1 /* Hash table implementation.
2  *
3  * This file implements in memory hash tables with insert/del/replace/find/
4  * get-random-element operations. Hash tables will auto resize if needed
5  * tables of power of two in size are used, collisions are handled by
6  * chaining. See the source code for more information... :)
7  *
8  * Copyright (c) 2006-2010, Salvatore Sanfilippo <antirez at gmail dot com>
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without
12  * modification, are permitted provided that the following conditions are met:
13  *
14  *   * Redistributions of source code must retain the above copyright notice,
15  *     this list of conditions and the following disclaimer.
16  *   * Redistributions in binary form must reproduce the above copyright
17  *     notice, this list of conditions and the following disclaimer in the
18  *     documentation and/or other materials provided with the distribution.
19  *   * Neither the name of Redis nor the names of its contributors may be used
20  *     to endorse or promote products derived from this software without
21  *     specific prior written permission.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #include "fmacros.h"
37 #include <stdlib.h>
38 #include <assert.h>
39 #include <limits.h>
40 #include "dict.h"
41 
42 /* -------------------------- private prototypes ---------------------------- */
43 
44 static int _dictExpandIfNeeded(dict *ht);
45 static unsigned long _dictNextPower(unsigned long size);
46 static int _dictKeyIndex(dict *ht, const void *key);
47 static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
48 
49 /* -------------------------- hash functions -------------------------------- */
50 
51 /* Generic hash function (a popular one from Bernstein).
52  * I tested a few and this was the best. */
dictGenHashFunction(const unsigned char * buf,int len)53 static unsigned int dictGenHashFunction(const unsigned char *buf, int len) {
54     unsigned int hash = 5381;
55 
56     while (len--)
57         hash = ((hash << 5) + hash) + (*buf++); /* hash * 33 + c */
58     return hash;
59 }
60 
61 /* ----------------------------- API implementation ------------------------- */
62 
63 /* Reset an hashtable already initialized with ht_init().
64  * NOTE: This function should only called by ht_destroy(). */
_dictReset(dict * ht)65 static void _dictReset(dict *ht) {
66     ht->table = NULL;
67     ht->size = 0;
68     ht->sizemask = 0;
69     ht->used = 0;
70 }
71 
72 /* Create a new hash table */
dictCreate(dictType * type,void * privDataPtr)73 static dict *dictCreate(dictType *type, void *privDataPtr) {
74     dict *ht = malloc(sizeof(*ht));
75     _dictInit(ht,type,privDataPtr);
76     return ht;
77 }
78 
79 /* Initialize the hash table */
_dictInit(dict * ht,dictType * type,void * privDataPtr)80 static int _dictInit(dict *ht, dictType *type, void *privDataPtr) {
81     _dictReset(ht);
82     ht->type = type;
83     ht->privdata = privDataPtr;
84     return DICT_OK;
85 }
86 
87 /* Expand or create the hashtable */
dictExpand(dict * ht,unsigned long size)88 static int dictExpand(dict *ht, unsigned long size) {
89     dict n; /* the new hashtable */
90     unsigned long realsize = _dictNextPower(size), i;
91 
92     /* the size is invalid if it is smaller than the number of
93      * elements already inside the hashtable */
94     if (ht->used > size)
95         return DICT_ERR;
96 
97     _dictInit(&n, ht->type, ht->privdata);
98     n.size = realsize;
99     n.sizemask = realsize-1;
100     n.table = calloc(realsize,sizeof(dictEntry*));
101 
102     /* Copy all the elements from the old to the new table:
103      * note that if the old hash table is empty ht->size is zero,
104      * so dictExpand just creates an hash table. */
105     n.used = ht->used;
106     for (i = 0; i < ht->size && ht->used > 0; i++) {
107         dictEntry *he, *nextHe;
108 
109         if (ht->table[i] == NULL) continue;
110 
111         /* For each hash entry on this slot... */
112         he = ht->table[i];
113         while(he) {
114             unsigned int h;
115 
116             nextHe = he->next;
117             /* Get the new element index */
118             h = dictHashKey(ht, he->key) & n.sizemask;
119             he->next = n.table[h];
120             n.table[h] = he;
121             ht->used--;
122             /* Pass to the next element */
123             he = nextHe;
124         }
125     }
126     assert(ht->used == 0);
127     free(ht->table);
128 
129     /* Remap the new hashtable in the old */
130     *ht = n;
131     return DICT_OK;
132 }
133 
134 /* Add an element to the target hash table */
dictAdd(dict * ht,void * key,void * val)135 static int dictAdd(dict *ht, void *key, void *val) {
136     int index;
137     dictEntry *entry;
138 
139     /* Get the index of the new element, or -1 if
140      * the element already exists. */
141     if ((index = _dictKeyIndex(ht, key)) == -1)
142         return DICT_ERR;
143 
144     /* Allocates the memory and stores key */
145     entry = malloc(sizeof(*entry));
146     entry->next = ht->table[index];
147     ht->table[index] = entry;
148 
149     /* Set the hash entry fields. */
150     dictSetHashKey(ht, entry, key);
151     dictSetHashVal(ht, entry, val);
152     ht->used++;
153     return DICT_OK;
154 }
155 
156 /* Add an element, discarding the old if the key already exists.
