1 /*
2  * Copyright (c) 1999-2010 Apple Inc.  All Rights Reserved.
3  *
4  * @APPLE_LICENSE_HEADER_START@
5  *
6  * This file contains Original Code and/or Modifications of Original Code
7  * as defined in and that are subject to the Apple Public Source License
8  * Version 2.0 (the 'License'). You may not use this file except in
9  * compliance with the License. Please obtain a copy of the License at
10  * http://www.opensource.apple.com/apsl/ and read it before using this
11  * file.
12  *
13  * The Original Code and all software distributed under the License are
14  * distributed on an 'AS IS' basis, WITHOUT WARRANTY OF ANY KIND, EITHER
15  * EXPRESS OR IMPLIED, AND APPLE HEREBY DISCLAIMS ALL SUCH WARRANTIES,
16  * INCLUDING WITHOUT LIMITATION, ANY WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE, QUIET ENJOYMENT OR NON-INFRINGEMENT.
18  * Please see the License for the specific language governing rights and
19  * limitations under the License.
20  *
21  * @APPLE_LICENSE_HEADER_END@
22  */
23 #ifndef _MACHO_LOADER_H_
24 #define _MACHO_LOADER_H_
25 
26 /*
27  * This file describes the format of mach object files.
28  */
29 #include <stdint.h>
30 
31 /*
32  * <mach/machine.h> is needed here for the cpu_type_t and cpu_subtype_t types
33  * and contains the constants for the possible values of these types.
34  */
35 #include <mach/machine.h>
36 
37 /*
38  * <mach/vm_prot.h> is needed here for the vm_prot_t type and contains the
39  * constants that are or'ed together for the possible values of this type.
40  */
41 #include <mach/vm_prot.h>
42 
43 /*
44  * <machine/thread_status.h> is expected to define the flavors of the thread
45  * states and the structures of those flavors for each machine.
46  */
47 #include <mach/machine/thread_status.h>
48 #include <architecture/byte_order.h>
49 
50 /*
51  * The 32-bit mach header appears at the very beginning of the object file for
52  * 32-bit architectures.
53  */
54 struct mach_header {
55 	uint32_t	magic;		/* mach magic number identifier */
56 	cpu_type_t	cputype;	/* cpu specifier */
57 	cpu_subtype_t	cpusubtype;	/* machine specifier */
58 	uint32_t	filetype;	/* type of file */
59 	uint32_t	ncmds;		/* number of load commands */
60 	uint32_t	sizeofcmds;	/* the size of all the load commands */
61 	uint32_t	flags;		/* flags */
62 };
63 
64 /* Constant for the magic field of the mach_header (32-bit architectures) */
65 #define	MH_MAGIC	0xfeedface	/* the mach magic number */
66 #define MH_CIGAM	0xcefaedfe	/* NXSwapInt(MH_MAGIC) */
67 
68 /*
69  * The 64-bit mach header appears at the very beginning of object files for
70  * 64-bit architectures.
71  */
72 struct mach_header_64 {
73 	uint32_t	magic;		/* mach magic number identifier */
74 	cpu_type_t	cputype;	/* cpu specifier */
75 	cpu_subtype_t	cpusubtype;	/* machine specifier */
76 	uint32_t	filetype;	/* type of file */
77 	uint32_t	ncmds;		/* number of load commands */
78 	uint32_t	sizeofcmds;	/* the size of all the load commands */
79 	uint32_t	flags;		/* flags */
80 	uint32_t	reserved;	/* reserved */
81 };
82 
83 /* Constant for the magic field of the mach_header_64 (64-bit architectures) */
84 #define MH_MAGIC_64 0xfeedfacf /* the 64-bit mach magic number */
85 #define MH_CIGAM_64 0xcffaedfe /* NXSwapInt(MH_MAGIC_64) */
86 
87 /*
88  * The layout of the file depends on the filetype.  For all but the MH_OBJECT
89  * file type the segments are padded out and aligned on a segment alignment
90  * boundary for efficient demand pageing.  The MH_EXECUTE, MH_FVMLIB, MH_DYLIB,
91  * MH_DYLINKER and MH_BUNDLE file types also have the headers included as part
92  * of their first segment.
93  *
94  * The file type MH_OBJECT is a compact format intended as output of the
95  * assembler and input (and possibly output) of the link editor (the .o
96  * format).  All sections are in one unnamed segment with no segment padding.
97  * This format is used as an executable format when the file is so small the
98  * segment padding greatly increases its size.
99  *
100  * The file type MH_PRELOAD is an executable format intended for things that
101  * are not executed under the kernel (proms, stand alones, kernels, etc).  The
102  * format can be executed under the kernel but may demand paged it and not
103  * preload it before execution.
104  *
105  * A core file is in MH_CORE format and can be any in an arbritray legal
106  * Mach-O file.
107  *
108  * Constants for the filetype field of the mach_header
109  */
110 #define	MH_OBJECT	0x1		/* relocatable object file */
111 #define	MH_EXECUTE	0x2		/* demand paged executable file */
112 #define	MH_FVMLIB	0x3		/* fixed VM shared library file */
113 #define	MH_CORE		0x4		/* core file */
114 #define	MH_PRELOAD	0x5		/* preloaded executable file */
115 #define	MH_DYLIB	0x6		/* dynamically bound shared library */
116 #define	MH_DYLINKER	0x7		/* dynamic link editor */
117 #define	MH_BUNDLE	0x8		/* dynamically bound bundle file */
118 #define	MH_DYLIB_STUB	0x9		/* shared library stub for static */
119 					/*  linking only, no section contents */
120 #define	MH_DSYM		0xa		/* companion file with only debug */
121 					/*  sections */
122 #define	MH_KEXT_BUNDLE	0xb		/* x86_64 kexts */
123 
124 /* Constants for the flags field of the mach_header */
125 #define	MH_NOUNDEFS	0x1		/* the object file has no undefined
126 					   references */
127 #define	MH_INCRLINK	0x2		/* the object file is the output of an
128 					   incremental link against a base file
129 					   and can't be link edited again */
130 #define MH_DYLDLINK	0x4		/* the object file is input for the
131 					   dynamic linker and can't be staticly
132 					   link edited again */
133 #define MH_BINDATLOAD	0x8		/* the object file's undefined
134 					   references are bound by the dynamic
135 					   linker when loaded. */
136 #define MH_PREBOUND	0x10		/* the file has its dynamic undefined
137 					   references prebound. */
138 #define MH_SPLIT_SEGS	0x20		/* the file has its read-only and
139 					   read-write segments split */
140 #define MH_LAZY_INIT	0x40		/* the shared library init routine is
141 					   to be run lazily via catching memory
142 					   faults to its writeable segments
143 					   (obsolete) */
144 #define MH_TWOLEVEL	0x80		/* the image is using two-level name
145 					   space bindings */
146 #define MH_FORCE_FLAT	0x100		/* the executable is forcing all images
147 					   to use flat name space bindings */
148 #define MH_NOMULTIDEFS	0x200		/* this umbrella guarantees no multiple
149 					   defintions of symbols in its
150 					   sub-images so the two-level namespace
151 					   hints can always be used. */
152 #define MH_NOFIXPREBINDING 0x400	/* do not have dyld notify the
153 					   prebinding agent about this
154 					   executable */
155 #define MH_PREBINDABLE  0x800           /* the binary is not prebound but can
156 					   have its prebinding redone. only used
157                                            when MH_PREBOUND is not set. */
158 #define MH_ALLMODSBOUND 0x1000		/* indicates that this binary binds to
159                                            all two-level namespace modules of
160 					   its dependent libraries. only used
161 					   when MH_PREBINDABLE and MH_TWOLEVEL
162 					   are both set. */
163 #define MH_SUBSECTIONS_VIA_SYMBOLS 0x2000/* safe to divide up the sections into
164 					    sub-sections via symbols for dead
165 					    code stripping */
166 #define MH_CANONICAL    0x4000		/* the binary has been canonicalized
167 					   via the unprebind operation */
168 #define MH_WEAK_DEFINES	0x8000		/* the final linked image contains
169 					   external weak symbols */
170 #define MH_BINDS_TO_WEAK 0x10000	/* the final linked image uses
171 					   weak symbols */
172 
173 #define MH_ALLOW_STACK_EXECUTION 0x20000/* When this bit is set, all stacks
174 					   in the task will be given stack
175 					   execution privilege.  Only used in
176 					   MH_EXECUTE filetypes. */
177 #define MH_ROOT_SAFE 0x40000           /* When this bit is set, the binary
178 					  declares it is safe for use in
179 					  processes with uid zero */
180 
181 #define MH_SETUID_SAFE 0x80000         /* When this bit is set, the binary
182 					  declares it is safe for use in
183 					  processes when issetugid() is true */
184 
185 #define MH_NO_REEXPORTED_DYLIBS 0x100000 /* When this bit is set on a dylib,
186 					  the static linker does not need to
187 					  examine dependent dylibs to see
188 					  if any are re-exported */
189 #define	MH_PIE 0x200000			/* When this bit is set, the OS will
190 					   load the main executable at a
191 					   random address.  Only used in
192 					   MH_EXECUTE filetypes. */
193 #define	MH_DEAD_STRIPPABLE_DYLIB 0x400000 /* Only for use on dylibs.  When
194 					     linking against a dylib that
195 					     has this bit set, the static linker
196 					     will automatically not create a
197 					     LC_LOAD_DYLIB load command to the
198 					     dylib if no symbols are being
199 					     referenced from the dylib. */
200 #define MH_HAS_TLV_DESCRIPTORS 0x800000 /* Contains a section of type
201 					    S_THREAD_LOCAL_VARIABLES */
202 
203 #define MH_NO_HEAP_EXECUTION 0x1000000	/* When this bit is set, the OS will
204 					   run the main executable with
205 					   a non-executable heap even on
206 					   platforms (e.g. i386) that don't
207 					   require it. Only used in MH_EXECUTE
208 					   filetypes. */
209 
210 #define MH_APP_EXTENSION_SAFE 0x02000000 /* The code was linked for use in an
211 					    application extension. */
212 
213 #define	MH_NLIST_OUTOFSYNC_WITH_DYLDINFO 0x04000000 /* The external symbols
214 					   listed in the nlist symbol table do
215 					   not include all the symbols listed in
216 					   the dyld info. */
217 
218 #define	MH_SIM_SUPPORT 0x08000000	/* Allow LC_MIN_VERSION_MACOS and
219 					   LC_BUILD_VERSION load commands with
220 					   the platforms macOS, macCatalyst,
221 					   iOSSimulator, tvOSSimulator and
222 					   watchOSSimulator. */
223 
224 #define MH_DYLIB_IN_CACHE 0x80000000	/* Only for use on dylibs. When this bit
225 					   is set, the dylib is part of the dyld
226 					   shared cache, rather than loose in
227 					   the filesystem. */
228 
229 /*
230  * The load commands directly follow the mach_header.  The total size of all
231  * of the commands is given by the sizeofcmds field in the mach_header.  All
232  * load commands must have as their first two fields cmd and cmdsize.  The cmd
233  * field is filled in with a constant for that command type.  Each command type
234  * has a structure specifically for it.  The cmdsize field is the size in bytes
235  * of the particular load command structure plus anything that follows it that
236  * is a part of the load command (i.e. section structures, strings, etc.).  To
237  * advance to the next load command the cmdsize can be added to the offset or
238  * pointer of the current load command.  The cmdsize for 32-bit architectures
239  * MUST be a multiple of 4 bytes and for 64-bit architectures MUST be a multiple
240  * of 8 bytes (these are forever the maximum alignment of any load commands).
