1 // © 2016 and later: Unicode, Inc. and others.
2 // License & terms of use: http://www.unicode.org/copyright.html
3 /*
4 *******************************************************************************
5 *
6 *   Copyright (C) 2009-2014, International Business Machines
7 *   Corporation and others.  All Rights Reserved.
8 *
9 *******************************************************************************
10 *   file name:  normalizer2impl.h
11 *   encoding:   UTF-8
12 *   tab size:   8 (not used)
13 *   indentation:4
14 *
15 *   created on: 2009nov22
16 *   created by: Markus W. Scherer
17 */
18 
19 #ifndef __NORMALIZER2IMPL_H__
20 #define __NORMALIZER2IMPL_H__
21 
22 #include "unicode/utypes.h"
23 
24 #if !UCONFIG_NO_NORMALIZATION
25 
26 #include "unicode/normalizer2.h"
27 #include "unicode/ucptrie.h"
28 #include "unicode/unistr.h"
29 #include "unicode/unorm.h"
30 #include "unicode/utf.h"
31 #include "unicode/utf16.h"
32 #include "mutex.h"
33 #include "udataswp.h"
34 #include "uset_imp.h"
35 
36 // When the nfc.nrm data is *not* hardcoded into the common library
37 // (with this constant set to 0),
38 // then it needs to be built into the data package:
39 // Add nfc.nrm to icu4c/source/data/Makefile.in DAT_FILES_SHORT
40 #define NORM2_HARDCODE_NFC_DATA 1
41 
42 U_NAMESPACE_BEGIN
43 
44 struct CanonIterData;
45 
46 class ByteSink;
47 class Edits;
48 class InitCanonIterData;
49 class LcccContext;
50 
51 class U_COMMON_API Hangul {
52 public:
53     /* Korean Hangul and Jamo constants */
54     enum {
55         JAMO_L_BASE=0x1100,     /* "lead" jamo */
56         JAMO_L_END=0x1112,
57         JAMO_V_BASE=0x1161,     /* "vowel" jamo */
58         JAMO_V_END=0x1175,
59         JAMO_T_BASE=0x11a7,     /* "trail" jamo */
60         JAMO_T_END=0x11c2,
61 
62         HANGUL_BASE=0xac00,
63         HANGUL_END=0xd7a3,
64 
65         JAMO_L_COUNT=19,
66         JAMO_V_COUNT=21,
67         JAMO_T_COUNT=28,
68 
69         JAMO_VT_COUNT=JAMO_V_COUNT*JAMO_T_COUNT,
70 
71         HANGUL_COUNT=JAMO_L_COUNT*JAMO_V_COUNT*JAMO_T_COUNT,
72         HANGUL_LIMIT=HANGUL_BASE+HANGUL_COUNT
73     };
74 
isHangul(UChar32 c)75     static inline UBool isHangul(UChar32 c) {
76         return HANGUL_BASE<=c && c<HANGUL_LIMIT;
77     }
78     static inline UBool
isHangulLV(UChar32 c)79     isHangulLV(UChar32 c) {
80         c-=HANGUL_BASE;
81         return 0<=c && c<HANGUL_COUNT && c%JAMO_T_COUNT==0;
82     }
isJamoL(UChar32 c)83     static inline UBool isJamoL(UChar32 c) {
84         return (uint32_t)(c-JAMO_L_BASE)<JAMO_L_COUNT;
85     }
isJamoV(UChar32 c)86     static inline UBool isJamoV(UChar32 c) {
87         return (uint32_t)(c-JAMO_V_BASE)<JAMO_V_COUNT;
88     }
isJamoT(UChar32 c)89     static inline UBool isJamoT(UChar32 c) {
90         int32_t t=c-JAMO_T_BASE;
91         return 0<t && t<JAMO_T_COUNT;  // not JAMO_T_BASE itself
92     }
isJamo(UChar32 c)93     static UBool isJamo(UChar32 c) {
94         return JAMO_L_BASE<=c && c<=JAMO_T_END &&
95             (c<=JAMO_L_END || (JAMO_V_BASE<=c && c<=JAMO_V_END) || JAMO_T_BASE<c);
96     }
97 
98     /**
99      * Decomposes c, which must be a Hangul syllable, into buffer
100      * and returns the length of the decomposition (2 or 3).
