b(ne, &push_stack_frame);
1297 
1298   Register optimization_state = r4;
1299   Label has_optimized_code_or_marker;
1300   LoadOptimizationStateAndJumpIfNeedsProcessing(
1301       masm, optimization_state, feedback_vector, &has_optimized_code_or_marker);
1302 
1303   Label not_optimized;
1304   __ bind(&not_optimized);
1305 
1306   // Increment invocation count for the function.
1307   __ ldr(r9, FieldMemOperand(feedback_vector,
1308                              FeedbackVector::kInvocationCountOffset));
1309   __ add(r9, r9, Operand(1));
1310   __ str(r9, FieldMemOperand(feedback_vector,
1311                              FeedbackVector::kInvocationCountOffset));
1312 
1313   // Open a frame scope to indicate that there is a frame on the stack.  The
1314   // MANUAL indicates that the scope shouldn't actually generate code to set up
1315   // the frame (that is done below).
1316   __ bind(&push_stack_frame);
1317   FrameScope frame_scope(masm, StackFrame::MANUAL);
1318   __ PushStandardFrame(closure);
1319 
1320   // Reset code age and the OSR arming. The OSR field and BytecodeAgeOffset are
1321   // 8-bit fields next to each other, so we could just optimize by writing a
1322   // 16-bit. These static asserts guard our assumption is valid.
1323   STATIC_ASSERT(BytecodeArray::kBytecodeAgeOffset ==
1324                 BytecodeArray::kOsrLoopNestingLevelOffset + kCharSize);
1325   STATIC_ASSERT(BytecodeArray::kNoAgeBytecodeAge == 0);
1326   __ mov(r9, Operand(0));
1327   __ strh(r9, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1328                               BytecodeArray::kOsrLoopNestingLevelOffset));
1329 
1330   // Load the initial bytecode offset.
1331   __ mov(kInterpreterBytecodeOffsetRegister,
1332          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
1333 
1334   // Push bytecode array and Smi tagged bytecode array offset.
1335   __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
1336   __ Push(kInterpreterBytecodeArrayRegister, r4);
1337 
1338   // Allocate the local and temporary register file on the stack.
1339   Label stack_overflow;
1340   {
1341     // Load frame size from the BytecodeArray object.
1342     __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister,
1343                                BytecodeArray::kFrameSizeOffset));
1344 
1345     // Do a stack check to ensure we don't go over the limit.
1346     __ sub(r9, sp, Operand(r4));
1347     __ LoadStackLimit(r2, StackLimitKind::kRealStackLimit);
1348     __ cmp(r9, Operand(r2));
1349     __ b(lo, &stack_overflow);
1350 
1351     // If ok, push undefined as the initial value for all register file entries.
1352     Label loop_header;
1353     Label loop_check;
1354     __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1355     __ b(&loop_check, al);
1356     __ bind(&loop_header);
1357     // TODO(rmcilroy): Consider doing more than one push per loop iteration.
1358     __ push(kInterpreterAccumulatorRegister);
1359     // Continue loop if not done.
1360     __ bind(&loop_check);
1361     __ sub(r4, r4, Operand(kPointerSize), SetCC);
1362     __ b(&loop_header, ge);
1363   }
1364 
1365   // If the bytecode array has a valid incoming new target or generator object
1366   // register, initialize it with incoming value which was passed in r3.
1367   __ ldr(r9, FieldMemOperand(
1368                  kInterpreterBytecodeArrayRegister,
1369                  BytecodeArray::kIncomingNewTargetOrGeneratorRegisterOffset));
1370   __ cmp(r9, Operand::Zero());
1371   __ str(r3, MemOperand(fp, r9, LSL, kPointerSizeLog2), ne);
1372 
1373   // Perform interrupt stack check.
1374   // TODO(solanes): Merge with the real stack limit check above.
1375   Label stack_check_interrupt, after_stack_check_interrupt;
1376   __ LoadStackLimit(r4, StackLimitKind::kInterruptStackLimit);
1377   __ cmp(sp, r4);
1378   __ b(lo, &stack_check_interrupt);
1379   __ bind(&after_stack_check_interrupt);
1380 
1381   // The accumulator is already loaded with undefined.
1382 
1383   // Load the dispatch table into a register and dispatch to the bytecode
1384   // handler at the current bytecode offset.
1385   Label do_dispatch;
1386   __ bind(&do_dispatch);
1387   __ Move(
1388       kInterpreterDispatchTableRegister,
1389       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1390   __ ldrb(r4, MemOperand(kInterpreterBytecodeArrayRegister,
1391                          kInterpreterBytecodeOffsetRegister));
1392   __ ldr(
1393       kJavaScriptCallCodeStartRegister,
1394       MemOperand(kInterpreterDispatchTableRegister, r4, LSL, kPointerSizeLog2));
1395   __ Call(kJavaScriptCallCodeStartRegister);
1396   masm->isolate()->heap()->SetInterpreterEntryReturnPCOffset(masm->pc_offset());
1397 
1398   // Any returns to the entry trampoline are either due to the return bytecode
1399   // or the interpreter tail calling a builtin and then a dispatch.
1400 
1401   // Get bytecode array and bytecode offset from the stack frame.
1402   __ ldr(kInterpreterBytecodeArrayRegister,
1403          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1404   __ ldr(kInterpreterBytecodeOffsetRegister,
1405          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1406   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1407 
1408   // Either return, or advance to the next bytecode and dispatch.
1409   Label do_return;
1410   __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
1411                          kInterpreterBytecodeOffsetRegister));
1412   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1413                                 kInterpreterBytecodeOffsetRegister, r1, r2, r3,
1414                                 &do_return);
1415   __ jmp(&do_dispatch);
1416 
1417   __ bind(&do_return);
1418   // The return value is in r0.
1419   LeaveInterpreterFrame(masm, r2, r4);
1420   __ Jump(lr);
1421 
1422   __ bind(&stack_check_interrupt);
1423   // Modify the bytecode offset in the stack to be kFunctionEntryBytecodeOffset
1424   // for the call to the StackGuard.
1425   __ mov(kInterpreterBytecodeOffsetRegister,
1426          Operand(Smi::FromInt(BytecodeArray::kHeaderSize - kHeapObjectTag +
1427                               kFunctionEntryBytecodeOffset)));
1428   __ str(kInterpreterBytecodeOffsetRegister,
1429          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1430   __ CallRuntime(Runtime::kStackGuard);
1431 
1432   // After the call, restore the bytecode array, bytecode offset and accumulator
1433   // registers again. Also, restore the bytecode offset in the stack to its
1434   // previous value.
1435   __ ldr(kInterpreterBytecodeArrayRegister,
1436          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1437   __ mov(kInterpreterBytecodeOffsetRegister,
1438          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
1439   __ LoadRoot(kInterpreterAccumulatorRegister, RootIndex::kUndefinedValue);
1440 
1441   __ SmiTag(r4, kInterpreterBytecodeOffsetRegister);
1442   __ str(r4, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1443 
1444   __ jmp(&after_stack_check_interrupt);
1445 
1446   __ bind(&has_optimized_code_or_marker);
1447   MaybeOptimizeCodeOrTailCallOptimizedCodeSlot(masm, optimization_state,
1448                                                feedback_vector);
1449 
1450   __ bind(&is_baseline);
1451   {
1452     // Load the feedback vector from the closure.
1453     __ ldr(feedback_vector,
1454            FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
1455     __ ldr(feedback_vector,
1456            FieldMemOperand(feedback_vector, Cell::kValueOffset));
1457 
1458     Label install_baseline_code;
1459     // Check if feedback vector is valid. If not, call prepare for baseline to
1460     // allocate it.
1461     __ ldr(r8, FieldMemOperand(feedback_vector, HeapObject::kMapOffset));
1462     __ ldrh(r8, FieldMemOperand(r8, Map::kInstanceTypeOffset));
1463     __ cmp(r8, Operand(FEEDBACK_VECTOR_TYPE));
1464     __ b(ne, &install_baseline_code);
1465 
1466     // Check for an optimization marker.
1467     LoadOptimizationStateAndJumpIfNeedsProcessing(
1468         masm, optimization_state, feedback_vector,
1469         &has_optimized_code_or_marker);
1470 
1471     // Load the baseline code into the closure.
1472     __ mov(r2, kInterpreterBytecodeArrayRegister);
1473     static_assert(kJavaScriptCallCodeStartRegister == r2, "ABI mismatch");
1474     ReplaceClosureCodeWithOptimizedCode(masm, r2, closure);
1475     __ JumpCodeObject(r2);
1476 
1477     __ bind(&install_baseline_code);
1478     GenerateTailCallToReturnedCode(masm, Runtime::kInstallBaselineCode);
1479   }
1480 
1481   __ bind(&compile_lazy);
1482   GenerateTailCallToReturnedCode(masm, Runtime::kCompileLazy);
1483 
1484   __ bind(&stack_overflow);
1485   __ CallRuntime(Runtime::kThrowStackOverflow);
1486   __ bkpt(0);  // Should not return.
1487 }
1488 
GenerateInterpreterPushArgs(MacroAssembler * masm,Register num_args,Register start_address,Register scratch)1489 static void GenerateInterpreterPushArgs(MacroAssembler* masm, Register num_args,
1490                                         Register start_address,
1491                                         Register scratch) {
1492   ASM_CODE_COMMENT(masm);
1493   // Find the argument with lowest address.
1494   __ sub(scratch, num_args, Operand(1));
1495   __ mov(scratch, Operand(scratch, LSL, kSystemPointerSizeLog2));
1496   __ sub(start_address, start_address, scratch);
1497   // Push the arguments.
1498   __ PushArray(start_address, num_args, scratch,
1499                TurboAssembler::PushArrayOrder::kReverse);
1500 }
1501 
1502 // static
Generate_InterpreterPushArgsThenCallImpl(MacroAssembler * masm,ConvertReceiverMode receiver_mode,InterpreterPushArgsMode mode)1503 void Builtins::Generate_InterpreterPushArgsThenCallImpl(
1504     MacroAssembler* masm, ConvertReceiverMode receiver_mode,
1505     InterpreterPushArgsMode mode) {
1506   DCHECK(mode != InterpreterPushArgsMode::kArrayFunction);
1507   // ----------- S t a t e -------------
1508   //  -- r0 : the number of arguments
1509   //  -- r2 : the address of the first argument to be pushed. Subsequent
1510   //          arguments should be consecutive above this, in the same order as
1511   //          they are to be pushed onto the stack.
1512   //  -- r1 : the target to call (can be any Object).
1513   // -----------------------------------
1514   Label stack_overflow;
1515 
1516   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1517     // The spread argument should not be pushed.
1518     __ sub(r0, r0, Operand(1));
1519   }
1520 
1521   const bool skip_receiver =
1522       receiver_mode == ConvertReceiverMode::kNullOrUndefined;
1523   if (kJSArgcIncludesReceiver && skip_receiver) {
1524     __ sub(r3, r0, Operand(kJSArgcReceiverSlots));
1525   } else if (!kJSArgcIncludesReceiver && !skip_receiver) {
1526     __ add(r3, r0, Operand(1));
1527   } else {
1528     __ mov(r3, r0);
1529   }
1530 
1531   __ StackOverflowCheck(r3, r4, &stack_overflow);
1532 
1533   // Push the arguments. r2 and r4 will be modified.
1534   GenerateInterpreterPushArgs(masm, r3, r2, r4);
1535 
1536   // Push "undefined" as the receiver arg if we need to.
1537   if (receiver_mode == ConvertReceiverMode::kNullOrUndefined) {
1538     __ PushRoot(RootIndex::kUndefinedValue);
1539   }
1540 
1541   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1542     // Pass the spread in the register r2.
1543     // r2 already points to the penultimate argument, the spread
1544     // lies in the next interpreter register.
1545     __ sub(r2, r2, Operand(kSystemPointerSize));
1546     __ ldr(r2, MemOperand(r2));
1547   }
1548 
1549   // Call the target.
1550   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1551     __ Jump(BUILTIN_CODE(masm->isolate(), CallWithSpread),
1552             RelocInfo::CODE_TARGET);
1553   } else {
1554     __ Jump(masm->isolate()->builtins()->Call(ConvertReceiverMode::kAny),
1555             RelocInfo::CODE_TARGET);
1556   }
1557 
1558   __ bind(&stack_overflow);
1559   {
1560     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1561     // Unreachable code.
1562     __ bkpt(0);
1563   }
1564 }
1565 
1566 // static
Generate_InterpreterPushArgsThenConstructImpl(MacroAssembler * masm,InterpreterPushArgsMode mode)1567 void Builtins::Generate_InterpreterPushArgsThenConstructImpl(
1568     MacroAssembler* masm, InterpreterPushArgsMode mode) {
1569   // ----------- S t a t e -------------
1570   // -- r0 : argument count
1571   // -- r3 : new target
1572   // -- r1 : constructor to call
1573   // -- r2 : allocation site feedback if available, undefined otherwise.
1574   // -- r4 : address of the first argument
1575   // -----------------------------------
1576   Label stack_overflow;
1577 
1578   __ StackOverflowCheck(r0, r6, &stack_overflow);
1579 
1580   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1581     // The spread argument should not be pushed.
1582     __ sub(r0, r0, Operand(1));
1583   }
1584 
1585   Register argc_without_receiver = r0;
1586   if (kJSArgcIncludesReceiver) {
1587     argc_without_receiver = r6;
1588     __ sub(argc_without_receiver, r0, Operand(kJSArgcReceiverSlots));
1589   }
1590   // Push the arguments. r4 and r5 will be modified.
1591   GenerateInterpreterPushArgs(masm, argc_without_receiver, r4, r5);
1592 
1593   // Push a slot for the receiver to be constructed.
1594   __ mov(r5, Operand::Zero());
1595   __ push(r5);
1596 
1597   if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1598     // Pass the spread in the register r2.
1599     // r4 already points to the penultimate argument, the spread
1600     // lies in the next interpreter register.
1601     __ sub(r4, r4, Operand(kSystemPointerSize));
1602     __ ldr(r2, MemOperand(r4));
1603   } else {
1604     __ AssertUndefinedOrAllocationSite(r2, r5);
1605   }
1606 
1607   if (mode == InterpreterPushArgsMode::kArrayFunction) {
1608     __ AssertFunction(r1);
1609 
1610     // Tail call to the array construct stub (still in the caller
1611     // context at this point).
1612     Handle<Code> code = BUILTIN_CODE(masm->isolate(), ArrayConstructorImpl);
1613     __ Jump(code, RelocInfo::CODE_TARGET);
1614   } else if (mode == InterpreterPushArgsMode::kWithFinalSpread) {
1615     // Call the constructor with r0, r1, and r3 unmodified.
1616     __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithSpread),
1617             RelocInfo::CODE_TARGET);
1618   } else {
1619     DCHECK_EQ(InterpreterPushArgsMode::kOther, mode);
1620     // Call the constructor with r0, r1, and r3 unmodified.