241  * The padded bytes must be zero.  All tables in the object file must also
242  * follow these rules so the file can be memory mapped.  Otherwise the pointers
243  * to these tables will not work well or at all on some machines.  With all
244  * padding zeroed like objects will compare byte for byte.
245  */
246 struct load_command {
247 	uint32_t cmd;		/* type of load command */
248 	uint32_t cmdsize;	/* total size of command in bytes */
249 };
250 
251 /*
252  * After MacOS X 10.1 when a new load command is added that is required to be
253  * understood by the dynamic linker for the image to execute properly the
254  * LC_REQ_DYLD bit will be or'ed into the load command constant.  If the dynamic
255  * linker sees such a load command it it does not understand will issue a
256  * "unknown load command required for execution" error and refuse to use the
257  * image.  Other load commands without this bit that are not understood will
258  * simply be ignored.
259  */
260 #define LC_REQ_DYLD 0x80000000
261 
262 /* Constants for the cmd field of all load commands, the type */
263 #define	LC_SEGMENT	0x1	/* segment of this file to be mapped */
264 #define	LC_SYMTAB	0x2	/* link-edit stab symbol table info */
265 #define	LC_SYMSEG	0x3	/* link-edit gdb symbol table info (obsolete) */
266 #define	LC_THREAD	0x4	/* thread */
267 #define	LC_UNIXTHREAD	0x5	/* unix thread (includes a stack) */
268 #define	LC_LOADFVMLIB	0x6	/* load a specified fixed VM shared library */
269 #define	LC_IDFVMLIB	0x7	/* fixed VM shared library identification */
270 #define	LC_IDENT	0x8	/* object identification info (obsolete) */
271 #define LC_FVMFILE	0x9	/* fixed VM file inclusion (internal use) */
272 #define LC_PREPAGE      0xa     /* prepage command (internal use) */
273 #define	LC_DYSYMTAB	0xb	/* dynamic link-edit symbol table info */
274 #define	LC_LOAD_DYLIB	0xc	/* load a dynamically linked shared library */
275 #define	LC_ID_DYLIB	0xd	/* dynamically linked shared lib ident */
276 #define LC_LOAD_DYLINKER 0xe	/* load a dynamic linker */
277 #define LC_ID_DYLINKER	0xf	/* dynamic linker identification */
278 #define	LC_PREBOUND_DYLIB 0x10	/* modules prebound for a dynamically */
279 				/*  linked shared library */
280 #define	LC_ROUTINES	0x11	/* image routines */
281 #define	LC_SUB_FRAMEWORK 0x12	/* sub framework */
282 #define	LC_SUB_UMBRELLA 0x13	/* sub umbrella */
283 #define	LC_SUB_CLIENT	0x14	/* sub client */
284 #define	LC_SUB_LIBRARY  0x15	/* sub library */
285 #define	LC_TWOLEVEL_HINTS 0x16	/* two-level namespace lookup hints */
286 #define	LC_PREBIND_CKSUM  0x17	/* prebind checksum */
287 
288 /*
289  * load a dynamically linked shared library that is allowed to be missing
290  * (all symbols are weak imported).
291  */
292 #define	LC_LOAD_WEAK_DYLIB (0x18 | LC_REQ_DYLD)
293 
294 #define	LC_SEGMENT_64	0x19	/* 64-bit segment of this file to be
295 				   mapped */
296 #define	LC_ROUTINES_64	0x1a	/* 64-bit image routines */
297 #define LC_UUID		0x1b	/* the uuid */
298 #define LC_RPATH       (0x1c | LC_REQ_DYLD)    /* runpath additions */
299 #define LC_CODE_SIGNATURE 0x1d	/* local of code signature */
300 #define LC_SEGMENT_SPLIT_INFO 0x1e /* local of info to split segments */
301 #define LC_REEXPORT_DYLIB (0x1f | LC_REQ_DYLD) /* load and re-export dylib */
302 #define	LC_LAZY_LOAD_DYLIB 0x20	/* delay load of dylib until first use */
303 #define	LC_ENCRYPTION_INFO 0x21	/* encrypted segment information */
304 #define	LC_DYLD_INFO 	0x22	/* compressed dyld information */
305 #define	LC_DYLD_INFO_ONLY (0x22|LC_REQ_DYLD)	/* compressed dyld information only */
306 #define	LC_LOAD_UPWARD_DYLIB (0x23 | LC_REQ_DYLD) /* load upward dylib */
307 #define LC_VERSION_MIN_MACOSX 0x24   /* build for MacOSX min OS version */
308 #define LC_VERSION_MIN_IPHONEOS 0x25 /* build for iPhoneOS min OS version */
309 #define LC_FUNCTION_STARTS 0x26 /* compressed table of function start addresses */
310 #define LC_DYLD_ENVIRONMENT 0x27 /* string for dyld to treat
311 				    like environment variable */
312 #define LC_MAIN (0x28|LC_REQ_DYLD) /* replacement for LC_UNIXTHREAD */
313 #define LC_DATA_IN_CODE 0x29 /* table of non-instructions in __text */
314 #define LC_SOURCE_VERSION 0x2A /* source version used to build binary */
315 #define LC_DYLIB_CODE_SIGN_DRS 0x2B /* Code signing DRs copied from linked dylibs */
316 #define	LC_ENCRYPTION_INFO_64 0x2C /* 64-bit encrypted segment information */
317 #define LC_LINKER_OPTION 0x2D /* linker options in MH_OBJECT files */
318 #define LC_LINKER_OPTIMIZATION_HINT 0x2E /* optimization hints in MH_OBJECT files */
319 #define LC_VERSION_MIN_TVOS 0x2F /* build for AppleTV min OS version */
320 #define LC_VERSION_MIN_WATCHOS 0x30 /* build for Watch min OS version */
321 #define LC_NOTE 0x31 /* arbitrary data included within a Mach-O file */
322 #define LC_BUILD_VERSION 0x32 /* build for platform min OS version */
323 #define LC_DYLD_EXPORTS_TRIE (0x33 | LC_REQ_DYLD) /* used with linkedit_data_command, payload is trie */
324 #define LC_DYLD_CHAINED_FIXUPS (0x34 | LC_REQ_DYLD) /* used with linkedit_data_command */
325 
326 /*
327  * A variable length string in a load command is represented by an lc_str
328  * union.  The strings are stored just after the load command structure and
329  * the offset is from the start of the load command structure.  The size
330  * of the string is reflected in the cmdsize field of the load command.
331  * Once again any padded bytes to bring the cmdsize field to a multiple
332  * of 4 bytes must be zero.
333  */
334 union lc_str {
335 	uint32_t	offset;	/* offset to the string */
336 #ifndef __LP64__
337 	char		*ptr;	/* pointer to the string */
338 #endif
339 };
340 
341 /*
342  * The segment load command indicates that a part of this file is to be
343  * mapped into the task's address space.  The size of this segment in memory,
344  * vmsize, maybe equal to or larger than the amount to map from this file,
345  * filesize.  The file is mapped starting at fileoff to the beginning of
346  * the segment in memory, vmaddr.  The rest of the memory of the segment,
347  * if any, is allocated zero fill on demand.  The segment's maximum virtual
348  * memory protection and initial virtual memory protection are specified
349  * by the maxprot and initprot fields.  If the segment has sections then the
350  * section structures directly follow the segment command and their size is
351  * reflected in cmdsize.
352  */
353 struct segment_command { /* for 32-bit architectures */
354 	uint32_t	cmd;		/* LC_SEGMENT */
355 	uint32_t	cmdsize;	/* includes sizeof section structs */
356 	char		segname[16];	/* segment name */
357 	uint32_t	vmaddr;		/* memory address of this segment */
358 	uint32_t	vmsize;		/* memory size of this segment */
359 	uint32_t	fileoff;	/* file offset of this segment */
360 	uint32_t	filesize;	/* amount to map from the file */
361 	vm_prot_t	maxprot;	/* maximum VM protection */
362 	vm_prot_t	initprot;	/* initial VM protection */
363 	uint32_t	nsects;		/* number of sections in segment */
364 	uint32_t	flags;		/* flags */
365 };
366 
367 /*
368  * The 64-bit segment load command indicates that a part of this file is to be
369  * mapped into a 64-bit task's address space.  If the 64-bit segment has
370  * sections then section_64 structures directly follow the 64-bit segment
371  * command and their size is reflected in cmdsize.