101      */
decompose(UChar32 c,UChar buffer[3])102     static inline int32_t decompose(UChar32 c, UChar buffer[3]) {
103         c-=HANGUL_BASE;
104         UChar32 c2=c%JAMO_T_COUNT;
105         c/=JAMO_T_COUNT;
106         buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
107         buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
108         if(c2==0) {
109             return 2;
110         } else {
111             buffer[2]=(UChar)(JAMO_T_BASE+c2);
112             return 3;
113         }
114     }
115 
116     /**
117      * Decomposes c, which must be a Hangul syllable, into buffer.
118      * This is the raw, not recursive, decomposition. Its length is always 2.
119      */
getRawDecomposition(UChar32 c,UChar buffer[2])120     static inline void getRawDecomposition(UChar32 c, UChar buffer[2]) {
121         UChar32 orig=c;
122         c-=HANGUL_BASE;
123         UChar32 c2=c%JAMO_T_COUNT;
124         if(c2==0) {
125             c/=JAMO_T_COUNT;
126             buffer[0]=(UChar)(JAMO_L_BASE+c/JAMO_V_COUNT);
127             buffer[1]=(UChar)(JAMO_V_BASE+c%JAMO_V_COUNT);
128         } else {
129             buffer[0]=(UChar)(orig-c2);  // LV syllable
130             buffer[1]=(UChar)(JAMO_T_BASE+c2);
131         }
132     }
133 private:
134     Hangul();  // no instantiation
135 };
136 
137 class Normalizer2Impl;
138 
139 class U_COMMON_API ReorderingBuffer : public UMemory {
140 public:
141     /** Constructs only; init() should be called. */
ReorderingBuffer(const Normalizer2Impl & ni,UnicodeString & dest)142     ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest) :
143         impl(ni), str(dest),
144         start(NULL), reorderStart(NULL), limit(NULL),
145         remainingCapacity(0), lastCC(0) {}
146     /** Constructs, removes the string contents, and initializes for a small initial capacity. */
147     ReorderingBuffer(const Normalizer2Impl &ni, UnicodeString &dest, UErrorCode &errorCode);
~ReorderingBuffer()148     ~ReorderingBuffer() {
149         if(start!=NULL) {
150             str.releaseBuffer((int32_t)(limit-start));
151         }
152     }
153     UBool init(int32_t destCapacity, UErrorCode &errorCode);
154 
isEmpty()155     UBool isEmpty() const { return start==limit; }
length()156     int32_t length() const { return (int32_t)(limit-start); }
getStart()157     UChar *getStart() { return start; }
getLimit()158     UChar *getLimit() { return limit; }
getLastCC()159     uint8_t getLastCC() const { return lastCC; }
160 
161     UBool equals(const UChar *start, const UChar *limit) const;
162     UBool equals(const uint8_t *otherStart, const uint8_t *otherLimit) const;
163 
append(UChar32 c,uint8_t cc,UErrorCode & errorCode)164     UBool append(UChar32 c, uint8_t cc, UErrorCode &errorCode) {
165         return (c<=0xffff) ?
166             appendBMP((UChar)c, cc, errorCode) :
167             appendSupplementary(c, cc, errorCode);
168     }
169     UBool append(const UChar *s, int32_t length, UBool isNFD,
170                  uint8_t leadCC, uint8_t trailCC,
171                  UErrorCode &errorCode);
appendBMP(UChar c,uint8_t cc,UErrorCode & errorCode)172     UBool appendBMP(UChar c, uint8_t cc, UErrorCode &errorCode) {
173         if(remainingCapacity==0 && !resize(1, errorCode)) {
174             return false;
175         }
176         if(lastCC<=cc || cc==0) {
177             *limit++=c;
178             lastCC=cc;
179             if(cc<=1) {
180                 reorderStart=limit;
181             }
182         } else {
183             insert(c, cc);
184         }
185         --remainingCapacity;
186         return true;
187     }
188     UBool appendZeroCC(UChar32 c, UErrorCode &errorCode);
189     UBool appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode);
190     void remove();
191     void removeSuffix(int32_t suffixLength);
setReorderingLimit(UChar * newLimit)192     void setReorderingLimit(UChar *newLimit) {
193         remainingCapacity+=(int32_t)(limit-newLimit);
194         reorderStart=limit=newLimit;
195         lastCC=0;
196     }
copyReorderableSuffixTo(UnicodeString & s)197     void copyReorderableSuffixTo(UnicodeString &s) const {
198         s.setTo(ConstChar16Ptr(reorderStart), (int32_t)(limit-reorderStart));
199     }
200 private:
201     /*
202      * TODO: Revisit whether it makes sense to track reorderStart.