1621     __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
1622   }
1623 
1624   __ bind(&stack_overflow);
1625   {
1626     __ TailCallRuntime(Runtime::kThrowStackOverflow);
1627     // Unreachable code.
1628     __ bkpt(0);
1629   }
1630 }
1631 
Generate_InterpreterEnterBytecode(MacroAssembler * masm)1632 static void Generate_InterpreterEnterBytecode(MacroAssembler* masm) {
1633   // Set the return address to the correct point in the interpreter entry
1634   // trampoline.
1635   Label builtin_trampoline, trampoline_loaded;
1636   Smi interpreter_entry_return_pc_offset(
1637       masm->isolate()->heap()->interpreter_entry_return_pc_offset());
1638   DCHECK_NE(interpreter_entry_return_pc_offset, Smi::zero());
1639 
1640   // If the SFI function_data is an InterpreterData, the function will have a
1641   // custom copy of the interpreter entry trampoline for profiling. If so,
1642   // get the custom trampoline, otherwise grab the entry address of the global
1643   // trampoline.
1644   __ ldr(r2, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
1645   __ ldr(r2, FieldMemOperand(r2, JSFunction::kSharedFunctionInfoOffset));
1646   __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFunctionDataOffset));
1647   __ CompareObjectType(r2, kInterpreterDispatchTableRegister,
1648                        kInterpreterDispatchTableRegister,
1649                        INTERPRETER_DATA_TYPE);
1650   __ b(ne, &builtin_trampoline);
1651 
1652   __ ldr(r2,
1653          FieldMemOperand(r2, InterpreterData::kInterpreterTrampolineOffset));
1654   __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag));
1655   __ b(&trampoline_loaded);
1656 
1657   __ bind(&builtin_trampoline);
1658   __ Move(r2, ExternalReference::
1659                   address_of_interpreter_entry_trampoline_instruction_start(
1660                       masm->isolate()));
1661   __ ldr(r2, MemOperand(r2));
1662 
1663   __ bind(&trampoline_loaded);
1664   __ add(lr, r2, Operand(interpreter_entry_return_pc_offset.value()));
1665 
1666   // Initialize the dispatch table register.
1667   __ Move(
1668       kInterpreterDispatchTableRegister,
1669       ExternalReference::interpreter_dispatch_table_address(masm->isolate()));
1670 
1671   // Get the bytecode array pointer from the frame.
1672   __ ldr(kInterpreterBytecodeArrayRegister,
1673          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1674 
1675   if (FLAG_debug_code) {
1676     // Check function data field is actually a BytecodeArray object.
1677     __ SmiTst(kInterpreterBytecodeArrayRegister);
1678     __ Assert(
1679         ne, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1680     __ CompareObjectType(kInterpreterBytecodeArrayRegister, r1, no_reg,
1681                          BYTECODE_ARRAY_TYPE);
1682     __ Assert(
1683         eq, AbortReason::kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry);
1684   }
1685 
1686   // Get the target bytecode offset from the frame.
1687   __ ldr(kInterpreterBytecodeOffsetRegister,
1688          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1689   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1690 
1691   if (FLAG_debug_code) {
1692     Label okay;
1693     __ cmp(kInterpreterBytecodeOffsetRegister,
1694            Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
1695     __ b(ge, &okay);
1696     __ bkpt(0);
1697     __ bind(&okay);
1698   }
1699 
1700   // Dispatch to the target bytecode.
1701   UseScratchRegisterScope temps(masm);
1702   Register scratch = temps.Acquire();
1703   __ ldrb(scratch, MemOperand(kInterpreterBytecodeArrayRegister,
1704                               kInterpreterBytecodeOffsetRegister));
1705   __ ldr(kJavaScriptCallCodeStartRegister,
1706          MemOperand(kInterpreterDispatchTableRegister, scratch, LSL,
1707                     kPointerSizeLog2));
1708   __ Jump(kJavaScriptCallCodeStartRegister);
1709 }
1710 
Generate_InterpreterEnterAtNextBytecode(MacroAssembler * masm)1711 void Builtins::Generate_InterpreterEnterAtNextBytecode(MacroAssembler* masm) {
1712   // Get bytecode array and bytecode offset from the stack frame.
1713   __ ldr(kInterpreterBytecodeArrayRegister,
1714          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
1715   __ ldr(kInterpreterBytecodeOffsetRegister,
1716          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1717   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
1718 
1719   Label enter_bytecode, function_entry_bytecode;
1720   __ cmp(kInterpreterBytecodeOffsetRegister,
1721          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
1722                  kFunctionEntryBytecodeOffset));
1723   __ b(eq, &function_entry_bytecode);
1724 
1725   // Load the current bytecode.
1726   __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister,
1727                          kInterpreterBytecodeOffsetRegister));
1728 
1729   // Advance to the next bytecode.
1730   Label if_return;
1731   AdvanceBytecodeOffsetOrReturn(masm, kInterpreterBytecodeArrayRegister,
1732                                 kInterpreterBytecodeOffsetRegister, r1, r2, r3,
1733                                 &if_return);
1734 
1735   __ bind(&enter_bytecode);
1736   // Convert new bytecode offset to a Smi and save in the stackframe.
1737   __ SmiTag(r2, kInterpreterBytecodeOffsetRegister);
1738   __ str(r2, MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
1739 
1740   Generate_InterpreterEnterBytecode(masm);
1741 
1742   __ bind(&function_entry_bytecode);
1743   // If the code deoptimizes during the implicit function entry stack interrupt
1744   // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
1745   // not a valid bytecode offset. Detect this case and advance to the first
1746   // actual bytecode.
1747   __ mov(kInterpreterBytecodeOffsetRegister,
1748          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
1749   __ b(&enter_bytecode);
1750 
1751   // We should never take the if_return path.
1752   __ bind(&if_return);
1753   __ Abort(AbortReason::kInvalidBytecodeAdvance);
1754 }
1755 
Generate_InterpreterEnterAtBytecode(MacroAssembler * masm)1756 void Builtins::Generate_InterpreterEnterAtBytecode(MacroAssembler* masm) {
1757   Generate_InterpreterEnterBytecode(masm);
1758 }
1759 
1760 namespace {
Generate_ContinueToBuiltinHelper(MacroAssembler * masm,bool java_script_builtin,bool with_result)1761 void Generate_ContinueToBuiltinHelper(MacroAssembler* masm,
1762                                       bool java_script_builtin,
1763                                       bool with_result) {
1764   const RegisterConfiguration* config(RegisterConfiguration::Default());
1765   int allocatable_register_count = config->num_allocatable_general_registers();
1766   UseScratchRegisterScope temps(masm);
1767   Register scratch = temps.Acquire();  // Temp register is not allocatable.
1768   if (with_result) {
1769     if (java_script_builtin) {
1770       __ mov(scratch, r0);
1771     } else {
1772       // Overwrite the hole inserted by the deoptimizer with the return value
1773       // from the LAZY deopt point.
1774       __ str(
1775           r0,
1776           MemOperand(
1777               sp, config->num_allocatable_general_registers() * kPointerSize +
1778                       BuiltinContinuationFrameConstants::kFixedFrameSize));
1779     }
1780   }
1781   for (int i = allocatable_register_count - 1; i >= 0; --i) {
1782     int code = config->GetAllocatableGeneralCode(i);
1783     __ Pop(Register::from_code(code));
1784     if (java_script_builtin && code == kJavaScriptCallArgCountRegister.code()) {
1785       __ SmiUntag(Register::from_code(code));
1786     }
1787   }
1788   if (java_script_builtin && with_result) {
1789     // Overwrite the hole inserted by the deoptimizer with the return value from
1790     // the LAZY deopt point. r0 contains the arguments count, the return value
1791     // from LAZY is always the last argument.
1792     constexpr int return_value_offset =
1793         BuiltinContinuationFrameConstants::kFixedSlotCount -
1794         kJSArgcReceiverSlots;
1795     __ add(r0, r0, Operand(return_value_offset));
1796     __ str(scratch, MemOperand(sp, r0, LSL, kPointerSizeLog2));
1797     // Recover arguments count.
1798     __ sub(r0, r0, Operand(return_value_offset));
1799   }
1800   __ ldr(fp, MemOperand(
1801                  sp, BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1802   // Load builtin index (stored as a Smi) and use it to get the builtin start
1803   // address from the builtins table.
1804   Register builtin = scratch;
1805   __ Pop(builtin);
1806   __ add(sp, sp,
1807          Operand(BuiltinContinuationFrameConstants::kFixedFrameSizeFromFp));
1808   __ Pop(lr);
1809   __ LoadEntryFromBuiltinIndex(builtin);
1810   __ bx(builtin);
1811 }
1812 }  // namespace
1813 
Generate_ContinueToCodeStubBuiltin(MacroAssembler * masm)1814 void Builtins::Generate_ContinueToCodeStubBuiltin(MacroAssembler* masm) {
1815   Generate_ContinueToBuiltinHelper(masm, false, false);
1816 }
1817 
Generate_ContinueToCodeStubBuiltinWithResult(MacroAssembler * masm)1818 void Builtins::Generate_ContinueToCodeStubBuiltinWithResult(
1819     MacroAssembler* masm) {
1820   Generate_ContinueToBuiltinHelper(masm, false, true);
1821 }
1822 
Generate_ContinueToJavaScriptBuiltin(MacroAssembler * masm)1823 void Builtins::Generate_ContinueToJavaScriptBuiltin(MacroAssembler* masm) {
1824   Generate_ContinueToBuiltinHelper(masm, true, false);
1825 }
1826 
Generate_ContinueToJavaScriptBuiltinWithResult(MacroAssembler * masm)1827 void Builtins::Generate_ContinueToJavaScriptBuiltinWithResult(
1828     MacroAssembler* masm) {
1829   Generate_ContinueToBuiltinHelper(masm, true, true);
1830 }
1831 
Generate_NotifyDeoptimized(MacroAssembler * masm)1832 void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
1833   {
1834     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1835     __ CallRuntime(Runtime::kNotifyDeoptimized);
1836   }
1837 
1838   DCHECK_EQ(kInterpreterAccumulatorRegister.code(), r0.code());
1839   __ pop(r0);
1840   __ Ret();
1841 }
1842 
1843 namespace {
1844 
Generate_OSREntry(MacroAssembler * masm,Register entry_address,Operand offset=Operand::Zero ())1845 void Generate_OSREntry(MacroAssembler* masm, Register entry_address,
1846                        Operand offset = Operand::Zero()) {
1847   // Compute the target address = entry_address + offset
1848   if (offset.IsImmediate() && offset.immediate() == 0) {
1849     __ mov(lr, entry_address);
1850   } else {
1851     __ add(lr, entry_address, offset);
1852   }
1853 
1854   // "return" to the OSR entry point of the function.
1855   __ Ret();
1856 }
1857 
OnStackReplacement(MacroAssembler * masm,bool is_interpreter)1858 void OnStackReplacement(MacroAssembler* masm, bool is_interpreter) {
1859   ASM_CODE_COMMENT(masm);
1860   {
1861     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
1862     __ CallRuntime(Runtime::kCompileForOnStackReplacement);
1863   }
1864 
1865   // If the code object is null, just return to the caller.
1866   Label skip;
1867   __ cmp(r0, Operand(Smi::zero()));
1868   __ b(ne, &skip);
1869   __ Ret();
1870 
1871   __ bind(&skip);
1872 
1873   if (is_interpreter) {
1874     // Drop the handler frame that is be sitting on top of the actual
1875     // JavaScript frame. This is the case then OSR is triggered from bytecode.
1876     __ LeaveFrame(StackFrame::STUB);
1877   }
1878 
1879   // Load deoptimization data from the code object.
1880   // <deopt_data> = <code>[#deoptimization_data_offset]
1881   __ ldr(r1,
1882          FieldMemOperand(r0, Code::kDeoptimizationDataOrInterpreterDataOffset));
1883 
1884   {
1885     ConstantPoolUnavailableScope constant_pool_unavailable(masm);
1886     __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag));  // Code start
1887 
1888     // Load the OSR entrypoint offset from the deoptimization data.
1889     // <osr_offset> = <deopt_data>[#header_size + #osr_pc_offset]
1890     __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt(
1891                                        DeoptimizationData::kOsrPcOffsetIndex)));
1892 
1893     Generate_OSREntry(masm, r0, Operand::SmiUntag(r1));
1894   }
1895 }
1896 }  // namespace
1897 
Generate_InterpreterOnStackReplacement(MacroAssembler * masm)1898 void Builtins::Generate_InterpreterOnStackReplacement(MacroAssembler* masm) {
1899   return OnStackReplacement(masm, true);
1900 }
1901 
Generate_BaselineOnStackReplacement(MacroAssembler * masm)1902 void Builtins::Generate_BaselineOnStackReplacement(MacroAssembler* masm) {
1903   __ ldr(kContextRegister,
1904          MemOperand(fp, BaselineFrameConstants::kContextOffset));
1905   return OnStackReplacement(masm, false);
1906 }
1907 
1908 // static
Generate_FunctionPrototypeApply(MacroAssembler * masm)1909 void Builtins::Generate_FunctionPrototypeApply(MacroAssembler* masm) {
1910   // ----------- S t a t e -------------
1911   //  -- r0    : argc
1912   //  -- sp[0] : receiver
1913   //  -- sp[4] : thisArg
1914   //  -- sp[8] : argArray
1915   // -----------------------------------
1916 
1917   // 1. Load receiver into r1, argArray into r2 (if present), remove all
1918   // arguments from the stack (including the receiver), and push thisArg (if
1919   // present) instead.
1920   {
1921     __ LoadRoot(r5, RootIndex::kUndefinedValue);
1922     __ mov(r2, r5);
1923     __ ldr(r1, MemOperand(sp, 0));  // receiver
1924     __ cmp(r0, Operand(JSParameterCount(1)));
1925     __ ldr(r5, MemOperand(sp, kSystemPointerSize), ge);  // thisArg
1926     __ cmp(r0, Operand(JSParameterCount(2)), ge);
1927     __ ldr(r2, MemOperand(sp, 2 * kSystemPointerSize), ge);  // argArray
1928     __ DropArgumentsAndPushNewReceiver(
1929         r0, r5, TurboAssembler::kCountIsInteger,
1930         kJSArgcIncludesReceiver ? TurboAssembler::kCountIncludesReceiver
1931                                 : TurboAssembler::kCountExcludesReceiver);
1932   }
1933 
1934   // ----------- S t a t e -------------
1935   //  -- r2    : argArray
1936   //  -- r1    : receiver
1937   //  -- sp[0] : thisArg
1938   // -----------------------------------
1939 
1940   // 2. We don't need to check explicitly for callable receiver here,
1941   // since that's the first thing the Call/CallWithArrayLike builtins
1942   // will do.
1943 
1944   // 3. Tail call with no arguments if argArray is null or undefined.
1945   Label no_arguments;
1946   __ JumpIfRoot(r2, RootIndex::kNullValue, &no_arguments);
1947   __ JumpIfRoot(r2, RootIndex::kUndefinedValue, &no_arguments);
1948 
1949   // 4a. Apply the receiver to the given argArray.