372  */
373 struct segment_command_64 { /* for 64-bit architectures */
374 	uint32_t	cmd;		/* LC_SEGMENT_64 */
375 	uint32_t	cmdsize;	/* includes sizeof section_64 structs */
376 	char		segname[16];	/* segment name */
377 	uint64_t	vmaddr;		/* memory address of this segment */
378 	uint64_t	vmsize;		/* memory size of this segment */
379 	uint64_t	fileoff;	/* file offset of this segment */
380 	uint64_t	filesize;	/* amount to map from the file */
381 	vm_prot_t	maxprot;	/* maximum VM protection */
382 	vm_prot_t	initprot;	/* initial VM protection */
383 	uint32_t	nsects;		/* number of sections in segment */
384 	uint32_t	flags;		/* flags */
385 };
386 
387 /* Constants for the flags field of the segment_command */
388 #define	SG_HIGHVM	0x1	/* the file contents for this segment is for
389 				   the high part of the VM space, the low part
390 				   is zero filled (for stacks in core files) */
391 #define	SG_FVMLIB	0x2	/* this segment is the VM that is allocated by
392 				   a fixed VM library, for overlap checking in
393 				   the link editor */
394 #define	SG_NORELOC	0x4	/* this segment has nothing that was relocated
395 				   in it and nothing relocated to it, that is
396 				   it maybe safely replaced without relocation*/
397 #define SG_PROTECTED_VERSION_1	0x8 /* This segment is protected.  If the
398 				       segment starts at file offset 0, the
399 				       first page of the segment is not
400 				       protected.  All other pages of the
401 				       segment are protected. */
402 #define SG_READ_ONLY    0x10 /* This segment is made read-only after fixups */
403 
404 
405 
406 /*
407  * A segment is made up of zero or more sections.  Non-MH_OBJECT files have
408  * all of their segments with the proper sections in each, and padded to the
409  * specified segment alignment when produced by the link editor.  The first
410  * segment of a MH_EXECUTE and MH_FVMLIB format file contains the mach_header
411  * and load commands of the object file before its first section.  The zero
412  * fill sections are always last in their segment (in all formats).  This
413  * allows the zeroed segment padding to be mapped into memory where zero fill
414  * sections might be. The gigabyte zero fill sections, those with the section
415  * type S_GB_ZEROFILL, can only be in a segment with sections of this type.
416  * These segments are then placed after all other segments.
417  *
418  * The MH_OBJECT format has all of its sections in one segment for
419  * compactness.  There is no padding to a specified segment boundary and the
420  * mach_header and load commands are not part of the segment.
421  *
422  * Sections with the same section name, sectname, going into the same segment,
423  * segname, are combined by the link editor.  The resulting section is aligned
424  * to the maximum alignment of the combined sections and is the new section's
425  * alignment.  The combined sections are aligned to their original alignment in
426  * the combined section.  Any padded bytes to get the specified alignment are
427  * zeroed.
428  *
429  * The format of the relocation entries referenced by the reloff and nreloc
430  * fields of the section structure for mach object files is described in the
431  * header file <reloc.h>.
432  */
433 struct section { /* for 32-bit architectures */
434 	char		sectname[16];	/* name of this section */
435 	char		segname[16];	/* segment this section goes in */
436 	uint32_t	addr;		/* memory address of this section */
437 	uint32_t	size;		/* size in bytes of this section */
438 	uint32_t	offset;		/* file offset of this section */
439 	uint32_t	align;		/* section alignment (power of 2) */
440 	uint32_t	reloff;		/* file offset of relocation entries */
441 	uint32_t	nreloc;		/* number of relocation entries */
442 	uint32_t	flags;		/* flags (section type and attributes)*/
443 	uint32_t	reserved1;	/* reserved (for offset or index) */
444 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
445 };
446 
447 struct section_64 { /* for 64-bit architectures */
448 	char		sectname[16];	/* name of this section */
449 	char		segname[16];	/* segment this section goes in */
450 	uint64_t	addr;		/* memory address of this section */
451 	uint64_t	size;		/* size in bytes of this section */
452 	uint32_t	offset;		/* file offset of this section */
453 	uint32_t	align;		/* section alignment (power of 2) */
454 	uint32_t	reloff;		/* file offset of relocation entries */
455 	uint32_t	nreloc;		/* number of relocation entries */
456 	uint32_t	flags;		/* flags (section type and attributes)*/
457 	uint32_t	reserved1;	/* reserved (for offset or index) */
458 	uint32_t	reserved2;	/* reserved (for count or sizeof) */
459 	uint32_t	reserved3;	/* reserved */
460 };
461 
462 /*
463  * The flags field of a section structure is separated into two parts a section
464  * type and section attributes.  The section types are mutually exclusive (it
465  * can only have one type) but the section attributes are not (it may have more
466  * than one attribute).
467  */
468 #define SECTION_TYPE		 0x000000ff	/* 256 section types */
469 #define SECTION_ATTRIBUTES	 0xffffff00	/*  24 section attributes */
470 
471 /* Constants for the type of a section */
472 #define	S_REGULAR		0x0	/* regular section */
473 #define	S_ZEROFILL		0x1	/* zero fill on demand section */
474 #define	S_CSTRING_LITERALS	0x2	/* section with only literal C strings*/
475 #define	S_4BYTE_LITERALS	0x3	/* section with only 4 byte literals */
476 #define	S_8BYTE_LITERALS	0x4	/* section with only 8 byte literals */
477 #define	S_LITERAL_POINTERS	0x5	/* section with only pointers to */
478 					/*  literals */
479 /*
480  * For the two types of symbol pointers sections and the symbol stubs section
481  * they have indirect symbol table entries.  For each of the entries in the
482  * section the indirect symbol table entries, in corresponding order in the
483  * indirect symbol table, start at the index stored in the reserved1 field
484  * of the section structure.  Since the indirect symbol table entries
485  * correspond to the entries in the section the number of indirect symbol table
486  * entries is inferred from the size of the section divided by the size of the
487  * entries in the section.  For symbol pointers sections the size of the entries
488  * in the section is 4 bytes and for symbol stubs sections the byte size of the
489  * stubs is stored in the reserved2 field of the section structure.
490  */
491 #define	S_NON_LAZY_SYMBOL_POINTERS	0x6	/* section with only non-lazy
492 						   symbol pointers */
493 #define	S_LAZY_SYMBOL_POINTERS		0x7	/* section with only lazy symbol
494 						   pointers */
495 #define	S_SYMBOL_STUBS			0x8	/* section with only symbol
496 						   stubs, byte size of stub in
497 						   the reserved2 field */
498 #define	S_MOD_INIT_FUNC_POINTERS	0x9	/* section with only function
499 						   pointers for initialization*/
500 #define	S_MOD_TERM_FUNC_POINTERS	0xa	/* section with only function
501 						   pointers for termination */
502 #define	S_COALESCED			0xb	/* section contains symbols that
503 						   are to be coalesced */
504 #define	S_GB_ZEROFILL			0xc	/* zero fill on demand section
505 						   (that can be larger than 4
506 						   gigabytes) */
507 #define	S_INTERPOSING			0xd	/* section with only pairs of
508 						   function pointers for
509 						   interposing */
510 #define	S_16BYTE_LITERALS		0xe	/* section with only 16 byte
511 						   literals */
512 #define	S_DTRACE_DOF			0xf	/* section contains
513 						   DTrace Object Format */
514 #define	S_LAZY_DYLIB_SYMBOL_POINTERS	0x10	/* section with only lazy
515 						   symbol pointers to lazy
516 						   loaded dylibs */
517 /*
518  * Section types to support thread local variables
519  */
520 #define S_THREAD_LOCAL_REGULAR                   0x11  /* template of initial
521 							  values for TLVs */
522 #define S_THREAD_LOCAL_ZEROFILL                  0x12  /* template of initial
523 							  values for TLVs */
524 #define S_THREAD_LOCAL_VARIABLES                 0x13  /* TLV descriptors */
525 #define S_THREAD_LOCAL_VARIABLE_POINTERS         0x14  /* pointers to TLV
526                                                           descriptors */
527 #define S_THREAD_LOCAL_INIT_FUNCTION_POINTERS    0x15  /* functions to call
528 							  to initialize TLV
529 							  values */
530 #define S_INIT_FUNC_OFFSETS                      0x16  /* 32-bit offsets to
531 							  initializers */
532 
533 /*
534  * Constants for the section attributes part of the flags field of a section
535  * structure.
536  */
537 #define SECTION_ATTRIBUTES_USR	 0xff000000	/* User setable attributes */
538 #define S_ATTR_PURE_INSTRUCTIONS 0x80000000	/* section contains only true
539 						   machine instructions */
540 #define S_ATTR_NO_TOC 		 0x40000000	/* section contains coalesced
541 						   symbols that are not to be
542 						   in a ranlib table of
543 						   contents */
544 #define S_ATTR_STRIP_STATIC_SYMS 0x20000000	/* ok to strip static symbols
545 						   in this section in files
546 						   with the MH_DYLDLINK flag */
547 #define S_ATTR_NO_DEAD_STRIP	 0x10000000	/* no dead stripping */
548 #define S_ATTR_LIVE_SUPPORT	 0x08000000	/* blocks are live if they
549 						   reference live blocks */
550 #define S_ATTR_SELF_MODIFYING_CODE 0x04000000	/* Used with i386 code stubs
551 						   written on by dyld */
552 /*
553  * If a segment contains any sections marked with S_ATTR_DEBUG then all
554  * sections in that segment must have this attribute.  No section other than
555  * a section marked with this attribute may reference the contents of this
556  * section.  A section with this attribute may contain no symbols and must have
557  * a section type S_REGULAR.  The static linker will not copy section contents
558  * from sections with this attribute into its output file.  These sections
559  * generally contain DWARF debugging info.