203      * It is set to after the last known character with cc<=1,
204      * which stops previousCC() before it reads that character and looks up its cc.
205      * previousCC() is normally only called from insert().
206      * In other words, reorderStart speeds up the insertion of a combining mark
207      * into a multi-combining mark sequence where it does not belong at the end.
208      * This might not be worth the trouble.
209      * On the other hand, it's not a huge amount of trouble.
210      *
211      * We probably need it for UNORM_SIMPLE_APPEND.
212      */
213 
214     UBool appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode);
215     void insert(UChar32 c, uint8_t cc);
writeCodePoint(UChar * p,UChar32 c)216     static void writeCodePoint(UChar *p, UChar32 c) {
217         if(c<=0xffff) {
218             *p=(UChar)c;
219         } else {
220             p[0]=U16_LEAD(c);
221             p[1]=U16_TRAIL(c);
222         }
223     }
224     UBool resize(int32_t appendLength, UErrorCode &errorCode);
225 
226     const Normalizer2Impl &impl;
227     UnicodeString &str;
228     UChar *start, *reorderStart, *limit;
229     int32_t remainingCapacity;
230     uint8_t lastCC;
231 
232     // private backward iterator
setIterator()233     void setIterator() { codePointStart=limit; }
234     void skipPrevious();  // Requires start<codePointStart.
235     uint8_t previousCC();  // Returns 0 if there is no previous character.
236 
237     UChar *codePointStart, *codePointLimit;
238 };
239 
240 /**
241  * Low-level implementation of the Unicode Normalization Algorithm.
242  * For the data structure and details see the documentation at the end of
243  * this normalizer2impl.h and in the design doc at
244  * http://site.icu-project.org/design/normalization/custom
245  */
246 class U_COMMON_API Normalizer2Impl : public UObject {
247 public:
Normalizer2Impl()248     Normalizer2Impl() : normTrie(NULL), fCanonIterData(NULL) { }
249     virtual ~Normalizer2Impl();
250 
251     void init(const int32_t *inIndexes, const UCPTrie *inTrie,
252               const uint16_t *inExtraData, const uint8_t *inSmallFCD);
253 
254     void addLcccChars(UnicodeSet &set) const;
255     void addPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;
256     void addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const;
257 
258     // low-level properties ------------------------------------------------ ***
259 
260     UBool ensureCanonIterData(UErrorCode &errorCode) const;
261 
262     // The trie stores values for lead surrogate code *units*.
263     // Surrogate code *points* are inert.
getNorm16(UChar32 c)264     uint16_t getNorm16(UChar32 c) const {
265         return U_IS_LEAD(c) ?
266             static_cast<uint16_t>(INERT) :
267             UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c);
268     }
getRawNorm16(UChar32 c)269     uint16_t getRawNorm16(UChar32 c) const { return UCPTRIE_FAST_GET(normTrie, UCPTRIE_16, c); }
270 
getCompQuickCheck(uint16_t norm16)271     UNormalizationCheckResult getCompQuickCheck(uint16_t norm16) const {
272         if(norm16<minNoNo || MIN_YES_YES_WITH_CC<=norm16) {
273             return UNORM_YES;
274         } else if(minMaybeYes<=norm16) {
275             return UNORM_MAYBE;
276         } else {
277             return UNORM_NO;
278         }
279     }
isAlgorithmicNoNo(uint16_t norm16)280     UBool isAlgorithmicNoNo(uint16_t norm16) const { return limitNoNo<=norm16 && norm16<minMaybeYes; }
isCompNo(uint16_t norm16)281     UBool isCompNo(uint16_t norm16) const { return minNoNo<=norm16 && norm16<minMaybeYes; }
isDecompYes(uint16_t norm16)282     UBool isDecompYes(uint16_t norm16) const { return norm16<minYesNo || minMaybeYes<=norm16; }
283 
getCC(uint16_t norm16)284     uint8_t getCC(uint16_t norm16) const {
285         if(norm16>=MIN_NORMAL_MAYBE_YES) {
286             return getCCFromNormalYesOrMaybe(norm16);
287         }
288         if(norm16<minNoNo || limitNoNo<=norm16) {
289             return 0;
290         }
291         return getCCFromNoNo(norm16);
292     }
getCCFromNormalYesOrMaybe(uint16_t norm16)293     static uint8_t getCCFromNormalYesOrMaybe(uint16_t norm16) {
294         return (uint8_t)(norm16 >> OFFSET_SHIFT);
295     }
getCCFromYesOrMaybe(uint16_t norm16)296     static uint8_t getCCFromYesOrMaybe(uint16_t norm16) {
297         return norm16>=MIN_NORMAL_MAYBE_YES ? getCCFromNormalYesOrMaybe(norm16) : 0;
298     }
getCCFromYesOrMaybeCP(UChar32 c)299     uint8_t getCCFromYesOrMaybeCP(UChar32 c) const {
300         if (c < minCompNoMaybeCP) { return 0; }
301         return getCCFromYesOrMaybe(getNorm16(c));
302     }
303 
304     /**
305      * Returns the FCD data for code point c.