1950   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
1951           RelocInfo::CODE_TARGET);
1952 
1953   // 4b. The argArray is either null or undefined, so we tail call without any
1954   // arguments to the receiver.
1955   __ bind(&no_arguments);
1956   {
1957     __ mov(r0, Operand(JSParameterCount(0)));
1958     __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1959   }
1960 }
1961 
1962 // static
Generate_FunctionPrototypeCall(MacroAssembler * masm)1963 void Builtins::Generate_FunctionPrototypeCall(MacroAssembler* masm) {
1964   // 1. Get the callable to call (passed as receiver) from the stack.
1965   __ Pop(r1);
1966 
1967   // 2. Make sure we have at least one argument.
1968   // r0: actual number of arguments
1969   {
1970     Label done;
1971     __ cmp(r0, Operand(JSParameterCount(0)));
1972     __ b(ne, &done);
1973     __ PushRoot(RootIndex::kUndefinedValue);
1974     __ add(r0, r0, Operand(1));
1975     __ bind(&done);
1976   }
1977 
1978   // 3. Adjust the actual number of arguments.
1979   __ sub(r0, r0, Operand(1));
1980 
1981   // 4. Call the callable.
1982   __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET);
1983 }
1984 
Generate_ReflectApply(MacroAssembler * masm)1985 void Builtins::Generate_ReflectApply(MacroAssembler* masm) {
1986   // ----------- S t a t e -------------
1987   //  -- r0     : argc
1988   //  -- sp[0]  : receiver
1989   //  -- sp[4]  : target         (if argc >= 1)
1990   //  -- sp[8]  : thisArgument   (if argc >= 2)
1991   //  -- sp[12] : argumentsList  (if argc == 3)
1992   // -----------------------------------
1993 
1994   // 1. Load target into r1 (if present), argumentsList into r2 (if present),
1995   // remove all arguments from the stack (including the receiver), and push
1996   // thisArgument (if present) instead.
1997   {
1998     __ LoadRoot(r1, RootIndex::kUndefinedValue);
1999     __ mov(r5, r1);
2000     __ mov(r2, r1);
2001     __ cmp(r0, Operand(JSParameterCount(1)));
2002     __ ldr(r1, MemOperand(sp, kSystemPointerSize), ge);  // target
2003     __ cmp(r0, Operand(JSParameterCount(2)), ge);
2004     __ ldr(r5, MemOperand(sp, 2 * kSystemPointerSize), ge);  // thisArgument
2005     __ cmp(r0, Operand(JSParameterCount(3)), ge);
2006     __ ldr(r2, MemOperand(sp, 3 * kSystemPointerSize), ge);  // argumentsList
2007     __ DropArgumentsAndPushNewReceiver(
2008         r0, r5, TurboAssembler::kCountIsInteger,
2009         kJSArgcIncludesReceiver ? TurboAssembler::kCountIncludesReceiver
2010                                 : TurboAssembler::kCountExcludesReceiver);
2011   }
2012 
2013   // ----------- S t a t e -------------
2014   //  -- r2    : argumentsList
2015   //  -- r1    : target
2016   //  -- sp[0] : thisArgument
2017   // -----------------------------------
2018 
2019   // 2. We don't need to check explicitly for callable target here,
2020   // since that's the first thing the Call/CallWithArrayLike builtins
2021   // will do.
2022 
2023   // 3. Apply the target to the given argumentsList.
2024   __ Jump(BUILTIN_CODE(masm->isolate(), CallWithArrayLike),
2025           RelocInfo::CODE_TARGET);
2026 }
2027 
Generate_ReflectConstruct(MacroAssembler * masm)2028 void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) {
2029   // ----------- S t a t e -------------
2030   //  -- r0     : argc
2031   //  -- sp[0]  : receiver
2032   //  -- sp[4]  : target
2033   //  -- sp[8]  : argumentsList
2034   //  -- sp[12] : new.target (optional)
2035   // -----------------------------------
2036 
2037   // 1. Load target into r1 (if present), argumentsList into r2 (if present),
2038   // new.target into r3 (if present, otherwise use target), remove all
2039   // arguments from the stack (including the receiver), and push thisArgument
2040   // (if present) instead.
2041   {
2042     __ LoadRoot(r1, RootIndex::kUndefinedValue);
2043     __ mov(r2, r1);
2044     __ mov(r4, r1);
2045     __ cmp(r0, Operand(JSParameterCount(1)));
2046     __ ldr(r1, MemOperand(sp, kSystemPointerSize), ge);  // target
2047     __ mov(r3, r1);  // new.target defaults to target
2048     __ cmp(r0, Operand(JSParameterCount(2)), ge);
2049     __ ldr(r2, MemOperand(sp, 2 * kSystemPointerSize), ge);  // argumentsList
2050     __ cmp(r0, Operand(JSParameterCount(3)), ge);
2051     __ ldr(r3, MemOperand(sp, 3 * kSystemPointerSize), ge);  // new.target
2052     __ DropArgumentsAndPushNewReceiver(
2053         r0, r4, TurboAssembler::kCountIsInteger,
2054         kJSArgcIncludesReceiver ? TurboAssembler::kCountIncludesReceiver
2055                                 : TurboAssembler::kCountExcludesReceiver);
2056   }
2057 
2058   // ----------- S t a t e -------------
2059   //  -- r2    : argumentsList
2060   //  -- r3    : new.target
2061   //  -- r1    : target
2062   //  -- sp[0] : receiver (undefined)
2063   // -----------------------------------
2064 
2065   // 2. We don't need to check explicitly for constructor target here,
2066   // since that's the first thing the Construct/ConstructWithArrayLike
2067   // builtins will do.
2068 
2069   // 3. We don't need to check explicitly for constructor new.target here,
2070   // since that's the second thing the Construct/ConstructWithArrayLike
2071   // builtins will do.
2072 
2073   // 4. Construct the target with the given new.target and argumentsList.
2074   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructWithArrayLike),
2075           RelocInfo::CODE_TARGET);
2076 }
2077 
2078 namespace {
2079 
2080 // Allocate new stack space for |count| arguments and shift all existing
2081 // arguments already on the stack. |pointer_to_new_space_out| points to the
2082 // first free slot on the stack to copy additional arguments to and
2083 // |argc_in_out| is updated to include |count|.
Generate_AllocateSpaceAndShiftExistingArguments(MacroAssembler * masm,Register count,Register argc_in_out,Register pointer_to_new_space_out,Register scratch1,Register scratch2)2084 void Generate_AllocateSpaceAndShiftExistingArguments(
2085     MacroAssembler* masm, Register count, Register argc_in_out,
2086     Register pointer_to_new_space_out, Register scratch1, Register scratch2) {
2087   DCHECK(!AreAliased(count, argc_in_out, pointer_to_new_space_out, scratch1,
2088                      scratch2));
2089   UseScratchRegisterScope temps(masm);
2090   Register old_sp = scratch1;
2091   Register new_space = scratch2;
2092   __ mov(old_sp, sp);
2093   __ lsl(new_space, count, Operand(kSystemPointerSizeLog2));
2094   __ AllocateStackSpace(new_space);
2095 
2096   Register end = scratch2;
2097   Register value = temps.Acquire();
2098   Register dest = pointer_to_new_space_out;
2099   __ mov(dest, sp);
2100   __ add(end, old_sp, Operand(argc_in_out, LSL, kSystemPointerSizeLog2));
2101   Label loop, done;
2102   __ bind(&loop);
2103   __ cmp(old_sp, end);
2104   if (kJSArgcIncludesReceiver) {
2105     __ b(ge, &done);
2106   } else {
2107     __ b(gt, &done);
2108   }
2109   __ ldr(value, MemOperand(old_sp, kSystemPointerSize, PostIndex));
2110   __ str(value, MemOperand(dest, kSystemPointerSize, PostIndex));
2111   __ b(&loop);
2112   __ bind(&done);
2113 
2114   // Update total number of arguments.
2115   __ add(argc_in_out, argc_in_out, count);
2116 }
2117 
2118 }  // namespace
2119 
2120 // static
2121 // TODO(v8:11615): Observe Code::kMaxArguments in CallOrConstructVarargs
Generate_CallOrConstructVarargs(MacroAssembler * masm,Handle<Code> code)2122 void Builtins::Generate_CallOrConstructVarargs(MacroAssembler* masm,
2123                                                Handle<Code> code) {
2124   // ----------- S t a t e -------------
2125   //  -- r1 : target
2126   //  -- r0 : number of parameters on the stack
2127   //  -- r2 : arguments list (a FixedArray)
2128   //  -- r4 : len (number of elements to push from args)
2129   //  -- r3 : new.target (for [[Construct]])
2130   // -----------------------------------
2131   Register scratch = r8;
2132 
2133   if (FLAG_debug_code) {
2134     // Allow r2 to be a FixedArray, or a FixedDoubleArray if r4 == 0.
2135     Label ok, fail;
2136     __ AssertNotSmi(r2);
2137     __ ldr(scratch, FieldMemOperand(r2, HeapObject::kMapOffset));
2138     __ ldrh(r6, FieldMemOperand(scratch, Map::kInstanceTypeOffset));
2139     __ cmp(r6, Operand(FIXED_ARRAY_TYPE));
2140     __ b(eq, &ok);
2141     __ cmp(r6, Operand(FIXED_DOUBLE_ARRAY_TYPE));
2142     __ b(ne, &fail);
2143     __ cmp(r4, Operand(0));
2144     __ b(eq, &ok);
2145     // Fall through.
2146     __ bind(&fail);
2147     __ Abort(AbortReason::kOperandIsNotAFixedArray);
2148 
2149     __ bind(&ok);
2150   }
2151 
2152   Label stack_overflow;
2153   __ StackOverflowCheck(r4, scratch, &stack_overflow);
2154 
2155   // Move the arguments already in the stack,
2156   // including the receiver and the return address.
2157   // r4: Number of arguments to make room for.
2158   // r0: Number of arguments already on the stack.
2159   // r9: Points to first free slot on the stack after arguments were shifted.
2160   Generate_AllocateSpaceAndShiftExistingArguments(masm, r4, r0, r9, r5, r6);
2161 
2162   // Copy arguments onto the stack (thisArgument is already on the stack).
2163   {
2164     __ mov(r6, Operand(0));
2165     __ LoadRoot(r5, RootIndex::kTheHoleValue);
2166     Label done, loop;
2167     __ bind(&loop);
2168     __ cmp(r6, r4);
2169     __ b(eq, &done);
2170     __ add(scratch, r2, Operand(r6, LSL, kTaggedSizeLog2));
2171     __ ldr(scratch, FieldMemOperand(scratch, FixedArray::kHeaderSize));
2172     __ cmp(scratch, r5);
2173     // Turn the hole into undefined as we go.
2174     __ LoadRoot(scratch, RootIndex::kUndefinedValue, eq);
2175     __ str(scratch, MemOperand(r9, kSystemPointerSize, PostIndex));
2176     __ add(r6, r6, Operand(1));
2177     __ b(&loop);
2178     __ bind(&done);
2179   }
2180 
2181   // Tail-call to the actual Call or Construct builtin.
2182   __ Jump(code, RelocInfo::CODE_TARGET);
2183 
2184   __ bind(&stack_overflow);
2185   __ TailCallRuntime(Runtime::kThrowStackOverflow);
2186 }
2187 
2188 // static
Generate_CallOrConstructForwardVarargs(MacroAssembler * masm,CallOrConstructMode mode,Handle<Code> code)2189 void Builtins::Generate_CallOrConstructForwardVarargs(MacroAssembler* masm,
2190                                                       CallOrConstructMode mode,
2191                                                       Handle<Code> code) {
2192   // ----------- S t a t e -------------
2193   //  -- r0 : the number of arguments
2194   //  -- r3 : the new.target (for [[Construct]] calls)
2195   //  -- r1 : the target to call (can be any Object)
2196   //  -- r2 : start index (to support rest parameters)
2197   // -----------------------------------
2198 
2199   Register scratch = r6;
2200 
2201   // Check if new.target has a [[Construct]] internal method.
2202   if (mode == CallOrConstructMode::kConstruct) {
2203     Label new_target_constructor, new_target_not_constructor;
2204     __ JumpIfSmi(r3, &new_target_not_constructor);
2205     __ ldr(scratch, FieldMemOperand(r3, HeapObject::kMapOffset));
2206     __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset));
2207     __ tst(scratch, Operand(Map::Bits1::IsConstructorBit::kMask));
2208     __ b(ne, &new_target_constructor);
2209     __ bind(&new_target_not_constructor);
2210     {
2211       FrameScope scope(masm, StackFrame::MANUAL);
2212       __ EnterFrame(StackFrame::INTERNAL);
2213       __ Push(r3);
2214       __ CallRuntime(Runtime::kThrowNotConstructor);
2215     }
2216     __ bind(&new_target_constructor);
2217   }
2218 
2219   Label stack_done, stack_overflow;
2220   __ ldr(r5, MemOperand(fp, StandardFrameConstants::kArgCOffset));
2221   if (kJSArgcIncludesReceiver) {
2222     __ sub(r5, r5, Operand(kJSArgcReceiverSlots));
2223   }
2224   __ sub(r5, r5, r2, SetCC);
2225   __ b(le, &stack_done);
2226   {
2227     // ----------- S t a t e -------------
2228     //  -- r0 : the number of arguments already in the stack
2229     //  -- r1 : the target to call (can be any Object)
2230     //  -- r2 : start index (to support rest parameters)
2231     //  -- r3 : the new.target (for [[Construct]] calls)
2232     //  -- fp : point to the caller stack frame
2233     //  -- r5 : number of arguments to copy, i.e. arguments count - start index
2234     // -----------------------------------
2235 
2236     // Check for stack overflow.
2237     __ StackOverflowCheck(r5, scratch, &stack_overflow);
2238 
2239     // Forward the arguments from the caller frame.
2240     // Point to the first argument to copy (skipping the receiver).
2241     __ add(r4, fp,
2242            Operand(CommonFrameConstants::kFixedFrameSizeAboveFp +
2243                    kSystemPointerSize));
2244     __ add(r4, r4, Operand(r2, LSL, kSystemPointerSizeLog2));
2245 
2246     // Move the arguments already in the stack,
2247     // including the receiver and the return address.
2248     // r5: Number of arguments to make room for.
2249     // r0: Number of arguments already on the stack.
2250     // r2: Points to first free slot on the stack after arguments were shifted.
2251     Generate_AllocateSpaceAndShiftExistingArguments(masm, r5, r0, r2, scratch,
2252                                                     r8);
2253 
2254     // Copy arguments from the caller frame.
2255     // TODO(victorgomes): Consider using forward order as potentially more cache
2256     // friendly.