560  */
561 #define	S_ATTR_DEBUG		 0x02000000	/* a debug section */
562 #define SECTION_ATTRIBUTES_SYS	 0x00ffff00	/* system setable attributes */
563 #define S_ATTR_SOME_INSTRUCTIONS 0x00000400	/* section contains some
564 						   machine instructions */
565 #define S_ATTR_EXT_RELOC	 0x00000200	/* section has external
566 						   relocation entries */
567 #define S_ATTR_LOC_RELOC	 0x00000100	/* section has local
568 						   relocation entries */
569 
570 
571 /*
572  * The names of segments and sections in them are mostly meaningless to the
573  * link-editor.  But there are few things to support traditional UNIX
574  * executables that require the link-editor and assembler to use some names
575  * agreed upon by convention.
576  *
577  * The initial protection of the "__TEXT" segment has write protection turned
578  * off (not writeable).
579  *
580  * The link-editor will allocate common symbols at the end of the "__common"
581  * section in the "__DATA" segment.  It will create the section and segment
582  * if needed.
583  */
584 
585 /* The currently known segment names and the section names in those segments */
586 
587 #define	SEG_PAGEZERO	"__PAGEZERO"	/* the pagezero segment which has no */
588 					/* protections and catches NULL */
589 					/* references for MH_EXECUTE files */
590 
591 
592 #define	SEG_TEXT	"__TEXT"	/* the tradition UNIX text segment */
593 #define	SECT_TEXT	"__text"	/* the real text part of the text */
594 					/* section no headers, and no padding */
595 #define SECT_FVMLIB_INIT0 "__fvmlib_init0"	/* the fvmlib initialization */
596 						/*  section */
597 #define SECT_FVMLIB_INIT1 "__fvmlib_init1"	/* the section following the */
598 					        /*  fvmlib initialization */
599 						/*  section */
600 
601 #define	SEG_DATA	"__DATA"	/* the tradition UNIX data segment */
602 #define	SECT_DATA	"__data"	/* the real initialized data section */
603 					/* no padding, no bss overlap */
604 #define	SECT_BSS	"__bss"		/* the real uninitialized data section*/
605 					/* no padding */
606 #define SECT_COMMON	"__common"	/* the section common symbols are */
607 					/* allocated in by the link editor */
608 
609 #define	SEG_OBJC	"__OBJC"	/* objective-C runtime segment */
610 #define SECT_OBJC_SYMBOLS "__symbol_table"	/* symbol table */
611 #define SECT_OBJC_MODULES "__module_info"	/* module information */
612 #define SECT_OBJC_STRINGS "__selector_strs"	/* string table */
613 #define SECT_OBJC_REFS "__selector_refs"	/* string table */
614 
615 #define	SEG_ICON	 "__ICON"	/* the icon segment */
616 #define	SECT_ICON_HEADER "__header"	/* the icon headers */
617 #define	SECT_ICON_TIFF   "__tiff"	/* the icons in tiff format */
618 
619 #define	SEG_LINKEDIT	"__LINKEDIT"	/* the segment containing all structs */
620 					/* created and maintained by the link */
621 					/* editor.  Created with -seglinkedit */
622 					/* option to ld(1) for MH_EXECUTE and */
623 					/* FVMLIB file types only */
624 
625 #define SEG_UNIXSTACK	"__UNIXSTACK"	/* the unix stack segment */
626 
627 #define SEG_IMPORT	"__IMPORT"	/* the segment for the self (dyld) */
628 					/* modifing code stubs that has read, */
629 					/* write and execute permissions */
630 
631 /*
632  * Fixed virtual memory shared libraries are identified by two things.  The
633  * target pathname (the name of the library as found for execution), and the
634  * minor version number.  The address of where the headers are loaded is in
635  * header_addr. (THIS IS OBSOLETE and no longer supported).
636  */
637 struct fvmlib {
638 	union lc_str	name;		/* library's target pathname */
639 	uint32_t	minor_version;	/* library's minor version number */
640 	uint32_t	header_addr;	/* library's header address */
641 };
642 
643 /*
644  * A fixed virtual shared library (filetype == MH_FVMLIB in the mach header)
645  * contains a fvmlib_command (cmd == LC_IDFVMLIB) to identify the library.
646  * An object that uses a fixed virtual shared library also contains a
647  * fvmlib_command (cmd == LC_LOADFVMLIB) for each library it uses.
648  * (THIS IS OBSOLETE and no longer supported).
649  */
650 struct fvmlib_command {
651 	uint32_t	cmd;		/* LC_IDFVMLIB or LC_LOADFVMLIB */
652 	uint32_t	cmdsize;	/* includes pathname string */
653 	struct fvmlib	fvmlib;		/* the library identification */
654 };
655 
656 /*
657  * Dynamicly linked shared libraries are identified by two things.  The
658  * pathname (the name of the library as found for execution), and the
659  * compatibility version number.  The pathname must match and the compatibility
660  * number in the user of the library must be greater than or equal to the
661  * library being used.  The time stamp is used to record the time a library was
662  * built and copied into user so it can be use to determined if the library used
663  * at runtime is exactly the same as used to built the program.
664  */
665 struct dylib {
666     union lc_str  name;			/* library's path name */
667     uint32_t timestamp;			/* library's build time stamp */
668     uint32_t current_version;		/* library's current version number */
669     uint32_t compatibility_version;	/* library's compatibility vers number*/
670 };
671 
672 /*
673  * A dynamically linked shared library (filetype == MH_DYLIB in the mach header)
674  * contains a dylib_command (cmd == LC_ID_DYLIB) to identify the library.
675  * An object that uses a dynamically linked shared library also contains a
676  * dylib_command (cmd == LC_LOAD_DYLIB, LC_LOAD_WEAK_DYLIB, or
677  * LC_REEXPORT_DYLIB) for each library it uses.
678  */
679 struct dylib_command {
680 	uint32_t	cmd;		/* LC_ID_DYLIB, LC_LOAD_{,WEAK_}DYLIB,
681 					   LC_REEXPORT_DYLIB */
682 	uint32_t	cmdsize;	/* includes pathname string */
683 	struct dylib	dylib;		/* the library identification */
684 };
685 
686 /*
687  * A dynamically linked shared library may be a subframework of an umbrella
688  * framework.  If so it will be linked with "-umbrella umbrella_name" where
689  * Where "umbrella_name" is the name of the umbrella framework. A subframework
690  * can only be linked against by its umbrella framework or other subframeworks
691  * that are part of the same umbrella framework.  Otherwise the static link
692  * editor produces an error and states to link against the umbrella framework.
693  * The name of the umbrella framework for subframeworks is recorded in the
694  * following structure.
695  */
696 struct sub_framework_command {
697 	uint32_t	cmd;		/* LC_SUB_FRAMEWORK */
698 	uint32_t	cmdsize;	/* includes umbrella string */
699 	union lc_str 	umbrella;	/* the umbrella framework name */
700 };
701 
702 /*
703  * For dynamically linked shared libraries that are subframework of an umbrella
704  * framework they can allow clients other than the umbrella framework or other
705  * subframeworks in the same umbrella framework.  To do this the subframework
706  * is built with "-allowable_client client_name" and an LC_SUB_CLIENT load
707  * command is created for each -allowable_client flag.  The client_name is
708  * usually a framework name.  It can also be a name used for bundles clients
709  * where the bundle is built with "-client_name client_name".
710  */
711 struct sub_client_command {
712 	uint32_t	cmd;		/* LC_SUB_CLIENT */
713 	uint32_t	cmdsize;	/* includes client string */
714 	union lc_str 	client;		/* the client name */
715 };
716 
717 /*
718  * A dynamically linked shared library may be a sub_umbrella of an umbrella
719  * framework.  If so it will be linked with "-sub_umbrella umbrella_name" where
720  * Where "umbrella_name" is the name of the sub_umbrella framework.  When
721  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
722  * umbrella framework will only cause its subframeworks and those frameworks
723  * listed as sub_umbrella frameworks to be implicited linked in.  Any other
724  * dependent dynamic libraries will not be linked it when -twolevel_namespace
725  * is in effect.  The primary library recorded by the static linker when
726  * resolving a symbol in these libraries will be the umbrella framework.
727  * Zero or more sub_umbrella frameworks may be use by an umbrella framework.
728  * The name of a sub_umbrella framework is recorded in the following structure.
729  */
730 struct sub_umbrella_command {
731 	uint32_t	cmd;		/* LC_SUB_UMBRELLA */
732 	uint32_t	cmdsize;	/* includes sub_umbrella string */
733 	union lc_str 	sub_umbrella;	/* the sub_umbrella framework name */
734 };
735 
736 /*
737  * A dynamically linked shared library may be a sub_library of another shared
738  * library.  If so it will be linked with "-sub_library library_name" where
739  * Where "library_name" is the name of the sub_library shared library.  When
740  * staticly linking when -twolevel_namespace is in effect a twolevel namespace
741  * shared library will only cause its subframeworks and those frameworks
742  * listed as sub_umbrella frameworks and libraries listed as sub_libraries to
743  * be implicited linked in.  Any other dependent dynamic libraries will not be
744  * linked it when -twolevel_namespace is in effect.  The primary library
745  * recorded by the static linker when resolving a symbol in these libraries
746  * will be the umbrella framework (or dynamic library). Zero or more sub_library
747  * shared libraries may be use by an umbrella framework or (or dynamic library).
748  * The name of a sub_library framework is recorded in the following structure.