306      * @param c A Unicode code point.
307      * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
308      */
getFCD16(UChar32 c)309     uint16_t getFCD16(UChar32 c) const {
310         if(c<minDecompNoCP) {
311             return 0;
312         } else if(c<=0xffff) {
313             if(!singleLeadMightHaveNonZeroFCD16(c)) { return 0; }
314         }
315         return getFCD16FromNormData(c);
316     }
317     /**
318      * Returns the FCD data for the next code point (post-increment).
319      * Might skip only a lead surrogate rather than the whole surrogate pair if none of
320      * the supplementary code points associated with the lead surrogate have non-zero FCD data.
321      * @param s A valid pointer into a string. Requires s!=limit.
322      * @param limit The end of the string, or NULL.
323      * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
324      */
nextFCD16(const UChar * & s,const UChar * limit)325     uint16_t nextFCD16(const UChar *&s, const UChar *limit) const {
326         UChar32 c=*s++;
327         if(c<minDecompNoCP || !singleLeadMightHaveNonZeroFCD16(c)) {
328             return 0;
329         }
330         UChar c2;
331         if(U16_IS_LEAD(c) && s!=limit && U16_IS_TRAIL(c2=*s)) {
332             c=U16_GET_SUPPLEMENTARY(c, c2);
333             ++s;
334         }
335         return getFCD16FromNormData(c);
336     }
337     /**
338      * Returns the FCD data for the previous code point (pre-decrement).
339      * @param start The start of the string.
340      * @param s A valid pointer into a string. Requires start<s.
341      * @return The lccc(c) in bits 15..8 and tccc(c) in bits 7..0.
342      */
previousFCD16(const UChar * start,const UChar * & s)343     uint16_t previousFCD16(const UChar *start, const UChar *&s) const {
344         UChar32 c=*--s;
345         if(c<minDecompNoCP) {
346             return 0;
347         }
348         if(!U16_IS_TRAIL(c)) {
349             if(!singleLeadMightHaveNonZeroFCD16(c)) {
350                 return 0;
351             }
352         } else {
353             UChar c2;
354             if(start<s && U16_IS_LEAD(c2=*(s-1))) {
355                 c=U16_GET_SUPPLEMENTARY(c2, c);
356                 --s;
357             }
358         }
359         return getFCD16FromNormData(c);
360     }
361 
362     /** Returns true if the single-or-lead code unit c might have non-zero FCD data. */
singleLeadMightHaveNonZeroFCD16(UChar32 lead)363     UBool singleLeadMightHaveNonZeroFCD16(UChar32 lead) const {
364         // 0<=lead<=0xffff
365         uint8_t bits=smallFCD[lead>>8];
366         if(bits==0) { return false; }
367         return (UBool)((bits>>((lead>>5)&7))&1);
368     }
369     /** Returns the FCD value from the regular normalization data. */
370     uint16_t getFCD16FromNormData(UChar32 c) const;
371 
372     /**
373      * Gets the decomposition for one code point.
374      * @param c code point
375      * @param buffer out-only buffer for algorithmic decompositions
376      * @param length out-only, takes the length of the decomposition, if any
377      * @return pointer to the decomposition, or NULL if none
378      */
379     const UChar *getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const;
380 
381     /**
382      * Gets the raw decomposition for one code point.