2257     {
2258       Label loop;
2259       __ bind(&loop);
2260       {
2261         __ sub(r5, r5, Operand(1), SetCC);
2262         __ ldr(scratch, MemOperand(r4, r5, LSL, kSystemPointerSizeLog2));
2263         __ str(scratch, MemOperand(r2, r5, LSL, kSystemPointerSizeLog2));
2264         __ b(ne, &loop);
2265       }
2266     }
2267   }
2268   __ b(&stack_done);
2269   __ bind(&stack_overflow);
2270   __ TailCallRuntime(Runtime::kThrowStackOverflow);
2271   __ bind(&stack_done);
2272 
2273   // Tail-call to the {code} handler.
2274   __ Jump(code, RelocInfo::CODE_TARGET);
2275 }
2276 
2277 // static
Generate_CallFunction(MacroAssembler * masm,ConvertReceiverMode mode)2278 void Builtins::Generate_CallFunction(MacroAssembler* masm,
2279                                      ConvertReceiverMode mode) {
2280   // ----------- S t a t e -------------
2281   //  -- r0 : the number of arguments
2282   //  -- r1 : the function to call (checked to be a JSFunction)
2283   // -----------------------------------
2284   __ AssertFunction(r1);
2285 
2286   __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2287 
2288   // Enter the context of the function; ToObject has to run in the function
2289   // context, and we also need to take the global proxy from the function
2290   // context in case of conversion.
2291   __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset));
2292   // We need to convert the receiver for non-native sloppy mode functions.
2293   Label done_convert;
2294   __ ldr(r3, FieldMemOperand(r2, SharedFunctionInfo::kFlagsOffset));
2295   __ tst(r3, Operand(SharedFunctionInfo::IsNativeBit::kMask |
2296                      SharedFunctionInfo::IsStrictBit::kMask));
2297   __ b(ne, &done_convert);
2298   {
2299     // ----------- S t a t e -------------
2300     //  -- r0 : the number of arguments
2301     //  -- r1 : the function to call (checked to be a JSFunction)
2302     //  -- r2 : the shared function info.
2303     //  -- cp : the function context.
2304     // -----------------------------------
2305 
2306     if (mode == ConvertReceiverMode::kNullOrUndefined) {
2307       // Patch receiver to global proxy.
2308       __ LoadGlobalProxy(r3);
2309     } else {
2310       Label convert_to_object, convert_receiver;
2311       __ ldr(r3, __ ReceiverOperand(r0));
2312       __ JumpIfSmi(r3, &convert_to_object);
2313       STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE);
2314       __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE);
2315       __ b(hs, &done_convert);
2316       if (mode != ConvertReceiverMode::kNotNullOrUndefined) {
2317         Label convert_global_proxy;
2318         __ JumpIfRoot(r3, RootIndex::kUndefinedValue, &convert_global_proxy);
2319         __ JumpIfNotRoot(r3, RootIndex::kNullValue, &convert_to_object);
2320         __ bind(&convert_global_proxy);
2321         {
2322           // Patch receiver to global proxy.
2323           __ LoadGlobalProxy(r3);
2324         }
2325         __ b(&convert_receiver);
2326       }
2327       __ bind(&convert_to_object);
2328       {
2329         // Convert receiver using ToObject.
2330         // TODO(bmeurer): Inline the allocation here to avoid building the frame
2331         // in the fast case? (fall back to AllocateInNewSpace?)
2332         FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2333         __ SmiTag(r0);
2334         __ Push(r0, r1);
2335         __ mov(r0, r3);
2336         __ Push(cp);
2337         __ Call(BUILTIN_CODE(masm->isolate(), ToObject),
2338                 RelocInfo::CODE_TARGET);
2339         __ Pop(cp);
2340         __ mov(r3, r0);
2341         __ Pop(r0, r1);
2342         __ SmiUntag(r0);
2343       }
2344       __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2345       __ bind(&convert_receiver);
2346     }
2347     __ str(r3, __ ReceiverOperand(r0));
2348   }
2349   __ bind(&done_convert);
2350 
2351   // ----------- S t a t e -------------
2352   //  -- r0 : the number of arguments
2353   //  -- r1 : the function to call (checked to be a JSFunction)
2354   //  -- r2 : the shared function info.
2355   //  -- cp : the function context.
2356   // -----------------------------------
2357 
2358   __ ldrh(r2,
2359           FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset));
2360   __ InvokeFunctionCode(r1, no_reg, r2, r0, InvokeType::kJump);
2361 }
2362 
2363 namespace {
2364 
Generate_PushBoundArguments(MacroAssembler * masm)2365 void Generate_PushBoundArguments(MacroAssembler* masm) {
2366   ASM_CODE_COMMENT(masm);
2367   // ----------- S t a t e -------------
2368   //  -- r0 : the number of arguments
2369   //  -- r1 : target (checked to be a JSBoundFunction)
2370   //  -- r3 : new.target (only in case of [[Construct]])
2371   // -----------------------------------
2372 
2373   // Load [[BoundArguments]] into r2 and length of that into r4.
2374   Label no_bound_arguments;
2375   __ ldr(r2, FieldMemOperand(r1, JSBoundFunction::kBoundArgumentsOffset));
2376   __ ldr(r4, FieldMemOperand(r2, FixedArray::kLengthOffset));
2377   __ SmiUntag(r4);
2378   __ cmp(r4, Operand(0));
2379   __ b(eq, &no_bound_arguments);
2380   {
2381     // ----------- S t a t e -------------
2382     //  -- r0 : the number of arguments
2383     //  -- r1 : target (checked to be a JSBoundFunction)
2384     //  -- r2 : the [[BoundArguments]] (implemented as FixedArray)
2385     //  -- r3 : new.target (only in case of [[Construct]])
2386     //  -- r4 : the number of [[BoundArguments]]
2387     // -----------------------------------
2388 
2389     Register scratch = r6;
2390 
2391     {
2392       // Check the stack for overflow. We are not trying to catch interruptions
2393       // (i.e. debug break and preemption) here, so check the "real stack
2394       // limit".
2395       Label done;
2396       __ mov(scratch, Operand(r4, LSL, kSystemPointerSizeLog2));
2397       {
2398         UseScratchRegisterScope temps(masm);
2399         Register remaining_stack_size = temps.Acquire();
2400         DCHECK(!AreAliased(r0, r1, r2, r3, r4, scratch, remaining_stack_size));
2401 
2402         // Compute the space we have left. The stack might already be overflowed
2403         // here which will cause remaining_stack_size to become negative.
2404         __ LoadStackLimit(remaining_stack_size,
2405                           StackLimitKind::kRealStackLimit);
2406         __ sub(remaining_stack_size, sp, remaining_stack_size);
2407 
2408         // Check if the arguments will overflow the stack.
2409         __ cmp(remaining_stack_size, scratch);
2410       }
2411       __ b(gt, &done);
2412       {
2413         FrameScope scope(masm, StackFrame::MANUAL);
2414         __ EnterFrame(StackFrame::INTERNAL);
2415         __ CallRuntime(Runtime::kThrowStackOverflow);
2416       }
2417       __ bind(&done);
2418     }
2419 
2420     // Pop receiver.
2421     __ Pop(r5);
2422 
2423     // Push [[BoundArguments]].
2424     {
2425       Label loop;
2426       __ add(r0, r0, r4);  // Adjust effective number of arguments.
2427       __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag));
2428       __ bind(&loop);
2429       __ sub(r4, r4, Operand(1), SetCC);
2430       __ ldr(scratch, MemOperand(r2, r4, LSL, kTaggedSizeLog2));
2431       __ Push(scratch);
2432       __ b(gt, &loop);
2433     }
2434 
2435     // Push receiver.
2436     __ Push(r5);
2437   }
2438   __ bind(&no_bound_arguments);
2439 }
2440 
2441 }  // namespace
2442 
2443 // static
Generate_CallBoundFunctionImpl(MacroAssembler * masm)2444 void Builtins::Generate_CallBoundFunctionImpl(MacroAssembler* masm) {
2445   // ----------- S t a t e -------------
2446   //  -- r0 : the number of arguments
2447   //  -- r1 : the function to call (checked to be a JSBoundFunction)
2448   // -----------------------------------
2449   __ AssertBoundFunction(r1);
2450 
2451   // Patch the receiver to [[BoundThis]].
2452   __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundThisOffset));
2453   __ str(r3, __ ReceiverOperand(r0));
2454 
2455   // Push the [[BoundArguments]] onto the stack.
2456   Generate_PushBoundArguments(masm);
2457 
2458   // Call the [[BoundTargetFunction]] via the Call builtin.
2459   __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
2460   __ Jump(BUILTIN_CODE(masm->isolate(), Call_ReceiverIsAny),
2461           RelocInfo::CODE_TARGET);
2462 }
2463 
2464 // static
Generate_Call(MacroAssembler * masm,ConvertReceiverMode mode)2465 void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) {
2466   // ----------- S t a t e -------------
2467   //  -- r0 : the number of arguments
2468   //  -- r1 : the target to call (can be any Object).
2469   // -----------------------------------
2470   Register argc = r0;
2471   Register target = r1;
2472   Register map = r4;
2473   Register instance_type = r5;
2474   DCHECK(!AreAliased(argc, target, map, instance_type));
2475 
2476   Label non_callable, class_constructor;
2477   __ JumpIfSmi(target, &non_callable);
2478   __ LoadMap(map, target);
2479   __ CompareInstanceTypeRange(map, instance_type,
2480                               FIRST_CALLABLE_JS_FUNCTION_TYPE,
2481                               LAST_CALLABLE_JS_FUNCTION_TYPE);
2482   __ Jump(masm->isolate()->builtins()->CallFunction(mode),
2483           RelocInfo::CODE_TARGET, ls);
2484   __ cmp(instance_type, Operand(JS_BOUND_FUNCTION_TYPE));
2485   __ Jump(BUILTIN_CODE(masm->isolate(), CallBoundFunction),
2486           RelocInfo::CODE_TARGET, eq);
2487 
2488   // Check if target has a [[Call]] internal method.
2489   {
2490     Register flags = r4;
2491     __ ldrb(flags, FieldMemOperand(map, Map::kBitFieldOffset));
2492     map = no_reg;
2493     __ tst(flags, Operand(Map::Bits1::IsCallableBit::kMask));
2494     __ b(eq, &non_callable);
2495   }
2496 
2497   // Check if target is a proxy and call CallProxy external builtin
2498   __ cmp(instance_type, Operand(JS_PROXY_TYPE));
2499   __ Jump(BUILTIN_CODE(masm->isolate(), CallProxy), RelocInfo::CODE_TARGET, eq);
2500 
2501   // ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList)
2502   // Check that the function is not a "classConstructor".
2503   __ cmp(instance_type, Operand(JS_CLASS_CONSTRUCTOR_TYPE));
2504   __ b(eq, &class_constructor);
2505 
2506   // 2. Call to something else, which might have a [[Call]] internal method (if
2507   // not we raise an exception).
2508   // Overwrite the original receiver the (original) target.
2509   __ str(target, __ ReceiverOperand(argc));
2510   // Let the "call_as_function_delegate" take care of the rest.
2511   __ LoadNativeContextSlot(target, Context::CALL_AS_FUNCTION_DELEGATE_INDEX);
2512   __ Jump(masm->isolate()->builtins()->CallFunction(
2513               ConvertReceiverMode::kNotNullOrUndefined),
2514           RelocInfo::CODE_TARGET);
2515 
2516   // 3. Call to something that is not callable.
2517   __ bind(&non_callable);
2518   {
2519     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2520     __ Push(target);
2521     __ CallRuntime(Runtime::kThrowCalledNonCallable);
2522     __ Trap();  // Unreachable.
2523   }
2524 
2525   // 4. The function is a "classConstructor", need to raise an exception.
2526   __ bind(&class_constructor);
2527   {
2528     FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL);
2529     __ Push(target);
2530     __ CallRuntime(Runtime::kThrowConstructorNonCallableError);
2531     __ Trap();  // Unreachable.
2532   }
2533 }
2534 
2535 // static
Generate_ConstructFunction(MacroAssembler * masm)2536 void Builtins::Generate_ConstructFunction(MacroAssembler* masm) {
2537   // ----------- S t a t e -------------
2538   //  -- r0 : the number of arguments
2539   //  -- r1 : the constructor to call (checked to be a JSFunction)
2540   //  -- r3 : the new target (checked to be a constructor)
2541   // -----------------------------------
2542   __ AssertConstructor(r1);
2543   __ AssertFunction(r1);
2544 
2545   // Calling convention for function specific ConstructStubs require
2546   // r2 to contain either an AllocationSite or undefined.
2547   __ LoadRoot(r2, RootIndex::kUndefinedValue);
2548 
2549   Label call_generic_stub;
2550 
2551   // Jump to JSBuiltinsConstructStub or JSConstructStubGeneric.
2552   __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset));
2553   __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kFlagsOffset));
2554   __ tst(r4, Operand(SharedFunctionInfo::ConstructAsBuiltinBit::kMask));
2555   __ b(eq, &call_generic_stub);
2556 
2557   __ Jump(BUILTIN_CODE(masm->isolate(), JSBuiltinsConstructStub),
2558           RelocInfo::CODE_TARGET);
2559 
2560   __ bind(&call_generic_stub);
2561   __ Jump(BUILTIN_CODE(masm->isolate(), JSConstructStubGeneric),
2562           RelocInfo::CODE_TARGET);
2563 }
2564 
2565 // static
Generate_ConstructBoundFunction(MacroAssembler * masm)2566 void Builtins::Generate_ConstructBoundFunction(MacroAssembler* masm) {
2567   // ----------- S t a t e -------------
2568   //  -- r0 : the number of arguments
2569   //  -- r1 : the function to call (checked to be a JSBoundFunction)
2570   //  -- r3 : the new target (checked to be a constructor)
2571   // -----------------------------------
2572   __ AssertConstructor(r1);
2573   __ AssertBoundFunction(r1);
2574 
2575   // Push the [[BoundArguments]] onto the stack.
2576   Generate_PushBoundArguments(masm);
2577 
2578   // Patch new.target to [[BoundTargetFunction]] if new.target equals target.
2579   __ cmp(r1, r3);
2580   __ ldr(r3, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset),
2581          eq);
2582 
2583   // Construct the [[BoundTargetFunction]] via the Construct builtin.
2584   __ ldr(r1, FieldMemOperand(r1, JSBoundFunction::kBoundTargetFunctionOffset));
2585   __ Jump(BUILTIN_CODE(masm->isolate(), Construct), RelocInfo::CODE_TARGET);
2586 }
2587 
2588 // static
Generate_Construct(MacroAssembler * masm)2589 void Builtins::Generate_Construct(MacroAssembler* masm) {
2590   // ----------- S t a t e -------------
2591   //  -- r0 : the number of arguments
2592   //  -- r1 : the constructor to call (can be any Object)
2593   //  -- r3 : the new target (either the same as the constructor or
2594   //          the JSFunction on which new was invoked initially)
2595   // -----------------------------------
2596   Register argc = r0;
2597   Register target = r1;
2598   Register map = r4;
2599   Register instance_type = r5;
2600   DCHECK(!AreAliased(argc, target, map, instance_type));
2601 
2602   // Check if target is a Smi.
2603   Label non_constructor, non_proxy;
2604   __ JumpIfSmi(target, &non_constructor);
2605 
2606   // Check if target has a [[Construct]] internal method.