749  * For example /usr/lib/libobjc_profile.A.dylib would be recorded as "libobjc".
750  */
751 struct sub_library_command {
752 	uint32_t	cmd;		/* LC_SUB_LIBRARY */
753 	uint32_t	cmdsize;	/* includes sub_library string */
754 	union lc_str 	sub_library;	/* the sub_library name */
755 };
756 
757 /*
758  * A program (filetype == MH_EXECUTE) that is
759  * prebound to its dynamic libraries has one of these for each library that
760  * the static linker used in prebinding.  It contains a bit vector for the
761  * modules in the library.  The bits indicate which modules are bound (1) and
762  * which are not (0) from the library.  The bit for module 0 is the low bit
763  * of the first byte.  So the bit for the Nth module is:
764  * (linked_modules[N/8] >> N%8) & 1
765  */
766 struct prebound_dylib_command {
767 	uint32_t	cmd;		/* LC_PREBOUND_DYLIB */
768 	uint32_t	cmdsize;	/* includes strings */
769 	union lc_str	name;		/* library's path name */
770 	uint32_t	nmodules;	/* number of modules in library */
771 	union lc_str	linked_modules;	/* bit vector of linked modules */
772 };
773 
774 /*
775  * A program that uses a dynamic linker contains a dylinker_command to identify
776  * the name of the dynamic linker (LC_LOAD_DYLINKER).  And a dynamic linker
777  * contains a dylinker_command to identify the dynamic linker (LC_ID_DYLINKER).
778  * A file can have at most one of these.
779  * This struct is also used for the LC_DYLD_ENVIRONMENT load command and
780  * contains string for dyld to treat like environment variable.
781  */
782 struct dylinker_command {
783 	uint32_t	cmd;		/* LC_ID_DYLINKER, LC_LOAD_DYLINKER or
784 					   LC_DYLD_ENVIRONMENT */
785 	uint32_t	cmdsize;	/* includes pathname string */
786 	union lc_str    name;		/* dynamic linker's path name */
787 };
788 
789 /*
790  * Thread commands contain machine-specific data structures suitable for
791  * use in the thread state primitives.  The machine specific data structures
792  * follow the struct thread_command as follows.
793  * Each flavor of machine specific data structure is preceded by an uint32_t
794  * constant for the flavor of that data structure, an uint32_t that is the
795  * count of uint32_t's of the size of the state data structure and then
796  * the state data structure follows.  This triple may be repeated for many
797  * flavors.  The constants for the flavors, counts and state data structure
798  * definitions are expected to be in the header file <machine/thread_status.h>.
799  * These machine specific data structures sizes must be multiples of
800  * 4 bytes.  The cmdsize reflects the total size of the thread_command
801  * and all of the sizes of the constants for the flavors, counts and state
802  * data structures.
803  *
804  * For executable objects that are unix processes there will be one
805  * thread_command (cmd == LC_UNIXTHREAD) created for it by the link-editor.
806  * This is the same as a LC_THREAD, except that a stack is automatically
807  * created (based on the shell's limit for the stack size).  Command arguments
808  * and environment variables are copied onto that stack.
809  */
810 struct thread_command {
811 	uint32_t	cmd;		/* LC_THREAD or  LC_UNIXTHREAD */
812 	uint32_t	cmdsize;	/* total size of this command */
813 	/* uint32_t flavor		   flavor of thread state */
814 	/* uint32_t count		   count of uint32_t's in thread state */
815 	/* struct XXX_thread_state state   thread state for this flavor */
816 	/* ... */
817 };
818 
819 /*
820  * The routines command contains the address of the dynamic shared library
821  * initialization routine and an index into the module table for the module
822  * that defines the routine.  Before any modules are used from the library the
823  * dynamic linker fully binds the module that defines the initialization routine
824  * and then calls it.  This gets called before any module initialization
825  * routines (used for C++ static constructors) in the library.
826  */
827 struct routines_command { /* for 32-bit architectures */
828 	uint32_t	cmd;		/* LC_ROUTINES */
829 	uint32_t	cmdsize;	/* total size of this command */
830 	uint32_t	init_address;	/* address of initialization routine */
831 	uint32_t	init_module;	/* index into the module table that */
832 				        /*  the init routine is defined in */
833 	uint32_t	reserved1;
834 	uint32_t	reserved2;
835 	uint32_t	reserved3;
836 	uint32_t	reserved4;
837 	uint32_t	reserved5;
838 	uint32_t	reserved6;
839 };
840 
841 /*
842  * The 64-bit routines command.  Same use as above.
843  */
844 struct routines_command_64 { /* for 64-bit architectures */
845 	uint32_t	cmd;		/* LC_ROUTINES_64 */
846 	uint32_t	cmdsize;	/* total size of this command */
847 	uint64_t	init_address;	/* address of initialization routine */
848 	uint64_t	init_module;	/* index into the module table that */
849 					/*  the init routine is defined in */
850 	uint64_t	reserved1;
851 	uint64_t	reserved2;
852 	uint64_t	reserved3;
853 	uint64_t	reserved4;
854 	uint64_t	reserved5;
855 	uint64_t	reserved6;
856 };
857 
858 /*
859  * The symtab_command contains the offsets and sizes of the link-edit 4.3BSD
860  * "stab" style symbol table information as described in the header files
861  * <nlist.h> and <stab.h>.
862  */
863 struct symtab_command {
864 	uint32_t	cmd;		/* LC_SYMTAB */
865 	uint32_t	cmdsize;	/* sizeof(struct symtab_command) */
866 	uint32_t	symoff;		/* symbol table offset */
867 	uint32_t	nsyms;		/* number of symbol table entries */
868 	uint32_t	stroff;		/* string table offset */
869 	uint32_t	strsize;	/* string table size in bytes */
870 };
871 
872 /*
873  * This is the second set of the symbolic information which is used to support
874  * the data structures for the dynamically link editor.
875  *
876  * The original set of symbolic information in the symtab_command which contains
877  * the symbol and string tables must also be present when this load command is
878  * present.  When this load command is present the symbol table is organized
879  * into three groups of symbols:
880  *	local symbols (static and debugging symbols) - grouped by module
881  *	defined external symbols - grouped by module (sorted by name if not lib)
882  *	undefined external symbols (sorted by name if MH_BINDATLOAD is not set,
883  *	     			    and in order the were seen by the static
884  *				    linker if MH_BINDATLOAD is set)
885  * In this load command there are offsets and counts to each of the three groups
886  * of symbols.
887  *
888  * This load command contains a the offsets and sizes of the following new
889  * symbolic information tables:
890  *	table of contents
891  *	module table
892  *	reference symbol table
893  *	indirect symbol table
894  * The first three tables above (the table of contents, module table and
895  * reference symbol table) are only present if the file is a dynamically linked
896  * shared library.  For executable and object modules, which are files
897  * containing only one module, the information that would be in these three
898  * tables is determined as follows:
899  * 	table of contents - the defined external symbols are sorted by name
900  *	module table - the file contains only one module so everything in the
901  *		       file is part of the module.
902  *	reference symbol table - is the defined and undefined external symbols
903  *
904  * For dynamically linked shared library files this load command also contains
905  * offsets and sizes to the pool of relocation entries for all sections
906  * separated into two groups:
907  *	external relocation entries
908  *	local relocation entries
909  * For executable and object modules the relocation entries continue to hang
910  * off the section structures.
911  */
912 struct dysymtab_command {
913     uint32_t cmd;	/* LC_DYSYMTAB */
914     uint32_t cmdsize;	/* sizeof(struct dysymtab_command) */
915 
916     /*
917      * The symbols indicated by symoff and nsyms of the LC_SYMTAB load command
918      * are grouped into the following three groups:
919      *    local symbols (further grouped by the module they are from)
920      *    defined external symbols (further grouped by the module they are from)
921      *    undefined symbols
922      *
923      * The local symbols are used only for debugging.  The dynamic binding
924      * process may have to use them to indicate to the debugger the local
925      * symbols for a module that is being bound.
926      *
927      * The last two groups are used by the dynamic binding process to do the
928      * binding (indirectly through the module table and the reference symbol
929      * table when this is a dynamically linked shared library file).
930      */
931     uint32_t ilocalsym;	/* index to local symbols */
932     uint32_t nlocalsym;	/* number of local symbols */
933 
934     uint32_t iextdefsym;/* index to externally defined symbols */
935     uint32_t nextdefsym;/* number of externally defined symbols */
936 
937     uint32_t iundefsym;	/* index to undefined symbols */
938     uint32_t nundefsym;	/* number of undefined symbols */
939 
940     /*
941      * For the for the dynamic binding process to find which module a symbol
942      * is defined in the table of contents is used (analogous to the ranlib
943      * structure in an archive) which maps defined external symbols to modules
944      * they are defined in.  This exists only in a dynamically linked shared
945      * library file.  For executable and object modules the defined external
946      * symbols are sorted by name and is use as the table of contents.
947      */
948     uint32_t tocoff;	/* file offset to table of contents */
949     uint32_t ntoc;	/* number of entries in table of contents */
950 
951     /*
952      * To support dynamic binding of "modules" (whole object files) the symbol
953      * table must reflect the modules that the file was created from.  This is
954      * done by having a module table that has indexes and counts into the merged
955      * tables for each module.  The module structure that these two entries
956      * refer to is described below.  This exists only in a dynamically linked
957      * shared library file.  For executable and object modules the file only
958      * contains one module so everything in the file belongs to the module.
959      */
960     uint32_t modtaboff;	/* file offset to module table */
961     uint32_t nmodtab;	/* number of module table entries */
962 
963     /*
964      * To support dynamic module binding the module structure for each module
965      * indicates the external references (defined and undefined) each module
966      * makes.  For each module there is an offset and a count into the
967      * reference symbol table for the symbols that the module references.
