1 /*
2  * Double-precision log2(x) function.
3  *
4  * Copyright (c) 2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "libm.h"
11 #include "log2_data.h"
12 
13 #define T __log2_data.tab
14 #define T2 __log2_data.tab2
15 #define B __log2_data.poly1
16 #define A __log2_data.poly
17 #define InvLn2hi __log2_data.invln2hi
18 #define InvLn2lo __log2_data.invln2lo
19 #define N (1 << LOG2_TABLE_BITS)
20 #define OFF 0x3fe6000000000000
21 
22 /* Top 16 bits of a double.  */
top16(double x)23 static inline uint32_t top16(double x)
24 {
25 	return asuint64(x) >> 48;
26 }
27 
log2(double x)28 double log2(double x)
29 {
30 	double_t z, r, r2, r4, y, invc, logc, kd, hi, lo, t1, t2, t3, p;
31 	uint64_t ix, iz, tmp;
32 	uint32_t top;
33 	int k, i;
34 
35 	ix = asuint64(x);
36 	top = top16(x);
37 #define LO asuint64(1.0 - 0x1.5b51p-5)
38 #define HI asuint64(1.0 + 0x1.6ab2p-5)
39 	if (predict_false(ix - LO < HI - LO)) {
40 		/* Handle close to 1.0 inputs separately.  */
41 		/* Fix sign of zero with downward rounding when x==1.  */
42 		if (WANT_ROUNDING && predict_false(ix == asuint64(1.0)))
43 			return 0;
44 		r = x - 1.0;
45 #if __FP_FAST_FMA
46 		hi = r * InvLn2hi;
47 		lo = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -hi);
48 #else
49 		double_t rhi, rlo;
50 		rhi = asdouble(asuint64(r) & -1ULL << 32);
51 		rlo = r - rhi;
52 		hi = rhi * InvLn2hi;
53 		lo = rlo * InvLn2hi + r * InvLn2lo;
54 #endif
55 		r2 = r * r; /* rounding error: 0x1p-62.  */
56 		r4 = r2 * r2;
57 		/* Worst-case error is less than 0.54 ULP (0.55 ULP without fma).  */
58 		p = r2 * (B[0] + r * B[1]);
59 		y = hi + p;
60 		lo += hi - y + p;
61 		lo += r4 * (B[2] + r * B[3] + r2 * (B[4] + r * B[5]) +
62 			    r4 * (B[6] + r * B[7] + r2 * (B[8] + r * B[9])));
63 		y += lo;
64 		return eval_as_double(y);
65 	}
66 	if (predict_false(top - 0x0010 >= 0x7ff0 - 0x0010)) {
67 		/* x < 0x1p-1022 or inf or nan.  */
68 		if (ix * 2 == 0)
69 			return __math_divzero(1);
70 		if (ix == asuint64(INFINITY)) /* log(inf) == inf.  */
71 			return x;
72 		if ((top & 0x8000) || (top & 0x7ff0) == 0x7ff0)
73 			return __math_invalid(x);
74 		/* x is subnormal, normalize it.  */
75 		ix = asuint64(x * 0x1p52);
76 		ix -= 52ULL << 52;
77 	}
78 
79 	/* x = 2^k z; where z is in range [OFF,2*OFF) and exact.
80 	   The range is split into N subintervals.
81 	   The ith subinterval contains z and c is near its center.  */
82 	tmp = ix - OFF;
83 	i = (tmp >> (52 - LOG2_TABLE_BITS)) % N;
84 	k = (int64_t)tmp >> 52; /* arithmetic shift */
85 	iz = ix - (tmp & 0xfffULL << 52);
86 	invc = T[i].invc;
87 	logc = T[i].logc;
88 	z = asdouble(iz);
89 	kd = (double_t)k;
90 
91 	/* log2(x) = log2(z/c) + log2(c) + k.  */
92 	/* r ~= z/c - 1, |r| < 1/(2*N).  */
93 #if __FP_FAST_FMA
94 	/* rounding error: 0x1p-55/N.  */
95 	r = __builtin_fma(z, invc, -1.0);
96 	t1 = r * InvLn2hi;
97 	t2 = r * InvLn2lo + __builtin_fma(r, InvLn2hi, -t1);
98 #else
99 	double_t rhi, rlo;
100 	/* rounding error: 0x1p-55/N + 0x1p-65.  */
101 	r = (z - T2[i].chi - T2[i].clo) * invc;
102 	rhi = asdouble(asuint64(r) & -1ULL << 32);
103 	rlo = r - rhi;
104 	t1 = rhi * InvLn2hi;
105 	t2 = rlo * InvLn2hi + r * InvLn2lo;
106 #endif
107 
108 	/* hi + lo = r/ln2 + log2(c) + k.  */
109 	t3 = kd + logc;
110 	hi = t3 + t1;
111 	lo = t3 - hi + t1 + t2;
112 
113 	/* log2(r+1) = r/ln2 + r^2*poly(r).  */
114 	/* Evaluation is optimized assuming superscalar pipelined execution.  */
115 	r2 = r * r; /* rounding error: 0x1p-54/N^2.  */
116 	r4 = r2 * r2;
117 	/* Worst-case error if |y| > 0x1p-4: 0.547 ULP (0.550 ULP without fma).
118 	   ~ 0.5 + 2/N/ln2 + abs-poly-error*0x1p56 ULP (+ 0.003 ULP without fma).  */
119 	p = A[0] + r * A[1] + r2 * (A[2] + r * A[3]) + r4 * (A[4] + r * A[5]);
120 	y = lo + r2 * p + hi;
121 	return eval_as_double(y);
122 }
123