157  * Return 1 if the key was added from scratch, 0 if there was already an
158  * element with such key and dictReplace() just performed a value update
159  * operation. */
dictReplace(dict * ht,void * key,void * val)160 static int dictReplace(dict *ht, void *key, void *val) {
161     dictEntry *entry, auxentry;
162 
163     /* Try to add the element. If the key
164      * does not exists dictAdd will succeed. */
165     if (dictAdd(ht, key, val) == DICT_OK)
166         return 1;
167     /* It already exists, get the entry */
168     entry = dictFind(ht, key);
169     /* Free the old value and set the new one */
170     /* Set the new value and free the old one. Note that it is important
171      * to do that in this order, as the value may just be exactly the same
172      * as the previous one. In this context, think to reference counting,
173      * you want to increment (set), and then decrement (free), and not the
174      * reverse. */
175     if (entry) {
176         auxentry = *entry;
177         dictSetHashVal(ht, entry, val);
178         dictFreeEntryVal(ht, &auxentry);
179     }
180     return 0;
181 }
182 
183 /* Search and remove an element */
dictDelete(dict * ht,const void * key)184 static int dictDelete(dict *ht, const void *key) {
185     unsigned int h;
186     dictEntry *de, *prevde;
187 
188     if (ht->size == 0)
189         return DICT_ERR;
190     h = dictHashKey(ht, key) & ht->sizemask;
191     de = ht->table[h];
192 
193     prevde = NULL;
194     while(de) {
195         if (dictCompareHashKeys(ht,key,de->key)) {
196             /* Unlink the element from the list */
197             if (prevde)
198                 prevde->next = de->next;
199             else
200                 ht->table[h] = de->next;
201 
202             dictFreeEntryKey(ht,de);
203             dictFreeEntryVal(ht,de);
204             free(de);
205             ht->used--;
206             return DICT_OK;
207         }
208         prevde = de;
209         de = de->next;
210     }
211     return DICT_ERR; /* not found */
212 }
213 
214 /* Destroy an entire hash table */
_dictClear(dict * ht)215 static int _dictClear(dict *ht) {
216     unsigned long i;
217 
218     /* Free all the elements */
219     for (i = 0; i < ht->size && ht->used > 0; i++) {
220         dictEntry *he, *nextHe;
221 
222         if ((he = ht->table[i]) == NULL) continue;
223         while(he) {
224             nextHe = he->next;
225             dictFreeEntryKey(ht, he);
226             dictFreeEntryVal(ht, he);
227             free(he);
228             ht->used--;
229             he = nextHe;
230         }
231     }
232     /* Free the table and the allocated cache structure */
233     free(ht->table);
234     /* Re-initialize the table */
235     _dictReset(ht);
236     return DICT_OK; /* never fails */
237 }
238 
239 /* Clear & Release the hash table */
dictRelease(dict * ht)240 static void dictRelease(dict *ht) {
241     _dictClear(ht);
242     free(ht);
243 }
244 
dictFind(dict * ht,const void * key)245 static dictEntry *dictFind(dict *ht, const void *key) {
246     dictEntry *he;
247     unsigned int h;
248 
249     if (ht->size == 0) return NULL;
250     h = dictHashKey(ht, key) & ht->sizemask;
251     he = ht->table[h];
252     while(he) {
253         if (dictCompareHashKeys(ht, key, he->key))
254             return he;
255         he = he->next;
256     }
257     return NULL;
258 }
259 
dictGetIterator(dict * ht)260 static dictIterator *dictGetIterator(dict *ht) {
261     dictIterator *iter = malloc(sizeof(*iter));
262 
263     iter->ht = ht;
264     iter->index = -1;
265     iter->entry = NULL;
266     iter->nextEntry = NULL;
267     return iter;
268 }
269 
dictNext(dictIterator * iter)270 static dictEntry *dictNext(dictIterator *iter) {
271     while (1) {
272         if (iter->entry == NULL) {
273             iter->index++;
274             if (iter->index >=
275                     (signed)iter->ht->size) break;
276             iter->entry = iter->ht->table[iter->index];
277         } else {
278             iter->entry = iter->nextEntry;
279         }
280         if (iter->entry) {
281             /* We need to save the 'next' here, the iterator user
282              * may delete the entry we are returning. */
283             iter->nextEntry = iter->entry->next;
284             return iter->entry;
285         }
286     }
287     return NULL;
288 }
289 
dictReleaseIterator(dictIterator * iter)290 static void dictReleaseIterator(dictIterator *iter) {
291     free(iter);
292 }
293 
294 /* ------------------------- private functions ------------------------------ */
295 
296 /* Expand the hash table if needed */
_dictExpandIfNeeded(dict * ht)297 static int _dictExpandIfNeeded(dict *ht) {
298     /* If the hash table is empty expand it to the initial size,
299      * if the table is "full" dobule its size. */
300     if (ht->size == 0)
301         return dictExpand(ht, DICT_HT_INITIAL_SIZE);
302     if (ht->used == ht->size)
303         return dictExpand(ht, ht->size*2);
304     return DICT_OK;
305 }
306 
307 /* Our hash table capability is a power of two */
_dictNextPower(unsigned long size)308 static unsigned long _dictNextPower(unsigned long size) {
309     unsigned long i = DICT_HT_INITIAL_SIZE;
310 
311     if (size >= LONG_MAX) return LONG_MAX;
312     while(1) {
313         if (i >= size)
314             return i;
315         i *= 2;
316     }
317 }
318 
319 /* Returns the index of a free slot that can be populated with
320  * an hash entry for the given 'key'.
321  * If the key already exists, -1 is returned. */
_dictKeyIndex(dict * ht,const void * key)322 static int _dictKeyIndex(dict *ht, const void *key) {
323     unsigned int h;
324     dictEntry *he;
325 
326     /* Expand the hashtable if needed */
327     if (_dictExpandIfNeeded(ht) == DICT_ERR)
328         return -1;
329     /* Compute the key hash value */
330     h = dictHashKey(ht, key) & ht->sizemask;
331     /* Search if this slot does not already contain the given key */
332     he = ht->table[h];
333     while(he) {
334         if (dictCompareHashKeys(ht, key, he->key))
335             return -1;
336         he = he->next;
337     }
338     return h;
339 }
340 
341