968      * This exists only in a dynamically linked shared library file.  For
969      * executable and object modules the defined external symbols and the
970      * undefined external symbols indicates the external references.
971      */
972     uint32_t extrefsymoff;	/* offset to referenced symbol table */
973     uint32_t nextrefsyms;	/* number of referenced symbol table entries */
974 
975     /*
976      * The sections that contain "symbol pointers" and "routine stubs" have
977      * indexes and (implied counts based on the size of the section and fixed
978      * size of the entry) into the "indirect symbol" table for each pointer
979      * and stub.  For every section of these two types the index into the
980      * indirect symbol table is stored in the section header in the field
981      * reserved1.  An indirect symbol table entry is simply a 32bit index into
982      * the symbol table to the symbol that the pointer or stub is referring to.
983      * The indirect symbol table is ordered to match the entries in the section.
984      */
985     uint32_t indirectsymoff; /* file offset to the indirect symbol table */
986     uint32_t nindirectsyms;  /* number of indirect symbol table entries */
987 
988     /*
989      * To support relocating an individual module in a library file quickly the
990      * external relocation entries for each module in the library need to be
991      * accessed efficiently.  Since the relocation entries can't be accessed
992      * through the section headers for a library file they are separated into
993      * groups of local and external entries further grouped by module.  In this
994      * case the presents of this load command who's extreloff, nextrel,
995      * locreloff and nlocrel fields are non-zero indicates that the relocation
996      * entries of non-merged sections are not referenced through the section
997      * structures (and the reloff and nreloc fields in the section headers are
998      * set to zero).
999      *
1000      * Since the relocation entries are not accessed through the section headers
1001      * this requires the r_address field to be something other than a section
1002      * offset to identify the item to be relocated.  In this case r_address is
1003      * set to the offset from the vmaddr of the first LC_SEGMENT command.
1004      * For MH_SPLIT_SEGS images r_address is set to the the offset from the
1005      * vmaddr of the first read-write LC_SEGMENT command.
1006      *
1007      * The relocation entries are grouped by module and the module table
1008      * entries have indexes and counts into them for the group of external
1009      * relocation entries for that the module.
1010      *
1011      * For sections that are merged across modules there must not be any
1012      * remaining external relocation entries for them (for merged sections
1013      * remaining relocation entries must be local).
1014      */
1015     uint32_t extreloff;	/* offset to external relocation entries */
1016     uint32_t nextrel;	/* number of external relocation entries */
1017 
1018     /*
1019      * All the local relocation entries are grouped together (they are not
1020      * grouped by their module since they are only used if the object is moved
1021      * from it staticly link edited address).
1022      */
1023     uint32_t locreloff;	/* offset to local relocation entries */
1024     uint32_t nlocrel;	/* number of local relocation entries */
1025 
1026 };
1027 
1028 /*
1029  * An indirect symbol table entry is simply a 32bit index into the symbol table
1030  * to the symbol that the pointer or stub is refering to.  Unless it is for a
1031  * non-lazy symbol pointer section for a defined symbol which strip(1) as
1032  * removed.  In which case it has the value INDIRECT_SYMBOL_LOCAL.  If the
1033  * symbol was also absolute INDIRECT_SYMBOL_ABS is or'ed with that.
1034  */
1035 #define INDIRECT_SYMBOL_LOCAL	0x80000000
1036 #define INDIRECT_SYMBOL_ABS	0x40000000
1037 
1038 
1039 /* a table of contents entry */
1040 struct dylib_table_of_contents {
1041     uint32_t symbol_index;	/* the defined external symbol
1042 				   (index into the symbol table) */
1043     uint32_t module_index;	/* index into the module table this symbol
1044 				   is defined in */
1045 };
1046 
1047 /* a module table entry */
1048 struct dylib_module {
1049     uint32_t module_name;	/* the module name (index into string table) */
1050 
1051     uint32_t iextdefsym;	/* index into externally defined symbols */
1052     uint32_t nextdefsym;	/* number of externally defined symbols */
1053     uint32_t irefsym;		/* index into reference symbol table */
1054     uint32_t nrefsym;		/* number of reference symbol table entries */
1055     uint32_t ilocalsym;		/* index into symbols for local symbols */
1056     uint32_t nlocalsym;		/* number of local symbols */
1057 
1058     uint32_t iextrel;		/* index into external relocation entries */
1059     uint32_t nextrel;		/* number of external relocation entries */
1060 
1061     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1062 				   section, high 16 bits are the index into
1063 			           the term section */
1064     uint32_t ninit_nterm;	/* low 16 bits are the number of init section
1065 				   entries, high 16 bits are the number of
1066 				   term section entries */
1067 
1068     uint32_t			/* for this module address of the start of */
1069 	objc_module_info_addr;  /*  the (__OBJC,__module_info) section */
1070     uint32_t			/* for this module size of */
1071 	objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1072 };
1073 
1074 /* a 64-bit module table entry */
1075 struct dylib_module_64 {
1076     uint32_t module_name;	/* the module name (index into string table) */
1077 
1078     uint32_t iextdefsym;	/* index into externally defined symbols */
1079     uint32_t nextdefsym;	/* number of externally defined symbols */
1080     uint32_t irefsym;		/* index into reference symbol table */
1081     uint32_t nrefsym;		/* number of reference symbol table entries */
1082     uint32_t ilocalsym;		/* index into symbols for local symbols */
1083     uint32_t nlocalsym;		/* number of local symbols */
1084 
1085     uint32_t iextrel;		/* index into external relocation entries */
1086     uint32_t nextrel;		/* number of external relocation entries */
1087 
1088     uint32_t iinit_iterm;	/* low 16 bits are the index into the init
1089 				   section, high 16 bits are the index into
1090 				   the term section */
1091     uint32_t ninit_nterm;      /* low 16 bits are the number of init section
1092 				  entries, high 16 bits are the number of
1093 				  term section entries */
1094 
1095     uint32_t			/* for this module size of */
1096         objc_module_info_size;	/*  the (__OBJC,__module_info) section */
1097     uint64_t			/* for this module address of the start of */
1098         objc_module_info_addr;	/*  the (__OBJC,__module_info) section */
1099 };
1100 
1101 /*
1102  * The entries in the reference symbol table are used when loading the module
1103  * (both by the static and dynamic link editors) and if the module is unloaded
1104  * or replaced.  Therefore all external symbols (defined and undefined) are
1105  * listed in the module's reference table.  The flags describe the type of
1106  * reference that is being made.  The constants for the flags are defined in
1107  * <mach-o/nlist.h> as they are also used for symbol table entries.
1108  */
1109 struct dylib_reference {
1110     uint32_t isym:24,		/* index into the symbol table */
1111     		  flags:8;	/* flags to indicate the type of reference */
1112 };
1113 
1114 /*
1115  * The twolevel_hints_command contains the offset and number of hints in the
1116  * two-level namespace lookup hints table.
1117  */
1118 struct twolevel_hints_command {
1119     uint32_t cmd;	/* LC_TWOLEVEL_HINTS */
1120     uint32_t cmdsize;	/* sizeof(struct twolevel_hints_command) */
1121     uint32_t offset;	/* offset to the hint table */
1122     uint32_t nhints;	/* number of hints in the hint table */
1123 };
1124 
1125 /*
1126  * The entries in the two-level namespace lookup hints table are twolevel_hint
1127  * structs.  These provide hints to the dynamic link editor where to start
1128  * looking for an undefined symbol in a two-level namespace image.  The
1129  * isub_image field is an index into the sub-images (sub-frameworks and
1130  * sub-umbrellas list) that made up the two-level image that the undefined
1131  * symbol was found in when it was built by the static link editor.  If
1132  * isub-image is 0 the the symbol is expected to be defined in library and not
1133  * in the sub-images.  If isub-image is non-zero it is an index into the array
1134  * of sub-images for the umbrella with the first index in the sub-images being
1135  * 1. The array of sub-images is the ordered list of sub-images of the umbrella
1136  * that would be searched for a symbol that has the umbrella recorded as its
1137  * primary library.  The table of contents index is an index into the
1138  * library's table of contents.  This is used as the starting point of the
1139  * binary search or a directed linear search.
1140  */
1141 struct twolevel_hint {
1142     uint32_t
1143 	isub_image:8,	/* index into the sub images */
1144 	itoc:24;	/* index into the table of contents */
1145 };
1146 
1147 /*
1148  * The prebind_cksum_command contains the value of the original check sum for
1149  * prebound files or zero.  When a prebound file is first created or modified
1150  * for other than updating its prebinding information the value of the check sum
1151  * is set to zero.  When the file has it prebinding re-done and if the value of
1152  * the check sum is zero the original check sum is calculated and stored in
1153  * cksum field of this load command in the output file.  If when the prebinding
1154  * is re-done and the cksum field is non-zero it is left unchanged from the
1155  * input file.
1156  */
1157 struct prebind_cksum_command {
1158     uint32_t cmd;	/* LC_PREBIND_CKSUM */
1159     uint32_t cmdsize;	/* sizeof(struct prebind_cksum_command) */
1160     uint32_t cksum;	/* the check sum or zero */
1161 };
1162 
1163 /*
1164  * The uuid load command contains a single 128-bit unique random number that
1165  * identifies an object produced by the static link editor.
1166  */
1167 struct uuid_command {
1168     uint32_t	cmd;		/* LC_UUID */
1169     uint32_t	cmdsize;	/* sizeof(struct uuid_command) */
1170     uint8_t	uuid[16];	/* the 128-bit uuid */
1171 };
1172 
1173 /*
1174  * The rpath_command contains a path which at runtime should be added to
1175  * the current run path used to find @rpath prefixed dylibs.
1176  */
1177 struct rpath_command {
1178     uint32_t	 cmd;		/* LC_RPATH */
1179     uint32_t	 cmdsize;	/* includes string */
1180     union lc_str path;		/* path to add to run path */
1181 };
1182 
1183 /*
1184  * The linkedit_data_command contains the offsets and sizes of a blob
1185  * of data in the __LINKEDIT segment.