2607   __ ldr(map, FieldMemOperand(target, HeapObject::kMapOffset));
2608   {
2609     Register flags = r2;
2610     DCHECK(!AreAliased(argc, target, map, instance_type, flags));
2611     __ ldrb(flags, FieldMemOperand(map, Map::kBitFieldOffset));
2612     __ tst(flags, Operand(Map::Bits1::IsConstructorBit::kMask));
2613     __ b(eq, &non_constructor);
2614   }
2615 
2616   // Dispatch based on instance type.
2617   __ CompareInstanceTypeRange(map, instance_type, FIRST_JS_FUNCTION_TYPE,
2618                               LAST_JS_FUNCTION_TYPE);
2619   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructFunction),
2620           RelocInfo::CODE_TARGET, ls);
2621 
2622   // Only dispatch to bound functions after checking whether they are
2623   // constructors.
2624   __ cmp(instance_type, Operand(JS_BOUND_FUNCTION_TYPE));
2625   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructBoundFunction),
2626           RelocInfo::CODE_TARGET, eq);
2627 
2628   // Only dispatch to proxies after checking whether they are constructors.
2629   __ cmp(instance_type, Operand(JS_PROXY_TYPE));
2630   __ b(ne, &non_proxy);
2631   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructProxy),
2632           RelocInfo::CODE_TARGET);
2633 
2634   // Called Construct on an exotic Object with a [[Construct]] internal method.
2635   __ bind(&non_proxy);
2636   {
2637     // Overwrite the original receiver with the (original) target.
2638     __ str(target, __ ReceiverOperand(argc));
2639     // Let the "call_as_constructor_delegate" take care of the rest.
2640     __ LoadNativeContextSlot(target,
2641                              Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX);
2642     __ Jump(masm->isolate()->builtins()->CallFunction(),
2643             RelocInfo::CODE_TARGET);
2644   }
2645 
2646   // Called Construct on an Object that doesn't have a [[Construct]] internal
2647   // method.
2648   __ bind(&non_constructor);
2649   __ Jump(BUILTIN_CODE(masm->isolate(), ConstructedNonConstructable),
2650           RelocInfo::CODE_TARGET);
2651 }
2652 
2653 #if V8_ENABLE_WEBASSEMBLY
Generate_WasmCompileLazy(MacroAssembler * masm)2654 void Builtins::Generate_WasmCompileLazy(MacroAssembler* masm) {
2655   // The function index was put in a register by the jump table trampoline.
2656   // Convert to Smi for the runtime call.
2657   __ SmiTag(kWasmCompileLazyFuncIndexRegister,
2658             kWasmCompileLazyFuncIndexRegister);
2659   {
2660     HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2661     FrameAndConstantPoolScope scope(masm, StackFrame::WASM_COMPILE_LAZY);
2662 
2663     // Save all parameter registers (see wasm-linkage.h). They might be
2664     // overwritten in the runtime call below. We don't have any callee-saved
2665     // registers in wasm, so no need to store anything else.
2666     RegList gp_regs = 0;
2667     for (Register gp_param_reg : wasm::kGpParamRegisters) {
2668       gp_regs |= gp_param_reg.bit();
2669     }
2670     DwVfpRegister lowest_fp_reg = std::begin(wasm::kFpParamRegisters)[0];
2671     DwVfpRegister highest_fp_reg = std::end(wasm::kFpParamRegisters)[-1];
2672     for (DwVfpRegister fp_param_reg : wasm::kFpParamRegisters) {
2673       CHECK(fp_param_reg.code() >= lowest_fp_reg.code() &&
2674             fp_param_reg.code() <= highest_fp_reg.code());
2675     }
2676 
2677     CHECK_EQ(NumRegs(gp_regs), arraysize(wasm::kGpParamRegisters));
2678     CHECK_EQ(highest_fp_reg.code() - lowest_fp_reg.code() + 1,
2679              arraysize(wasm::kFpParamRegisters));
2680     CHECK_EQ(NumRegs(gp_regs),
2681              WasmCompileLazyFrameConstants::kNumberOfSavedGpParamRegs);
2682     CHECK_EQ(highest_fp_reg.code() - lowest_fp_reg.code() + 1,
2683              WasmCompileLazyFrameConstants::kNumberOfSavedFpParamRegs);
2684 
2685     __ stm(db_w, sp, gp_regs);
2686     __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg);
2687 
2688     // Pass instance and function index as explicit arguments to the runtime
2689     // function.
2690     __ push(kWasmInstanceRegister);
2691     __ push(kWasmCompileLazyFuncIndexRegister);
2692     // Initialize the JavaScript context with 0. CEntry will use it to
2693     // set the current context on the isolate.
2694     __ Move(cp, Smi::zero());
2695     __ CallRuntime(Runtime::kWasmCompileLazy, 2);
2696     // The entrypoint address is the return value.
2697     __ mov(r8, kReturnRegister0);
2698 
2699     // Restore registers.
2700     __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg);
2701     __ ldm(ia_w, sp, gp_regs);
2702   }
2703   // Finally, jump to the entrypoint.
2704   __ Jump(r8);
2705 }
2706 
Generate_WasmDebugBreak(MacroAssembler * masm)2707 void Builtins::Generate_WasmDebugBreak(MacroAssembler* masm) {
2708   HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2709   {
2710     FrameAndConstantPoolScope scope(masm, StackFrame::WASM_DEBUG_BREAK);
2711 
2712     STATIC_ASSERT(DwVfpRegister::kNumRegisters == 32);
2713     constexpr uint32_t last =
2714         31 - base::bits::CountLeadingZeros32(
2715                  WasmDebugBreakFrameConstants::kPushedFpRegs);
2716     constexpr uint32_t first = base::bits::CountTrailingZeros32(
2717         WasmDebugBreakFrameConstants::kPushedFpRegs);
2718     static_assert(
2719         base::bits::CountPopulation(
2720             WasmDebugBreakFrameConstants::kPushedFpRegs) == last - first + 1,
2721         "All registers in the range from first to last have to be set");
2722 
2723     // Save all parameter registers. They might hold live values, we restore
2724     // them after the runtime call.
2725     constexpr DwVfpRegister lowest_fp_reg = DwVfpRegister::from_code(first);
2726     constexpr DwVfpRegister highest_fp_reg = DwVfpRegister::from_code(last);
2727 
2728     // Store gp parameter registers.
2729     __ stm(db_w, sp, WasmDebugBreakFrameConstants::kPushedGpRegs);
2730     // Store fp parameter registers.
2731     __ vstm(db_w, sp, lowest_fp_reg, highest_fp_reg);
2732 
2733     // Initialize the JavaScript context with 0. CEntry will use it to
2734     // set the current context on the isolate.
2735     __ Move(cp, Smi::zero());
2736     __ CallRuntime(Runtime::kWasmDebugBreak, 0);
2737 
2738     // Restore registers.
2739     __ vldm(ia_w, sp, lowest_fp_reg, highest_fp_reg);
2740     __ ldm(ia_w, sp, WasmDebugBreakFrameConstants::kPushedGpRegs);
2741   }
2742   __ Ret();
2743 }
2744 
Generate_GenericJSToWasmWrapper(MacroAssembler * masm)2745 void Builtins::Generate_GenericJSToWasmWrapper(MacroAssembler* masm) {
2746   // TODO(v8:10701): Implement for this platform.
2747   __ Trap();
2748 }
2749 
Generate_WasmOnStackReplace(MacroAssembler * masm)2750 void Builtins::Generate_WasmOnStackReplace(MacroAssembler* masm) {
2751   // Only needed on x64.
2752   __ Trap();
2753 }
2754 #endif  // V8_ENABLE_WEBASSEMBLY
2755 
Generate_CEntry(MacroAssembler * masm,int result_size,SaveFPRegsMode save_doubles,ArgvMode argv_mode,bool builtin_exit_frame)2756 void Builtins::Generate_CEntry(MacroAssembler* masm, int result_size,
2757                                SaveFPRegsMode save_doubles, ArgvMode argv_mode,
2758                                bool builtin_exit_frame) {
2759   // Called from JavaScript; parameters are on stack as if calling JS function.
2760   // r0: number of arguments including receiver
2761   // r1: pointer to builtin function
2762   // fp: frame pointer  (restored after C call)
2763   // sp: stack pointer  (restored as callee's sp after C call)
2764   // cp: current context  (C callee-saved)
2765   //
2766   // If argv_mode == ArgvMode::kRegister:
2767   // r2: pointer to the first argument
2768 
2769   __ mov(r5, Operand(r1));
2770 
2771   if (argv_mode == ArgvMode::kRegister) {
2772     // Move argv into the correct register.
2773     __ mov(r1, Operand(r2));
2774   } else {
2775     // Compute the argv pointer in a callee-saved register.
2776     __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2));
2777     __ sub(r1, r1, Operand(kPointerSize));
2778   }
2779 
2780   // Enter the exit frame that transitions from JavaScript to C++.
2781   FrameScope scope(masm, StackFrame::MANUAL);
2782   __ EnterExitFrame(
2783       save_doubles == SaveFPRegsMode::kSave, 0,
2784       builtin_exit_frame ? StackFrame::BUILTIN_EXIT : StackFrame::EXIT);
2785 
2786   // Store a copy of argc in callee-saved registers for later.
2787   __ mov(r4, Operand(r0));
2788 
2789 // r0, r4: number of arguments including receiver  (C callee-saved)
2790 // r1: pointer to the first argument (C callee-saved)
2791 // r5: pointer to builtin function  (C callee-saved)
2792 
2793 #if V8_HOST_ARCH_ARM
2794   int frame_alignment = MacroAssembler::ActivationFrameAlignment();
2795   int frame_alignment_mask = frame_alignment - 1;
2796   if (FLAG_debug_code) {
2797     if (frame_alignment > kPointerSize) {
2798       Label alignment_as_expected;
2799       DCHECK(base::bits::IsPowerOfTwo(frame_alignment));
2800       __ tst(sp, Operand(frame_alignment_mask));
2801       __ b(eq, &alignment_as_expected);
2802       // Don't use Check here, as it will call Runtime_Abort re-entering here.
2803       __ stop();
2804       __ bind(&alignment_as_expected);
2805     }
2806   }
2807 #endif
2808 
2809   // Call C built-in.
2810   // r0 = argc, r1 = argv, r2 = isolate
2811   __ Move(r2, ExternalReference::isolate_address(masm->isolate()));
2812   __ StoreReturnAddressAndCall(r5);
2813 
2814   // Result returned in r0 or r1:r0 - do not destroy these registers!
2815 
2816   // Check result for exception sentinel.
2817   Label exception_returned;
2818   __ CompareRoot(r0, RootIndex::kException);
2819   __ b(eq, &exception_returned);
2820 
2821   // Check that there is no pending exception, otherwise we
2822   // should have returned the exception sentinel.
2823   if (FLAG_debug_code) {
2824     Label okay;
2825     ExternalReference pending_exception_address = ExternalReference::Create(
2826         IsolateAddressId::kPendingExceptionAddress, masm->isolate());
2827     __ Move(r3, pending_exception_address);
2828     __ ldr(r3, MemOperand(r3));
2829     __ CompareRoot(r3, RootIndex::kTheHoleValue);
2830     // Cannot use check here as it attempts to generate call into runtime.
2831     __ b(eq, &okay);
2832     __ stop();
2833     __ bind(&okay);
2834   }
2835 
2836   // Exit C frame and return.
2837   // r0:r1: result
2838   // sp: stack pointer
2839   // fp: frame pointer
2840   Register argc = argv_mode == ArgvMode::kRegister
2841                       // We don't want to pop arguments so set argc to no_reg.
2842                       ? no_reg
2843                       // Callee-saved register r4 still holds argc.
2844                       : r4;
2845   __ LeaveExitFrame(save_doubles == SaveFPRegsMode::kSave, argc);
2846   __ mov(pc, lr);
2847 
2848   // Handling of exception.
2849   __ bind(&exception_returned);
2850 
2851   ExternalReference pending_handler_context_address = ExternalReference::Create(
2852       IsolateAddressId::kPendingHandlerContextAddress, masm->isolate());
2853   ExternalReference pending_handler_entrypoint_address =
2854       ExternalReference::Create(
2855           IsolateAddressId::kPendingHandlerEntrypointAddress, masm->isolate());
2856   ExternalReference pending_handler_fp_address = ExternalReference::Create(
2857       IsolateAddressId::kPendingHandlerFPAddress, masm->isolate());
2858   ExternalReference pending_handler_sp_address = ExternalReference::Create(
2859       IsolateAddressId::kPendingHandlerSPAddress, masm->isolate());
2860 
2861   // Ask the runtime for help to determine the handler. This will set r0 to
2862   // contain the current pending exception, don't clobber it.
2863   ExternalReference find_handler =
2864       ExternalReference::Create(Runtime::kUnwindAndFindExceptionHandler);
2865   {
2866     FrameScope scope(masm, StackFrame::MANUAL);
2867     __ PrepareCallCFunction(3, 0);
2868     __ mov(r0, Operand(0));
2869     __ mov(r1, Operand(0));
2870     __ Move(r2, ExternalReference::isolate_address(masm->isolate()));
2871     __ CallCFunction(find_handler, 3);
2872   }
2873 
2874   // Retrieve the handler context, SP and FP.
2875   __ Move(cp, pending_handler_context_address);
2876   __ ldr(cp, MemOperand(cp));
2877   __ Move(sp, pending_handler_sp_address);
2878   __ ldr(sp, MemOperand(sp));
2879   __ Move(fp, pending_handler_fp_address);
2880   __ ldr(fp, MemOperand(fp));
2881 
2882   // If the handler is a JS frame, restore the context to the frame. Note that
2883   // the context will be set to (cp == 0) for non-JS frames.
2884   __ cmp(cp, Operand(0));
2885   __ str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne);
2886 
2887   // Clear c_entry_fp, like we do in `LeaveExitFrame`.
2888   {
2889     UseScratchRegisterScope temps(masm);
2890     Register scratch = temps.Acquire();
2891     __ Move(scratch, ExternalReference::Create(
2892                          IsolateAddressId::kCEntryFPAddress, masm->isolate()));
2893     __ mov(r1, Operand::Zero());
2894     __ str(r1, MemOperand(scratch));
2895   }
2896 
2897   // Compute the handler entry address and jump to it.
2898   ConstantPoolUnavailableScope constant_pool_unavailable(masm);
2899   __ Move(r1, pending_handler_entrypoint_address);
2900   __ ldr(r1, MemOperand(r1));
2901   __ Jump(r1);
2902 }
2903 
Generate_DoubleToI(MacroAssembler * masm)2904 void Builtins::Generate_DoubleToI(MacroAssembler* masm) {
2905   Label negate, done;
2906 
2907   HardAbortScope hard_abort(masm);  // Avoid calls to Abort.
2908   UseScratchRegisterScope temps(masm);
2909   Register result_reg = r7;
2910   Register double_low = GetRegisterThatIsNotOneOf(result_reg);
2911   Register double_high = GetRegisterThatIsNotOneOf(result_reg, double_low);
2912   LowDwVfpRegister double_scratch = temps.AcquireLowD();
2913 
2914   // Save the old values from these temporary registers on the stack.
