1 /*
2  * Single-precision log2 function.
3  *
4  * Copyright (c) 2017-2018, Arm Limited.
5  * SPDX-License-Identifier: MIT
6  */
7 
8 #include <math.h>
9 #include <stdint.h>
10 #include "libm.h"
11 #include "log2f_data.h"
12 
13 /*
14 LOG2F_TABLE_BITS = 4
15 LOG2F_POLY_ORDER = 4
16 
17 ULP error: 0.752 (nearest rounding.)
18 Relative error: 1.9 * 2^-26 (before rounding.)
19 */
20 
21 #define N (1 << LOG2F_TABLE_BITS)
22 #define T __log2f_data.tab
23 #define A __log2f_data.poly
24 #define OFF 0x3f330000
25 
log2f(float x)26 float log2f(float x)
27 {
28 	double_t z, r, r2, p, y, y0, invc, logc;
29 	uint32_t ix, iz, top, tmp;
30 	int k, i;
31 
32 	ix = asuint(x);
33 	/* Fix sign of zero with downward rounding when x==1.  */
34 	if (WANT_ROUNDING && predict_false(ix == 0x3f800000))
35 		return 0;
36 	if (predict_false(ix - 0x00800000 >= 0x7f800000 - 0x00800000)) {
37 		/* x < 0x1p-126 or inf or nan.  */
38 		if (ix * 2 == 0)
39 			return __math_divzerof(1);
40 		if (ix == 0x7f800000) /* log2(inf) == inf.  */
41 			return x;
42 		if ((ix & 0x80000000) || ix * 2 >= 0xff000000)
43 			return __math_invalidf(x);
44 		/* x is subnormal, normalize it.  */
45 		ix = asuint(x * 0x1p23f);
46 		ix -= 23 << 23;
47 	}
48 
49 	/* x = 2^k z; where z is in range [OFF,2*OFF] and exact.
50 	   The range is split into N subintervals.
51 	   The ith subinterval contains z and c is near its center.  */
52 	tmp = ix - OFF;
53 	i = (tmp >> (23 - LOG2F_TABLE_BITS)) % N;
54 	top = tmp & 0xff800000;
55 	iz = ix - top;
56 	k = (int32_t)tmp >> 23; /* arithmetic shift */
57 	invc = T[i].invc;
58 	logc = T[i].logc;
59 	z = (double_t)asfloat(iz);
60 
61 	/* log2(x) = log1p(z/c-1)/ln2 + log2(c) + k */
62 	r = z * invc - 1;
63 	y0 = logc + (double_t)k;
64 
65 	/* Pipelined polynomial evaluation to approximate log1p(r)/ln2.  */
66 	r2 = r * r;
67 	y = A[1] * r + A[2];
68 	y = A[0] * r2 + y;
69 	p = A[3] * r + y0;
70 	y = y * r2 + p;
71 	return eval_as_float(y);
72 }
73