1186  */
1187 struct linkedit_data_command {
1188     uint32_t	cmd;		/* LC_CODE_SIGNATURE, LC_SEGMENT_SPLIT_INFO,
1189 				   LC_FUNCTION_STARTS, LC_DATA_IN_CODE,
1190 				   LC_DYLIB_CODE_SIGN_DRS,
1191 				   LC_LINKER_OPTIMIZATION_HINT,
1192 				   LC_DYLD_EXPORTS_TRIE, or
1193 				   LC_DYLD_CHAINED_FIXUPS. */
1194     uint32_t	cmdsize;	/* sizeof(struct linkedit_data_command) */
1195     uint32_t	dataoff;	/* file offset of data in __LINKEDIT segment */
1196     uint32_t	datasize;	/* file size of data in __LINKEDIT segment  */
1197 };
1198 
1199 /*
1200  * The encryption_info_command contains the file offset and size of an
1201  * of an encrypted segment.
1202  */
1203 struct encryption_info_command {
1204    uint32_t	cmd;		/* LC_ENCRYPTION_INFO */
1205    uint32_t	cmdsize;	/* sizeof(struct encryption_info_command) */
1206    uint32_t	cryptoff;	/* file offset of encrypted range */
1207    uint32_t	cryptsize;	/* file size of encrypted range */
1208    uint32_t	cryptid;	/* which enryption system,
1209 				   0 means not-encrypted yet */
1210 };
1211 
1212 /*
1213  * The encryption_info_command_64 contains the file offset and size of an
1214  * of an encrypted segment (for use in x86_64 targets).
1215  */
1216 struct encryption_info_command_64 {
1217    uint32_t	cmd;		/* LC_ENCRYPTION_INFO_64 */
1218    uint32_t	cmdsize;	/* sizeof(struct encryption_info_command_64) */
1219    uint32_t	cryptoff;	/* file offset of encrypted range */
1220    uint32_t	cryptsize;	/* file size of encrypted range */
1221    uint32_t	cryptid;	/* which enryption system,
1222 				   0 means not-encrypted yet */
1223    uint32_t	pad;		/* padding to make this struct's size a multiple
1224 				   of 8 bytes */
1225 };
1226 
1227 /*
1228  * The version_min_command contains the min OS version on which this
1229  * binary was built to run.
1230  */
1231 struct version_min_command {
1232     uint32_t	cmd;		/* LC_VERSION_MIN_MACOSX or
1233 				   LC_VERSION_MIN_IPHONEOS or
1234 				   LC_VERSION_MIN_WATCHOS or
1235 				   LC_VERSION_MIN_TVOS */
1236     uint32_t	cmdsize;	/* sizeof(struct min_version_command) */
1237     uint32_t	version;	/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1238     uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1239 };
1240 
1241 /*
1242  * The build_version_command contains the min OS version on which this
1243  * binary was built to run for its platform.  The list of known platforms and
1244  * tool values following it.
1245  */
1246 struct build_version_command {
1247     uint32_t	cmd;		/* LC_BUILD_VERSION */
1248     uint32_t	cmdsize;	/* sizeof(struct build_version_command) plus */
1249 				/* ntools * sizeof(struct build_tool_version) */
1250     uint32_t	platform;	/* platform */
1251     uint32_t	minos;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1252     uint32_t	sdk;		/* X.Y.Z is encoded in nibbles xxxx.yy.zz */
1253     uint32_t	ntools;		/* number of tool entries following this */
1254 };
1255 
1256 struct build_tool_version {
1257     uint32_t	tool;		/* enum for the tool */
1258     uint32_t	version;	/* version number of the tool */
1259 };
1260 
1261 /* Known values for the platform field above. */
1262 #define PLATFORM_MACOS 1
1263 #define PLATFORM_IOS 2
1264 #define PLATFORM_TVOS 3
1265 #define PLATFORM_WATCHOS 4
1266 #define PLATFORM_BRIDGEOS 5
1267 #define PLATFORM_MACCATALYST 6
1268 #if (!defined(PLATFORM_MACCATALYST))
1269 #define PLATFORM_MACCATALYST 6
1270 #endif
1271 #define PLATFORM_IOSSIMULATOR 7
1272 #define PLATFORM_TVOSSIMULATOR 8
1273 #define PLATFORM_WATCHOSSIMULATOR 9
1274 #define PLATFORM_DRIVERKIT 10
1275 
1276 /* Known values for the tool field above. */
1277 #define TOOL_CLANG 1
1278 #define TOOL_SWIFT 2
1279 #define TOOL_LD	3
1280 
1281 /*
1282  * The dyld_info_command contains the file offsets and sizes of
1283  * the new compressed form of the information dyld needs to
1284  * load the image.  This information is used by dyld on Mac OS X
1285  * 10.6 and later.  All information pointed to by this command
1286  * is encoded using byte streams, so no endian swapping is needed
1287  * to interpret it.
1288  */
1289 struct dyld_info_command {
1290    uint32_t   cmd;		/* LC_DYLD_INFO or LC_DYLD_INFO_ONLY */
1291    uint32_t   cmdsize;		/* sizeof(struct dyld_info_command) */
1292 
1293     /*
1294      * Dyld rebases an image whenever dyld loads it at an address different
1295      * from its preferred address.  The rebase information is a stream
1296      * of byte sized opcodes whose symbolic names start with REBASE_OPCODE_.
1297      * Conceptually the rebase information is a table of tuples:
1298      *    <seg-index, seg-offset, type>
1299      * The opcodes are a compressed way to encode the table by only
1300      * encoding when a column changes.  In addition simple patterns
1301      * like "every n'th offset for m times" can be encoded in a few
1302      * bytes.
1303      */
1304     uint32_t   rebase_off;	/* file offset to rebase info  */
1305     uint32_t   rebase_size;	/* size of rebase info   */
1306 
1307     /*
1308      * Dyld binds an image during the loading process, if the image
1309      * requires any pointers to be initialized to symbols in other images.
1310      * The bind information is a stream of byte sized
1311      * opcodes whose symbolic names start with BIND_OPCODE_.
1312      * Conceptually the bind information is a table of tuples:
1313      *    <seg-index, seg-offset, type, symbol-library-ordinal, symbol-name, addend>
1314      * The opcodes are a compressed way to encode the table by only
1315      * encoding when a column changes.  In addition simple patterns
1316      * like for runs of pointers initialzed to the same value can be
1317      * encoded in a few bytes.
1318      */
1319     uint32_t   bind_off;	/* file offset to binding info   */
1320     uint32_t   bind_size;	/* size of binding info  */
1321 
1322     /*
1323      * Some C++ programs require dyld to unique symbols so that all
1324      * images in the process use the same copy of some code/data.
1325      * This step is done after binding. The content of the weak_bind
1326      * info is an opcode stream like the bind_info.  But it is sorted
1327      * alphabetically by symbol name.  This enable dyld to walk
1328      * all images with weak binding information in order and look
1329      * for collisions.  If there are no collisions, dyld does
1330      * no updating.  That means that some fixups are also encoded
1331      * in the bind_info.  For instance, all calls to "operator new"
1332      * are first bound to libstdc++.dylib using the information
1333      * in bind_info.  Then if some image overrides operator new
1334      * that is detected when the weak_bind information is processed
1335      * and the call to operator new is then rebound.
1336      */
1337     uint32_t   weak_bind_off;	/* file offset to weak binding info   */
1338     uint32_t   weak_bind_size;  /* size of weak binding info  */
1339 
1340     /*
1341      * Some uses of external symbols do not need to be bound immediately.
1342      * Instead they can be lazily bound on first use.  The lazy_bind
1343      * are contains a stream of BIND opcodes to bind all lazy symbols.
1344      * Normal use is that dyld ignores the lazy_bind section when
1345      * loading an image.  Instead the static linker arranged for the
1346      * lazy pointer to initially point to a helper function which
1347      * pushes the offset into the lazy_bind area for the symbol
1348      * needing to be bound, then jumps to dyld which simply adds
1349      * the offset to lazy_bind_off to get the information on what
1350      * to bind.
1351      */
1352     uint32_t   lazy_bind_off;	/* file offset to lazy binding info */
1353     uint32_t   lazy_bind_size;  /* size of lazy binding infs */
1354 
1355     /*
1356      * The symbols exported by a dylib are encoded in a trie.  This
1357      * is a compact representation that factors out common prefixes.
1358      * It also reduces LINKEDIT pages in RAM because it encodes all
1359      * information (name, address, flags) in one small, contiguous range.
1360      * The export area is a stream of nodes.  The first node sequentially
1361      * is the start node for the trie.
1362      *
1363      * Nodes for a symbol start with a uleb128 that is the length of
1364      * the exported symbol information for the string so far.
1365      * If there is no exported symbol, the node starts with a zero byte.
1366      * If there is exported info, it follows the length.
1367      *
1368      * First is a uleb128 containing flags. Normally, it is followed by
1369      * a uleb128 encoded offset which is location of the content named
1370      * by the symbol from the mach_header for the image.  If the flags
1371      * is EXPORT_SYMBOL_FLAGS_REEXPORT, then following the flags is
1372      * a uleb128 encoded library ordinal, then a zero terminated
1373      * UTF8 string.  If the string is zero length, then the symbol
1374      * is re-export from the specified dylib with the same name.
1375      * If the flags is EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER, then following
1376      * the flags is two uleb128s: the stub offset and the resolver offset.
1377      * The stub is used by non-lazy pointers.  The resolver is used
1378      * by lazy pointers and must be called to get the actual address to use.
1379      *
1380      * After the optional exported symbol information is a byte of
1381      * how many edges (0-255) that this node has leaving it,
1382      * followed by each edge.