2915   __ Push(result_reg, double_high, double_low);
2916 
2917   // Account for saved regs.
2918   const int kArgumentOffset = 3 * kPointerSize;
2919 
2920   MemOperand input_operand(sp, kArgumentOffset);
2921   MemOperand result_operand = input_operand;
2922 
2923   // Load double input.
2924   __ vldr(double_scratch, input_operand);
2925   __ vmov(double_low, double_high, double_scratch);
2926   // Try to convert with a FPU convert instruction. This handles all
2927   // non-saturating cases.
2928   __ TryInlineTruncateDoubleToI(result_reg, double_scratch, &done);
2929 
2930   Register scratch = temps.Acquire();
2931   __ Ubfx(scratch, double_high, HeapNumber::kExponentShift,
2932           HeapNumber::kExponentBits);
2933   // Load scratch with exponent - 1. This is faster than loading
2934   // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value.
2935   STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024);
2936   __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1));
2937   // If exponent is greater than or equal to 84, the 32 less significant
2938   // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits),
2939   // the result is 0.
2940   // Compare exponent with 84 (compare exponent - 1 with 83). If the exponent is
2941   // greater than this, the conversion is out of range, so return zero.
2942   __ cmp(scratch, Operand(83));
2943   __ mov(result_reg, Operand::Zero(), LeaveCC, ge);
2944   __ b(ge, &done);
2945 
2946   // If we reach this code, 30 <= exponent <= 83.
2947   // `TryInlineTruncateDoubleToI` above will have truncated any double with an
2948   // exponent lower than 30.
2949   if (FLAG_debug_code) {
2950     // Scratch is exponent - 1.
2951     __ cmp(scratch, Operand(30 - 1));
2952     __ Check(ge, AbortReason::kUnexpectedValue);
2953   }
2954 
2955   // We don't have to handle cases where 0 <= exponent <= 20 for which we would
2956   // need to shift right the high part of the mantissa.
2957   // Scratch contains exponent - 1.
2958   // Load scratch with 52 - exponent (load with 51 - (exponent - 1)).
2959   __ rsb(scratch, scratch, Operand(51), SetCC);
2960 
2961   // 52 <= exponent <= 83, shift only double_low.
2962   // On entry, scratch contains: 52 - exponent.
2963   __ rsb(scratch, scratch, Operand::Zero(), LeaveCC, ls);
2964   __ mov(result_reg, Operand(double_low, LSL, scratch), LeaveCC, ls);
2965   __ b(ls, &negate);
2966 
2967   // 21 <= exponent <= 51, shift double_low and double_high
2968   // to generate the result.
2969   __ mov(double_low, Operand(double_low, LSR, scratch));
2970   // Scratch contains: 52 - exponent.
2971   // We needs: exponent - 20.
2972   // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20.
2973   __ rsb(scratch, scratch, Operand(32));
2974   __ Ubfx(result_reg, double_high, 0, HeapNumber::kMantissaBitsInTopWord);
2975   // Set the implicit 1 before the mantissa part in double_high.
2976   __ orr(result_reg, result_reg,
2977          Operand(1 << HeapNumber::kMantissaBitsInTopWord));
2978   __ orr(result_reg, double_low, Operand(result_reg, LSL, scratch));
2979 
2980   __ bind(&negate);
2981   // If input was positive, double_high ASR 31 equals 0 and
2982   // double_high LSR 31 equals zero.
2983   // New result = (result eor 0) + 0 = result.
2984   // If the input was negative, we have to negate the result.
2985   // Input_high ASR 31 equals 0xFFFFFFFF and double_high LSR 31 equals 1.
2986   // New result = (result eor 0xFFFFFFFF) + 1 = 0 - result.
2987   __ eor(result_reg, result_reg, Operand(double_high, ASR, 31));
2988   __ add(result_reg, result_reg, Operand(double_high, LSR, 31));
2989 
2990   __ bind(&done);
2991   __ str(result_reg, result_operand);
2992 
2993   // Restore registers corrupted in this routine and return.
2994   __ Pop(result_reg, double_high, double_low);
2995   __ Ret();
2996 }
2997 
2998 namespace {
2999 
AddressOffset(ExternalReference ref0,ExternalReference ref1)3000 int AddressOffset(ExternalReference ref0, ExternalReference ref1) {
3001   return ref0.address() - ref1.address();
3002 }
3003 
3004 // Calls an API function.  Allocates HandleScope, extracts returned value
3005 // from handle and propagates exceptions.  Restores context.  stack_space
3006 // - space to be unwound on exit (includes the call JS arguments space and
3007 // the additional space allocated for the fast call).
CallApiFunctionAndReturn(MacroAssembler * masm,Register function_address,ExternalReference thunk_ref,int stack_space,MemOperand * stack_space_operand,MemOperand return_value_operand)3008 void CallApiFunctionAndReturn(MacroAssembler* masm, Register function_address,
3009                               ExternalReference thunk_ref, int stack_space,
3010                               MemOperand* stack_space_operand,
3011                               MemOperand return_value_operand) {
3012   ASM_CODE_COMMENT(masm);
3013   Isolate* isolate = masm->isolate();
3014   ExternalReference next_address =
3015       ExternalReference::handle_scope_next_address(isolate);
3016   const int kNextOffset = 0;
3017   const int kLimitOffset = AddressOffset(
3018       ExternalReference::handle_scope_limit_address(isolate), next_address);
3019   const int kLevelOffset = AddressOffset(
3020       ExternalReference::handle_scope_level_address(isolate), next_address);
3021 
3022   DCHECK(function_address == r1 || function_address == r2);
3023 
3024   Label profiler_enabled, end_profiler_check;
3025   __ Move(r9, ExternalReference::is_profiling_address(isolate));
3026   __ ldrb(r9, MemOperand(r9, 0));
3027   __ cmp(r9, Operand(0));
3028   __ b(ne, &profiler_enabled);
3029   __ Move(r9, ExternalReference::address_of_runtime_stats_flag());
3030   __ ldr(r9, MemOperand(r9, 0));
3031   __ cmp(r9, Operand(0));
3032   __ b(ne, &profiler_enabled);
3033   {
3034     // Call the api function directly.
3035     __ Move(r3, function_address);
3036     __ b(&end_profiler_check);
3037   }
3038   __ bind(&profiler_enabled);
3039   {
3040     // Additional parameter is the address of the actual callback.
3041     __ Move(r3, thunk_ref);
3042   }
3043   __ bind(&end_profiler_check);
3044 
3045   // Allocate HandleScope in callee-save registers.
3046   __ Move(r9, next_address);
3047   __ ldr(r4, MemOperand(r9, kNextOffset));
3048   __ ldr(r5, MemOperand(r9, kLimitOffset));
3049   __ ldr(r6, MemOperand(r9, kLevelOffset));
3050   __ add(r6, r6, Operand(1));
3051   __ str(r6, MemOperand(r9, kLevelOffset));
3052 
3053   __ StoreReturnAddressAndCall(r3);
3054 
3055   Label promote_scheduled_exception;
3056   Label delete_allocated_handles;
3057   Label leave_exit_frame;
3058   Label return_value_loaded;
3059 
3060   // load value from ReturnValue
3061   __ ldr(r0, return_value_operand);
3062   __ bind(&return_value_loaded);
3063   // No more valid handles (the result handle was the last one). Restore
3064   // previous handle scope.
3065   __ str(r4, MemOperand(r9, kNextOffset));
3066   if (FLAG_debug_code) {
3067     __ ldr(r1, MemOperand(r9, kLevelOffset));
3068     __ cmp(r1, r6);
3069     __ Check(eq, AbortReason::kUnexpectedLevelAfterReturnFromApiCall);
3070   }
3071   __ sub(r6, r6, Operand(1));
3072   __ str(r6, MemOperand(r9, kLevelOffset));
3073   __ ldr(r6, MemOperand(r9, kLimitOffset));
3074   __ cmp(r5, r6);
3075   __ b(ne, &delete_allocated_handles);
3076 
3077   // Leave the API exit frame.
3078   __ bind(&leave_exit_frame);
3079   // LeaveExitFrame expects unwind space to be in a register.
3080   if (stack_space_operand == nullptr) {
3081     DCHECK_NE(stack_space, 0);
3082     __ mov(r4, Operand(stack_space));
3083   } else {
3084     DCHECK_EQ(stack_space, 0);
3085     __ ldr(r4, *stack_space_operand);
3086   }
3087   __ LeaveExitFrame(false, r4, stack_space_operand != nullptr);
3088 
3089   // Check if the function scheduled an exception.
3090   __ LoadRoot(r4, RootIndex::kTheHoleValue);
3091   __ Move(r6, ExternalReference::scheduled_exception_address(isolate));
3092   __ ldr(r5, MemOperand(r6));
3093   __ cmp(r4, r5);
3094   __ b(ne, &promote_scheduled_exception);
3095 
3096   __ mov(pc, lr);
3097 
3098   // Re-throw by promoting a scheduled exception.
3099   __ bind(&promote_scheduled_exception);
3100   __ TailCallRuntime(Runtime::kPromoteScheduledException);
3101 
3102   // HandleScope limit has changed. Delete allocated extensions.
3103   __ bind(&delete_allocated_handles);
3104   __ str(r5, MemOperand(r9, kLimitOffset));
3105   __ mov(r4, r0);
3106   __ PrepareCallCFunction(1);
3107   __ Move(r0, ExternalReference::isolate_address(isolate));
3108   __ CallCFunction(ExternalReference::delete_handle_scope_extensions(), 1);
3109   __ mov(r0, r4);
3110   __ jmp(&leave_exit_frame);
3111 }
3112 
3113 }  // namespace
3114 
Generate_CallApiCallback(MacroAssembler * masm)3115 void Builtins::Generate_CallApiCallback(MacroAssembler* masm) {
3116   // ----------- S t a t e -------------
3117   //  -- cp                  : context
3118   //  -- r1                  : api function address
3119   //  -- r2                  : arguments count (not including the receiver)
3120   //  -- r3                  : call data
3121   //  -- r0                  : holder
3122   //  -- sp[0]               : receiver
3123   //  -- sp[8]               : first argument
3124   //  -- ...
3125   //  -- sp[(argc) * 8]      : last argument
3126   // -----------------------------------
3127 
3128   Register api_function_address = r1;
3129   Register argc = r2;
3130   Register call_data = r3;
3131   Register holder = r0;
3132   Register scratch = r4;
3133 
3134   DCHECK(!AreAliased(api_function_address, argc, call_data, holder, scratch));
3135 
3136   using FCA = FunctionCallbackArguments;
3137 
3138   STATIC_ASSERT(FCA::kArgsLength == 6);
3139   STATIC_ASSERT(FCA::kNewTargetIndex == 5);
3140   STATIC_ASSERT(FCA::kDataIndex == 4);
3141   STATIC_ASSERT(FCA::kReturnValueOffset == 3);
3142   STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2);
3143   STATIC_ASSERT(FCA::kIsolateIndex == 1);
3144   STATIC_ASSERT(FCA::kHolderIndex == 0);
3145 
3146   // Set up FunctionCallbackInfo's implicit_args on the stack as follows:
3147   //
3148   // Target state:
3149   //   sp[0 * kPointerSize]: kHolder
3150   //   sp[1 * kPointerSize]: kIsolate
3151   //   sp[2 * kPointerSize]: undefined (kReturnValueDefaultValue)
3152   //   sp[3 * kPointerSize]: undefined (kReturnValue)
3153   //   sp[4 * kPointerSize]: kData
3154   //   sp[5 * kPointerSize]: undefined (kNewTarget)
3155 
3156   // Reserve space on the stack.
3157   __ AllocateStackSpace(FCA::kArgsLength * kPointerSize);
3158 
3159   // kHolder.
3160   __ str(holder, MemOperand(sp, 0 * kPointerSize));
3161 
3162   // kIsolate.
3163   __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
3164   __ str(scratch, MemOperand(sp, 1 * kPointerSize));
3165 
3166   // kReturnValueDefaultValue and kReturnValue.
3167   __ LoadRoot(scratch, RootIndex::kUndefinedValue);
3168   __ str(scratch, MemOperand(sp, 2 * kPointerSize));
3169   __ str(scratch, MemOperand(sp, 3 * kPointerSize));
3170 
3171   // kData.
3172   __ str(call_data, MemOperand(sp, 4 * kPointerSize));
3173 
3174   // kNewTarget.
3175   __ str(scratch, MemOperand(sp, 5 * kPointerSize));
3176 
3177   // Keep a pointer to kHolder (= implicit_args) in a scratch register.
3178   // We use it below to set up the FunctionCallbackInfo object.
3179   __ mov(scratch, sp);
3180 
3181   // Allocate the v8::Arguments structure in the arguments' space since
3182   // it's not controlled by GC.
3183   static constexpr int kApiStackSpace = 4;
3184   static constexpr bool kDontSaveDoubles = false;
3185   FrameScope frame_scope(masm, StackFrame::MANUAL);
3186   __ EnterExitFrame(kDontSaveDoubles, kApiStackSpace);
3187 
3188   // FunctionCallbackInfo::implicit_args_ (points at kHolder as set up above).
3189   // Arguments are after the return address (pushed by EnterExitFrame()).
3190   __ str(scratch, MemOperand(sp, 1 * kPointerSize));
3191 
3192   // FunctionCallbackInfo::values_ (points at the first varargs argument passed
3193   // on the stack).
3194   __ add(scratch, scratch, Operand((FCA::kArgsLength + 1) * kPointerSize));
3195   __ str(scratch, MemOperand(sp, 2 * kPointerSize));
3196 
3197   // FunctionCallbackInfo::length_.
3198   __ str(argc, MemOperand(sp, 3 * kPointerSize));
3199 
3200   // We also store the number of bytes to drop from the stack after returning
3201   // from the API function here.
3202   __ mov(scratch,
3203          Operand((FCA::kArgsLength + 1 /* receiver */) * kPointerSize));
3204   __ add(scratch, scratch, Operand(argc, LSL, kPointerSizeLog2));
3205   __ str(scratch, MemOperand(sp, 4 * kPointerSize));
3206 
3207   // v8::InvocationCallback's argument.
3208   __ add(r0, sp, Operand(1 * kPointerSize));
3209 
3210   ExternalReference thunk_ref = ExternalReference::invoke_function_callback();
3211 
3212   // There are two stack slots above the arguments we constructed on the stack.
3213   // TODO(jgruber): Document what these arguments are.