1383      * Each edge is a zero terminated UTF8 of the addition chars
1384      * in the symbol, followed by a uleb128 offset for the node that
1385      * edge points to.
1386      *
1387      */
1388     uint32_t   export_off;	/* file offset to lazy binding info */
1389     uint32_t   export_size;	/* size of lazy binding infs */
1390 };
1391 
1392 /*
1393  * The following are used to encode rebasing information
1394  */
1395 #define REBASE_TYPE_POINTER					1
1396 #define REBASE_TYPE_TEXT_ABSOLUTE32				2
1397 #define REBASE_TYPE_TEXT_PCREL32				3
1398 
1399 #define REBASE_OPCODE_MASK					0xF0
1400 #define REBASE_IMMEDIATE_MASK					0x0F
1401 #define REBASE_OPCODE_DONE					0x00
1402 #define REBASE_OPCODE_SET_TYPE_IMM				0x10
1403 #define REBASE_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB		0x20
1404 #define REBASE_OPCODE_ADD_ADDR_ULEB				0x30
1405 #define REBASE_OPCODE_ADD_ADDR_IMM_SCALED			0x40
1406 #define REBASE_OPCODE_DO_REBASE_IMM_TIMES			0x50
1407 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES			0x60
1408 #define REBASE_OPCODE_DO_REBASE_ADD_ADDR_ULEB			0x70
1409 #define REBASE_OPCODE_DO_REBASE_ULEB_TIMES_SKIPPING_ULEB	0x80
1410 
1411 
1412 /*
1413  * The following are used to encode binding information
1414  */
1415 #define BIND_TYPE_POINTER					1
1416 #define BIND_TYPE_TEXT_ABSOLUTE32				2
1417 #define BIND_TYPE_TEXT_PCREL32					3
1418 
1419 #define BIND_SPECIAL_DYLIB_SELF					 0
1420 #define BIND_SPECIAL_DYLIB_MAIN_EXECUTABLE			-1
1421 #define BIND_SPECIAL_DYLIB_FLAT_LOOKUP				-2
1422 #define BIND_SPECIAL_DYLIB_WEAK_LOOKUP				-3
1423 
1424 #define BIND_SYMBOL_FLAGS_WEAK_IMPORT				0x1
1425 #define BIND_SYMBOL_FLAGS_NON_WEAK_DEFINITION			0x8
1426 
1427 #define BIND_OPCODE_MASK					0xF0
1428 #define BIND_IMMEDIATE_MASK					0x0F
1429 #define BIND_OPCODE_DONE					0x00
1430 #define BIND_OPCODE_SET_DYLIB_ORDINAL_IMM			0x10
1431 #define BIND_OPCODE_SET_DYLIB_ORDINAL_ULEB			0x20
1432 #define BIND_OPCODE_SET_DYLIB_SPECIAL_IMM			0x30
1433 #define BIND_OPCODE_SET_SYMBOL_TRAILING_FLAGS_IMM		0x40
1434 #define BIND_OPCODE_SET_TYPE_IMM				0x50
1435 #define BIND_OPCODE_SET_ADDEND_SLEB				0x60
1436 #define BIND_OPCODE_SET_SEGMENT_AND_OFFSET_ULEB			0x70
1437 #define BIND_OPCODE_ADD_ADDR_ULEB				0x80
1438 #define BIND_OPCODE_DO_BIND					0x90
1439 #define BIND_OPCODE_DO_BIND_ADD_ADDR_ULEB			0xA0
1440 #define BIND_OPCODE_DO_BIND_ADD_ADDR_IMM_SCALED			0xB0
1441 #define BIND_OPCODE_DO_BIND_ULEB_TIMES_SKIPPING_ULEB		0xC0
1442 #define	BIND_OPCODE_THREADED					0xD0
1443 #define	BIND_SUBOPCODE_THREADED_SET_BIND_ORDINAL_TABLE_SIZE_ULEB 0x00
1444 #define	BIND_SUBOPCODE_THREADED_APPLY				 0x01
1445 
1446 
1447 /*
1448  * The following are used on the flags byte of a terminal node
1449  * in the export information.
1450  */
1451 #define EXPORT_SYMBOL_FLAGS_KIND_MASK				0x03
1452 #define EXPORT_SYMBOL_FLAGS_KIND_REGULAR			0x00
1453 #define EXPORT_SYMBOL_FLAGS_KIND_THREAD_LOCAL			0x01
1454 #define EXPORT_SYMBOL_FLAGS_KIND_ABSOLUTE			0x02
1455 #define EXPORT_SYMBOL_FLAGS_WEAK_DEFINITION			0x04
1456 #define EXPORT_SYMBOL_FLAGS_REEXPORT				0x08
1457 #define EXPORT_SYMBOL_FLAGS_STUB_AND_RESOLVER			0x10
1458 
1459 /*
1460  * The linker_option_command contains linker options embedded in object files.
1461  */
1462 struct linker_option_command {
1463     uint32_t  cmd;	/* LC_LINKER_OPTION only used in MH_OBJECT filetypes */
1464     uint32_t  cmdsize;
1465     uint32_t  count;	/* number of strings */
1466     /* concatenation of zero terminated UTF8 strings.
1467        Zero filled at end to align */
1468 };
1469 
1470 /*
1471  * The symseg_command contains the offset and size of the GNU style
1472  * symbol table information as described in the header file <symseg.h>.
1473  * The symbol roots of the symbol segments must also be aligned properly
1474  * in the file.  So the requirement of keeping the offsets aligned to a
1475  * multiple of a 4 bytes translates to the length field of the symbol
1476  * roots also being a multiple of a long.  Also the padding must again be
1477  * zeroed. (THIS IS OBSOLETE and no longer supported).
1478  */
1479 struct symseg_command {
1480 	uint32_t	cmd;		/* LC_SYMSEG */
1481 	uint32_t	cmdsize;	/* sizeof(struct symseg_command) */
1482 	uint32_t	offset;		/* symbol segment offset */
1483 	uint32_t	size;		/* symbol segment size in bytes */
1484 };
1485 
1486 /*
1487  * The ident_command contains a free format string table following the
1488  * ident_command structure.  The strings are null terminated and the size of
1489  * the command is padded out with zero bytes to a multiple of 4 bytes/
1490  * (THIS IS OBSOLETE and no longer supported).
1491  */
1492 struct ident_command {
1493 	uint32_t cmd;		/* LC_IDENT */
1494 	uint32_t cmdsize;	/* strings that follow this command */
1495 };
1496 
1497 /*
1498  * The fvmfile_command contains a reference to a file to be loaded at the
1499  * specified virtual address.  (Presently, this command is reserved for
1500  * internal use.  The kernel ignores this command when loading a program into
1501  * memory).
1502  */
1503 struct fvmfile_command {
1504 	uint32_t cmd;			/* LC_FVMFILE */
1505 	uint32_t cmdsize;		/* includes pathname string */
1506 	union lc_str	name;		/* files pathname */
1507 	uint32_t	header_addr;	/* files virtual address */
1508 };
1509 
1510 
1511 /*
1512  * The entry_point_command is a replacement for thread_command.
1513  * It is used for main executables to specify the location (file offset)
1514  * of main().  If -stack_size was used at link time, the stacksize
1515  * field will contain the stack size need for the main thread.
1516  */
1517 struct entry_point_command {
1518     uint32_t  cmd;	/* LC_MAIN only used in MH_EXECUTE filetypes */
1519     uint32_t  cmdsize;	/* 24 */
1520     uint64_t  entryoff;	/* file (__TEXT) offset of main() */
1521     uint64_t  stacksize;/* if not zero, initial stack size */
1522 };
1523 
1524 
1525 /*
1526  * The source_version_command is an optional load command containing
1527  * the version of the sources used to build the binary.
1528  */
1529 struct source_version_command {
1530     uint32_t  cmd;	/* LC_SOURCE_VERSION */
1531     uint32_t  cmdsize;	/* 16 */
1532     uint64_t  version;	/* A.B.C.D.E packed as a24.b10.c10.d10.e10 */
1533 };
1534 
1535 
1536 /*
1537  * The LC_DATA_IN_CODE load commands uses a linkedit_data_command
1538  * to point to an array of data_in_code_entry entries. Each entry
1539  * describes a range of data in a code section.
1540  */
1541 struct data_in_code_entry {
1542     uint32_t	offset;  /* from mach_header to start of data range*/
1543     uint16_t	length;  /* number of bytes in data range */
1544     uint16_t	kind;    /* a DICE_KIND_* value  */
1545 };
1546 #define DICE_KIND_DATA              0x0001
1547 #define DICE_KIND_JUMP_TABLE8       0x0002
1548 #define DICE_KIND_JUMP_TABLE16      0x0003
1549 #define DICE_KIND_JUMP_TABLE32      0x0004
1550 #define DICE_KIND_ABS_JUMP_TABLE32  0x0005
1551 
1552 
1553 
1554 /*
1555  * Sections of type S_THREAD_LOCAL_VARIABLES contain an array
1556  * of tlv_descriptor structures.
1557  */
1558 struct tlv_descriptor
1559 {
1560 	void*		(*thunk)(struct tlv_descriptor*);
1561 	unsigned long	key;
1562 	unsigned long	offset;
1563 };
1564 
1565 /*
1566  * LC_NOTE commands describe a region of arbitrary data included in a Mach-O
1567  * file.  Its initial use is to record extra data in MH_CORE files.
1568  */
1569 struct note_command {
1570     uint32_t	cmd;		/* LC_NOTE */
1571     uint32_t	cmdsize;	/* sizeof(struct note_command) */
1572     char	data_owner[16];	/* owner name for this LC_NOTE */
1573     uint64_t	offset;		/* file offset of this data */
1574     uint64_t	size;		/* length of data region */
1575 };
1576 
1577 #endif /* _MACHO_LOADER_H_ */