3214   static constexpr int kStackSlotsAboveFCA = 2;
3215   MemOperand return_value_operand(
3216       fp, (kStackSlotsAboveFCA + FCA::kReturnValueOffset) * kPointerSize);
3217 
3218   static constexpr int kUseStackSpaceOperand = 0;
3219   MemOperand stack_space_operand(sp, 4 * kPointerSize);
3220 
3221   AllowExternalCallThatCantCauseGC scope(masm);
3222   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3223                            kUseStackSpaceOperand, &stack_space_operand,
3224                            return_value_operand);
3225 }
3226 
Generate_CallApiGetter(MacroAssembler * masm)3227 void Builtins::Generate_CallApiGetter(MacroAssembler* masm) {
3228   // Build v8::PropertyCallbackInfo::args_ array on the stack and push property
3229   // name below the exit frame to make GC aware of them.
3230   STATIC_ASSERT(PropertyCallbackArguments::kShouldThrowOnErrorIndex == 0);
3231   STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 1);
3232   STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 2);
3233   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 3);
3234   STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 4);
3235   STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 5);
3236   STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 6);
3237   STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 7);
3238 
3239   Register receiver = ApiGetterDescriptor::ReceiverRegister();
3240   Register holder = ApiGetterDescriptor::HolderRegister();
3241   Register callback = ApiGetterDescriptor::CallbackRegister();
3242   Register scratch = r4;
3243   DCHECK(!AreAliased(receiver, holder, callback, scratch));
3244 
3245   Register api_function_address = r2;
3246 
3247   __ push(receiver);
3248   // Push data from AccessorInfo.
3249   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kDataOffset));
3250   __ push(scratch);
3251   __ LoadRoot(scratch, RootIndex::kUndefinedValue);
3252   __ Push(scratch, scratch);
3253   __ Move(scratch, ExternalReference::isolate_address(masm->isolate()));
3254   __ Push(scratch, holder);
3255   __ Push(Smi::zero());  // should_throw_on_error -> false
3256   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kNameOffset));
3257   __ push(scratch);
3258   // v8::PropertyCallbackInfo::args_ array and name handle.
3259   const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1;
3260 
3261   // Load address of v8::PropertyAccessorInfo::args_ array and name handle.
3262   __ mov(r0, sp);                             // r0 = Handle<Name>
3263   __ add(r1, r0, Operand(1 * kPointerSize));  // r1 = v8::PCI::args_
3264 
3265   const int kApiStackSpace = 1;
3266   FrameScope frame_scope(masm, StackFrame::MANUAL);
3267   __ EnterExitFrame(false, kApiStackSpace);
3268 
3269   // Create v8::PropertyCallbackInfo object on the stack and initialize
3270   // it's args_ field.
3271   __ str(r1, MemOperand(sp, 1 * kPointerSize));
3272   __ add(r1, sp, Operand(1 * kPointerSize));  // r1 = v8::PropertyCallbackInfo&
3273 
3274   ExternalReference thunk_ref =
3275       ExternalReference::invoke_accessor_getter_callback();
3276 
3277   __ ldr(scratch, FieldMemOperand(callback, AccessorInfo::kJsGetterOffset));
3278   __ ldr(api_function_address,
3279          FieldMemOperand(scratch, Foreign::kForeignAddressOffset));
3280 
3281   // +3 is to skip prolog, return address and name handle.
3282   MemOperand return_value_operand(
3283       fp, (PropertyCallbackArguments::kReturnValueOffset + 3) * kPointerSize);
3284   MemOperand* const kUseStackSpaceConstant = nullptr;
3285   CallApiFunctionAndReturn(masm, api_function_address, thunk_ref,
3286                            kStackUnwindSpace, kUseStackSpaceConstant,
3287                            return_value_operand);
3288 }
3289 
Generate_DirectCEntry(MacroAssembler * masm)3290 void Builtins::Generate_DirectCEntry(MacroAssembler* masm) {
3291   // The sole purpose of DirectCEntry is for movable callers (e.g. any general
3292   // purpose Code object) to be able to call into C functions that may trigger
3293   // GC and thus move the caller.
3294   //
3295   // DirectCEntry places the return address on the stack (updated by the GC),
3296   // making the call GC safe. The irregexp backend relies on this.
3297 
3298   __ str(lr, MemOperand(sp, 0));  // Store the return address.
3299   __ blx(ip);                     // Call the C++ function.
3300   __ ldr(pc, MemOperand(sp, 0));  // Return to calling code.
3301 }
3302 
Generate_MemCopyUint8Uint8(MacroAssembler * masm)3303 void Builtins::Generate_MemCopyUint8Uint8(MacroAssembler* masm) {
3304   Register dest = r0;
3305   Register src = r1;
3306   Register chars = r2;
3307   Register temp1 = r3;
3308   Label less_4;
3309 
3310   {
3311     UseScratchRegisterScope temps(masm);
3312     Register temp2 = temps.Acquire();
3313     Label loop;
3314 
3315     __ bic(temp2, chars, Operand(0x3), SetCC);
3316     __ b(&less_4, eq);
3317     __ add(temp2, dest, temp2);
3318 
3319     __ bind(&loop);
3320     __ ldr(temp1, MemOperand(src, 4, PostIndex));
3321     __ str(temp1, MemOperand(dest, 4, PostIndex));
3322     __ cmp(dest, temp2);
3323     __ b(&loop, ne);
3324   }
3325 
3326   __ bind(&less_4);
3327   __ mov(chars, Operand(chars, LSL, 31), SetCC);
3328   // bit0 => Z (ne), bit1 => C (cs)
3329   __ ldrh(temp1, MemOperand(src, 2, PostIndex), cs);
3330   __ strh(temp1, MemOperand(dest, 2, PostIndex), cs);
3331   __ ldrb(temp1, MemOperand(src), ne);
3332   __ strb(temp1, MemOperand(dest), ne);
3333   __ Ret();
3334 }
3335 
3336 namespace {
3337 
3338 // This code tries to be close to ia32 code so that any changes can be
3339 // easily ported.
Generate_DeoptimizationEntry(MacroAssembler * masm,DeoptimizeKind deopt_kind)3340 void Generate_DeoptimizationEntry(MacroAssembler* masm,
3341                                   DeoptimizeKind deopt_kind) {
3342   Isolate* isolate = masm->isolate();
3343 
3344   // Note: This is an overapproximation; we always reserve space for 32 double
3345   // registers, even though the actual CPU may only support 16. In the latter
3346   // case, SaveFPRegs and RestoreFPRegs still use 32 stack slots, but only fill
3347   // 16.
3348   static constexpr int kDoubleRegsSize =
3349       kDoubleSize * DwVfpRegister::kNumRegisters;
3350 
3351   // Save all allocatable VFP registers before messing with them.
3352   {
3353     UseScratchRegisterScope temps(masm);
3354     Register scratch = temps.Acquire();
3355     __ SaveFPRegs(sp, scratch);
3356   }
3357 
3358   // Save all general purpose registers before messing with them.
3359   static constexpr int kNumberOfRegisters = Register::kNumRegisters;
3360   STATIC_ASSERT(kNumberOfRegisters == 16);
3361 
3362   // Everything but pc, lr and ip which will be saved but not restored.
3363   RegList restored_regs = kJSCallerSaved | kCalleeSaved | ip.bit();
3364 
3365   // Push all 16 registers (needed to populate FrameDescription::registers_).
3366   // TODO(v8:1588): Note that using pc with stm is deprecated, so we should
3367   // perhaps handle this a bit differently.
3368   __ stm(db_w, sp, restored_regs | sp.bit() | lr.bit() | pc.bit());
3369 
3370   {
3371     UseScratchRegisterScope temps(masm);
3372     Register scratch = temps.Acquire();
3373     __ Move(scratch, ExternalReference::Create(
3374                          IsolateAddressId::kCEntryFPAddress, isolate));
3375     __ str(fp, MemOperand(scratch));
3376   }
3377 
3378   static constexpr int kSavedRegistersAreaSize =
3379       (kNumberOfRegisters * kPointerSize) + kDoubleRegsSize;
3380 
3381   __ mov(r2, Operand(Deoptimizer::kFixedExitSizeMarker));
3382   // Get the address of the location in the code object (r3) (return
3383   // address for lazy deoptimization) and compute the fp-to-sp delta in
3384   // register r4.
3385   __ mov(r3, lr);
3386   __ add(r4, sp, Operand(kSavedRegistersAreaSize));
3387   __ sub(r4, fp, r4);
3388 
3389   // Allocate a new deoptimizer object.
3390   // Pass four arguments in r0 to r3 and fifth argument on stack.
3391   __ PrepareCallCFunction(6);
3392   __ mov(r0, Operand(0));
3393   Label context_check;
3394   __ ldr(r1, MemOperand(fp, CommonFrameConstants::kContextOrFrameTypeOffset));
3395   __ JumpIfSmi(r1, &context_check);
3396   __ ldr(r0, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
3397   __ bind(&context_check);
3398   __ mov(r1, Operand(static_cast<int>(deopt_kind)));
3399   // r2: bailout id already loaded.
3400   // r3: code address or 0 already loaded.
3401   __ str(r4, MemOperand(sp, 0 * kPointerSize));  // Fp-to-sp delta.
3402   __ Move(r5, ExternalReference::isolate_address(isolate));
3403   __ str(r5, MemOperand(sp, 1 * kPointerSize));  // Isolate.
3404   // Call Deoptimizer::New().
3405   {
3406     AllowExternalCallThatCantCauseGC scope(masm);
3407     __ CallCFunction(ExternalReference::new_deoptimizer_function(), 6);
3408   }
3409 
3410   // Preserve "deoptimizer" object in register r0 and get the input
3411   // frame descriptor pointer to r1 (deoptimizer->input_);
3412   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
3413 
3414   // Copy core registers into FrameDescription::registers_.
3415   DCHECK_EQ(Register::kNumRegisters, kNumberOfRegisters);
3416   for (int i = 0; i < kNumberOfRegisters; i++) {
3417     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
3418     __ ldr(r2, MemOperand(sp, i * kPointerSize));
3419     __ str(r2, MemOperand(r1, offset));
3420   }
3421 
3422   // Copy double registers to double_registers_.
3423   static constexpr int kDoubleRegsOffset =
3424       FrameDescription::double_registers_offset();
3425   {
3426     UseScratchRegisterScope temps(masm);
3427     Register scratch = temps.Acquire();
3428     Register src_location = r4;
3429     __ add(src_location, sp, Operand(kNumberOfRegisters * kPointerSize));
3430     __ RestoreFPRegs(src_location, scratch);
3431 
3432     Register dst_location = r4;
3433     __ add(dst_location, r1, Operand(kDoubleRegsOffset));
3434     __ SaveFPRegsToHeap(dst_location, scratch);
3435   }
3436 
3437   // Mark the stack as not iterable for the CPU profiler which won't be able to
3438   // walk the stack without the return address.
3439   {
3440     UseScratchRegisterScope temps(masm);
3441     Register is_iterable = temps.Acquire();
3442     Register zero = r4;
3443     __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
3444     __ mov(zero, Operand(0));
3445     __ strb(zero, MemOperand(is_iterable));
3446   }
3447 
3448   // Remove the saved registers from the stack.
3449   __ add(sp, sp, Operand(kSavedRegistersAreaSize));
3450 
3451   // Compute a pointer to the unwinding limit in register r2; that is
3452   // the first stack slot not part of the input frame.
3453   __ ldr(r2, MemOperand(r1, FrameDescription::frame_size_offset()));
3454   __ add(r2, r2, sp);
3455 
3456   // Unwind the stack down to - but not including - the unwinding
3457   // limit and copy the contents of the activation frame to the input
3458   // frame description.
3459   __ add(r3, r1, Operand(FrameDescription::frame_content_offset()));
3460   Label pop_loop;
3461   Label pop_loop_header;
3462   __ b(&pop_loop_header);
3463   __ bind(&pop_loop);
3464   __ pop(r4);
3465   __ str(r4, MemOperand(r3, 0));
3466   __ add(r3, r3, Operand(sizeof(uint32_t)));
3467   __ bind(&pop_loop_header);
3468   __ cmp(r2, sp);
3469   __ b(ne, &pop_loop);
3470 
3471   // Compute the output frame in the deoptimizer.
3472   __ push(r0);  // Preserve deoptimizer object across call.
3473   // r0: deoptimizer object; r1: scratch.
3474   __ PrepareCallCFunction(1);
3475   // Call Deoptimizer::ComputeOutputFrames().
3476   {
3477     AllowExternalCallThatCantCauseGC scope(masm);
3478     __ CallCFunction(ExternalReference::compute_output_frames_function(), 1);
3479   }
3480   __ pop(r0);  // Restore deoptimizer object (class Deoptimizer).
3481 
3482   __ ldr(sp, MemOperand(r0, Deoptimizer::caller_frame_top_offset()));
3483 
3484   // Replace the current (input) frame with the output frames.
3485   Label outer_push_loop, inner_push_loop, outer_loop_header, inner_loop_header;
3486   // Outer loop state: r4 = current "FrameDescription** output_",
3487   // r1 = one past the last FrameDescription**.
3488   __ ldr(r1, MemOperand(r0, Deoptimizer::output_count_offset()));
3489   __ ldr(r4, MemOperand(r0, Deoptimizer::output_offset()));  // r4 is output_.
3490   __ add(r1, r4, Operand(r1, LSL, 2));
3491   __ jmp(&outer_loop_header);
3492   __ bind(&outer_push_loop);
3493   // Inner loop state: r2 = current FrameDescription*, r3 = loop index.
3494   __ ldr(r2, MemOperand(r4, 0));  // output_[ix]
3495   __ ldr(r3, MemOperand(r2, FrameDescription::frame_size_offset()));
3496   __ jmp(&inner_loop_header);
3497   __ bind(&inner_push_loop);
3498   __ sub(r3, r3, Operand(sizeof(uint32_t)));
3499   __ add(r6, r2, Operand(r3));
3500   __ ldr(r6, MemOperand(r6, FrameDescription::frame_content_offset()));
3501   __ push(r6);
3502   __ bind(&inner_loop_header);
3503   __ cmp(r3, Operand::Zero());
3504   __ b(ne, &inner_push_loop);  // test for gt?
3505   __ add(r4, r4, Operand(kPointerSize));
3506   __ bind(&outer_loop_header);
3507   __ cmp(r4, r1);
3508   __ b(lt, &outer_push_loop);
3509 
3510   __ ldr(r1, MemOperand(r0, Deoptimizer::input_offset()));
3511 
3512   // State:
3513   // r1: Deoptimizer::input_ (FrameDescription*).
3514   // r2: The last output FrameDescription pointer (FrameDescription*).
3515 
3516   // Restore double registers from the input frame description.
3517   {
3518     UseScratchRegisterScope temps(masm);
3519     Register scratch = temps.Acquire();
3520     Register src_location = r6;
3521     __ add(src_location, r1, Operand(kDoubleRegsOffset));
3522     __ RestoreFPRegsFromHeap(src_location, scratch);
3523   }
3524 
3525   // Push pc and continuation from the last output frame.
3526   __ ldr(r6, MemOperand(r2, FrameDescription::pc_offset()));
3527   __ push(r6);
3528   __ ldr(r6, MemOperand(r2, FrameDescription::continuation_offset()));
3529   __ push(r6);
3530 
3531   // Push the registers from the last output frame.
3532   for (int i = kNumberOfRegisters - 1; i >= 0; i--) {
3533     int offset = (i * kPointerSize) + FrameDescription::registers_offset();
3534     __ ldr(r6, MemOperand(r2, offset));
3535     __ push(r6);
3536   }
3537 
3538   // Restore the registers from the stack.
3539   __ ldm(ia_w, sp, restored_regs);  // all but pc registers.
3540 
3541   {
3542     UseScratchRegisterScope temps(masm);
3543     Register is_iterable = temps.Acquire();
3544     Register one = r4;
3545     __ Move(is_iterable, ExternalReference::stack_is_iterable_address(isolate));
3546     __ mov(one, Operand(1));
3547     __ strb(one, MemOperand(is_iterable));
3548   }
3549 
3550   // Remove sp, lr and pc.
3551   __ Drop(3);
3552   {
3553     UseScratchRegisterScope temps(masm);
3554     Register scratch = temps.Acquire();
3555     __ pop(scratch);  // get continuation, leave pc on stack
3556     __ pop(lr);
3557     __ Jump(scratch);
3558   }
3559 
3560   __ stop();
3561 }
3562 
3563 }  // namespace
3564 
Generate_DeoptimizationEntry_Eager(MacroAssembler * masm)3565 void Builtins::Generate_DeoptimizationEntry_Eager(MacroAssembler* masm) {
3566   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kEager);
3567 }
3568 
Generate_DeoptimizationEntry_Soft(MacroAssembler * masm)3569 void Builtins::Generate_DeoptimizationEntry_Soft(MacroAssembler* masm) {
3570   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kSoft);
3571 }
3572 
Generate_DeoptimizationEntry_Bailout(MacroAssembler * masm)3573 void Builtins::Generate_DeoptimizationEntry_Bailout(MacroAssembler* masm) {
3574   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kBailout);
3575 }
3576 
Generate_DeoptimizationEntry_Lazy(MacroAssembler * masm)3577 void Builtins::Generate_DeoptimizationEntry_Lazy(MacroAssembler* masm) {
3578   Generate_DeoptimizationEntry(masm, DeoptimizeKind::kLazy);
3579 }
3580 
3581 namespace {
3582 
3583 // Restarts execution either at the current or next (in execution order)
3584 // bytecode. If there is baseline code on the shared function info, converts an
3585 // interpreter frame into a baseline frame and continues execution in baseline
3586 // code. Otherwise execution continues with bytecode.
Generate_BaselineOrInterpreterEntry(MacroAssembler * masm,bool next_bytecode,bool is_osr=false)3587 void Generate_BaselineOrInterpreterEntry(MacroAssembler* masm,
3588                                          bool next_bytecode,
3589                                          bool is_osr = false) {
3590   Label start;
3591   __ bind(&start);
3592 
3593   // Get function from the frame.
3594   Register closure = r1;
3595   __ ldr(closure, MemOperand(fp, StandardFrameConstants::kFunctionOffset));
3596 
3597   // Get the Code object from the shared function info.
3598   Register code_obj = r4;
3599   __ ldr(code_obj,
3600          FieldMemOperand(closure, JSFunction::kSharedFunctionInfoOffset));
3601   __ ldr(code_obj,
3602          FieldMemOperand(code_obj, SharedFunctionInfo::kFunctionDataOffset));
3603 
3604   // Check if we have baseline code. For OSR entry it is safe to assume we
3605   // always have baseline code.
3606   if (!is_osr) {
3607     Label start_with_baseline;
3608     __ CompareObjectType(code_obj, r3, r3, CODET_TYPE);
3609     __ b(eq, &start_with_baseline);
3610 
3611     // Start with bytecode as there is no baseline code.
3612     Builtin builtin_id = next_bytecode
3613                              ? Builtin::kInterpreterEnterAtNextBytecode
3614                              : Builtin::kInterpreterEnterAtBytecode;
3615     __ Jump(masm->isolate()->builtins()->code_handle(builtin_id),
3616             RelocInfo::CODE_TARGET);
3617 
3618     // Start with baseline code.
3619     __ bind(&start_with_baseline);
3620   } else if (FLAG_debug_code) {
3621     __ CompareObjectType(code_obj, r3, r3, CODET_TYPE);
3622     __ Assert(eq, AbortReason::kExpectedBaselineData);
3623   }
3624 
3625   if (FLAG_debug_code) {
3626     AssertCodeIsBaseline(masm, code_obj, r3);
3627   }
3628 
3629   // Load the feedback vector.
3630   Register feedback_vector = r2;
3631   __ ldr(feedback_vector,
3632          FieldMemOperand(closure, JSFunction::kFeedbackCellOffset));
3633   __ ldr(feedback_vector, FieldMemOperand(feedback_vector, Cell::kValueOffset));
3634 
3635   Label install_baseline_code;
3636   // Check if feedback vector is valid. If not, call prepare for baseline to
3637   // allocate it.
3638   __ CompareObjectType(feedback_vector, r3, r3, FEEDBACK_VECTOR_TYPE);
3639   __ b(ne, &install_baseline_code);
3640 
3641   // Save BytecodeOffset from the stack frame.
3642   __ ldr(kInterpreterBytecodeOffsetRegister,
3643          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
3644   __ SmiUntag(kInterpreterBytecodeOffsetRegister);
3645   // Replace BytecodeOffset with the feedback vector.
3646   __ str(feedback_vector,
3647          MemOperand(fp, InterpreterFrameConstants::kBytecodeOffsetFromFp));
3648   feedback_vector = no_reg;
3649 
3650   // Compute baseline pc for bytecode offset.
3651   ExternalReference get_baseline_pc_extref;
3652   if (next_bytecode || is_osr) {
3653     get_baseline_pc_extref =
3654         ExternalReference::baseline_pc_for_next_executed_bytecode();
3655   } else {
3656     get_baseline_pc_extref =
3657         ExternalReference::baseline_pc_for_bytecode_offset();
3658   }
3659   Register get_baseline_pc = r3;
3660   __ Move(get_baseline_pc, get_baseline_pc_extref);
3661 
3662   // If the code deoptimizes during the implicit function entry stack interrupt
3663   // check, it will have a bailout ID of kFunctionEntryBytecodeOffset, which is
3664   // not a valid bytecode offset.
3665   // TODO(pthier): Investigate if it is feasible to handle this special case
3666   // in TurboFan instead of here.
3667   Label valid_bytecode_offset, function_entry_bytecode;
3668   if (!is_osr) {
3669     __ cmp(kInterpreterBytecodeOffsetRegister,
3670            Operand(BytecodeArray::kHeaderSize - kHeapObjectTag +
3671                    kFunctionEntryBytecodeOffset));
3672     __ b(eq, &function_entry_bytecode);
3673   }
3674 
3675   __ sub(kInterpreterBytecodeOffsetRegister, kInterpreterBytecodeOffsetRegister,
3676          Operand(BytecodeArray::kHeaderSize - kHeapObjectTag));
3677 
3678   __ bind(&valid_bytecode_offset);
3679   // Get bytecode array from the stack frame.
3680   __ ldr(kInterpreterBytecodeArrayRegister,
3681          MemOperand(fp, InterpreterFrameConstants::kBytecodeArrayFromFp));
3682   // Save the accumulator register, since it's clobbered by the below call.
3683   __ Push(kInterpreterAccumulatorRegister);
3684   {
3685     Register arg_reg_1 = r0;
3686     Register arg_reg_2 = r1;
3687     Register arg_reg_3 = r2;
3688     __ mov(arg_reg_1, code_obj);
3689     __ mov(arg_reg_2, kInterpreterBytecodeOffsetRegister);
3690     __ mov(arg_reg_3, kInterpreterBytecodeArrayRegister);
3691     FrameScope scope(masm, StackFrame::INTERNAL);
3692     __ PrepareCallCFunction(3, 0);
3693     __ CallCFunction(get_baseline_pc, 3, 0);
3694   }
3695   __ add(code_obj, code_obj, kReturnRegister0);
3696   __ Pop(kInterpreterAccumulatorRegister);
3697 
3698   if (is_osr) {
3699     // Reset the OSR loop nesting depth to disarm back edges.
3700     // TODO(pthier): Separate baseline Sparkplug from TF arming and don't disarm
3701     // Sparkplug here.
3702     UseScratchRegisterScope temps(masm);
3703     Register scratch = temps.Acquire();
3704     __ mov(scratch, Operand(0));
3705     __ strh(scratch,
3706             FieldMemOperand(kInterpreterBytecodeArrayRegister,
3707                             BytecodeArray::kOsrLoopNestingLevelOffset));
3708     Generate_OSREntry(masm, code_obj,
3709                       Operand(Code::kHeaderSize - kHeapObjectTag));
3710   } else {
3711     __ add(code_obj, code_obj, Operand(Code::kHeaderSize - kHeapObjectTag));
3712     __ Jump(code_obj);
3713   }
3714   __ Trap();  // Unreachable.
3715 
3716   if (!is_osr) {
3717     __ bind(&function_entry_bytecode);
3718     // If the bytecode offset is kFunctionEntryOffset, get the start address of
3719     // the first bytecode.
3720     __ mov(kInterpreterBytecodeOffsetRegister, Operand(0));
3721     if (next_bytecode) {
3722       __ Move(get_baseline_pc,
3723               ExternalReference::baseline_pc_for_bytecode_offset());
3724     }
3725     __ b(&valid_bytecode_offset);
3726   }
3727 
3728   __ bind(&install_baseline_code);
3729   {
3730     FrameScope scope(masm, StackFrame::INTERNAL);
3731     __ Push(kInterpreterAccumulatorRegister);
3732     __ Push(closure);
3733     __ CallRuntime(Runtime::kInstallBaselineCode, 1);
3734     __ Pop(kInterpreterAccumulatorRegister);
3735   }
3736   // Retry from the start after installing baseline code.
3737   __ b(&start);
3738 }
3739 
3740 }  // namespace
3741 
Generate_BaselineOrInterpreterEnterAtBytecode(MacroAssembler * masm)3742 void Builtins::Generate_BaselineOrInterpreterEnterAtBytecode(
3743     MacroAssembler* masm) {
3744   Generate_BaselineOrInterpreterEntry(masm, false);
3745 }
3746 
Generate_BaselineOrInterpreterEnterAtNextBytecode(MacroAssembler * masm)3747 void Builtins::Generate_BaselineOrInterpreterEnterAtNextBytecode(
3748     MacroAssembler* masm) {
3749   Generate_BaselineOrInterpreterEntry(masm, true);
3750 }
3751 
Generate_InterpreterOnStackReplacement_ToBaseline(MacroAssembler * masm)3752 void Builtins::Generate_InterpreterOnStackReplacement_ToBaseline(
3753     MacroAssembler* masm) {
3754   Generate_BaselineOrInterpreterEntry(masm, false, true);
3755 }
3756 
Generate_DynamicCheckMapsTrampoline(MacroAssembler * masm)3757 void Builtins::Generate_DynamicCheckMapsTrampoline(MacroAssembler* masm) {
3758   Generate_DynamicCheckMapsTrampoline<DynamicCheckMapsDescriptor>(
3759       masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMaps));
3760 }
3761 
Generate_DynamicCheckMapsWithFeedbackVectorTrampoline(MacroAssembler * masm)3762 void Builtins::Generate_DynamicCheckMapsWithFeedbackVectorTrampoline(
3763     MacroAssembler* masm) {
3764   Generate_DynamicCheckMapsTrampoline<
3765       DynamicCheckMapsWithFeedbackVectorDescriptor>(
3766       masm, BUILTIN_CODE(masm->isolate(), DynamicCheckMapsWithFeedbackVector));
3767 }
3768 
3769 template <class Descriptor>
Generate_DynamicCheckMapsTrampoline(MacroAssembler * masm,Handle<Code> builtin_target)3770 void Builtins::Generate_DynamicCheckMapsTrampoline(
3771     MacroAssembler* masm, Handle<Code> builtin_target) {
3772   FrameScope scope(masm, StackFrame::MANUAL);
3773   __ EnterFrame(StackFrame::INTERNAL);
3774 
3775   // Only save the registers that the DynamicCheckMaps builtin can clobber.
3776   Descriptor descriptor;
3777   RegList registers = descriptor.allocatable_registers();
3778   // FLAG_debug_code is enabled CSA checks will call C function and so we need
3779   // to save all CallerSaved registers too.
3780   if (FLAG_debug_code) registers |= kCallerSaved;
3781   __ MaybeSaveRegisters(registers);
3782 
3783   // Load the immediate arguments from the deopt exit to pass to the builtin.
3784   Register slot_arg = descriptor.GetRegisterParameter(Descriptor::kSlot);
3785   Register handler_arg = descriptor.GetRegisterParameter(Descriptor::kHandler);
3786   __ ldr(handler_arg, MemOperand(fp, CommonFrameConstants::kCallerPCOffset));
3787   __ ldr(slot_arg, MemOperand(handler_arg,
3788                               Deoptimizer::kEagerWithResumeImmedArgs1PcOffset));
3789   __ ldr(
3790       handler_arg,
3791       MemOperand(handler_arg, Deoptimizer::kEagerWithResumeImmedArgs2PcOffset));
3792 
3793   __ Call(builtin_target, RelocInfo::CODE_TARGET);
3794 
3795   Label deopt, bailout;
3796   __ cmp_raw_immediate(r0, static_cast<int>(DynamicCheckMapsStatus::kSuccess));
3797   __ b(ne, &deopt);
3798 
3799   __ MaybeRestoreRegisters(registers);
3800   __ LeaveFrame(StackFrame::INTERNAL);
3801   __ Ret();
3802 
3803   __ bind(&deopt);
3804   __ cmp_raw_immediate(r0, static_cast<int>(DynamicCheckMapsStatus::kBailout));
3805   __ b(eq, &bailout);
3806 
3807   if (FLAG_debug_code) {
3808     __ cmp_raw_immediate(r0, static_cast<int>(DynamicCheckMapsStatus::kDeopt));
3809     __ Assert(eq, AbortReason::kUnexpectedDynamicCheckMapsStatus);
3810   }
3811   __ MaybeRestoreRegisters(registers);
3812   __ LeaveFrame(StackFrame::INTERNAL);
3813   Handle<Code> deopt_eager = masm->isolate()->builtins()->code_handle(
3814       Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kEager));
3815   __ Jump(deopt_eager, RelocInfo::CODE_TARGET);
3816 
3817   __ bind(&bailout);
3818   __ MaybeRestoreRegisters(registers);
3819   __ LeaveFrame(StackFrame::INTERNAL);
3820   Handle<Code> deopt_bailout = masm->isolate()->builtins()->code_handle(
3821       Deoptimizer::GetDeoptimizationEntry(DeoptimizeKind::kBailout));
3822   __ Jump(deopt_bailout, RelocInfo::CODE_TARGET);
3823 }
3824 
3825 #undef __
3826 
3827 }  // namespace internal
3828 }  // namespace v8
3829 
3830 #endif  // V8_TARGET_ARCH_ARM
3831