383      * @param c code point
384      * @param buffer out-only buffer for algorithmic decompositions
385      * @param length out-only, takes the length of the decomposition, if any
386      * @return pointer to the decomposition, or NULL if none
387      */
388     const UChar *getRawDecomposition(UChar32 c, UChar buffer[30], int32_t &length) const;
389 
390     UChar32 composePair(UChar32 a, UChar32 b) const;
391 
392     UBool isCanonSegmentStarter(UChar32 c) const;
393     UBool getCanonStartSet(UChar32 c, UnicodeSet &set) const;
394 
395     enum {
396         // Fixed norm16 values.
397         MIN_YES_YES_WITH_CC=0xfe02,
398         JAMO_VT=0xfe00,
399         MIN_NORMAL_MAYBE_YES=0xfc00,
400         JAMO_L=2,  // offset=1 hasCompBoundaryAfter=false
401         INERT=1,  // offset=0 hasCompBoundaryAfter=true
402 
403         // norm16 bit 0 is comp-boundary-after.
404         HAS_COMP_BOUNDARY_AFTER=1,
405         OFFSET_SHIFT=1,
406 
407         // For algorithmic one-way mappings, norm16 bits 2..1 indicate the
408         // tccc (0, 1, >1) for quick FCC boundary-after tests.
409         DELTA_TCCC_0=0,
410         DELTA_TCCC_1=2,
411         DELTA_TCCC_GT_1=4,
412         DELTA_TCCC_MASK=6,
413         DELTA_SHIFT=3,
414 
415         MAX_DELTA=0x40
416     };
417 
418     enum {
419         // Byte offsets from the start of the data, after the generic header.
420         IX_NORM_TRIE_OFFSET,
421         IX_EXTRA_DATA_OFFSET,
422         IX_SMALL_FCD_OFFSET,
423         IX_RESERVED3_OFFSET,
424         IX_RESERVED4_OFFSET,
425         IX_RESERVED5_OFFSET,
426         IX_RESERVED6_OFFSET,
427         IX_TOTAL_SIZE,
428 
429         // Code point thresholds for quick check codes.
430         IX_MIN_DECOMP_NO_CP,
431         IX_MIN_COMP_NO_MAYBE_CP,
432 
433         // Norm16 value thresholds for quick check combinations and types of extra data.
434 
435         /** Mappings & compositions in [minYesNo..minYesNoMappingsOnly[. */
436         IX_MIN_YES_NO,
437         /** Mappings are comp-normalized. */
438         IX_MIN_NO_NO,
439         IX_LIMIT_NO_NO,
440         IX_MIN_MAYBE_YES,
441 
442         /** Mappings only in [minYesNoMappingsOnly..minNoNo[. */
443         IX_MIN_YES_NO_MAPPINGS_ONLY,
444         /** Mappings are not comp-normalized but have a comp boundary before. */
445         IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE,
446         /** Mappings do not have a comp boundary before. */
447         IX_MIN_NO_NO_COMP_NO_MAYBE_CC,
448         /** Mappings to the empty string. */
449         IX_MIN_NO_NO_EMPTY,
450 
451         IX_MIN_LCCC_CP,
452         IX_RESERVED19,
453         IX_COUNT
454     };
455 
456     enum {
457         MAPPING_HAS_CCC_LCCC_WORD=0x80,
458         MAPPING_HAS_RAW_MAPPING=0x40,
459         // unused bit 0x20,
460         MAPPING_LENGTH_MASK=0x1f
461     };
462 
463     enum {
464         COMP_1_LAST_TUPLE=0x8000,
465         COMP_1_TRIPLE=1,
466         COMP_1_TRAIL_LIMIT=0x3400,
467         COMP_1_TRAIL_MASK=0x7ffe,
468         COMP_1_TRAIL_SHIFT=9,  // 10-1 for the "triple" bit
469         COMP_2_TRAIL_SHIFT=6,
470         COMP_2_TRAIL_MASK=0xffc0
471     };
472 
473     // higher-level functionality ------------------------------------------ ***
474 
475     // NFD without an NFD Normalizer2 instance.
476     UnicodeString &decompose(const UnicodeString &src, UnicodeString &dest,
477                              UErrorCode &errorCode) const;
478     /**
479      * Decomposes [src, limit[ and writes the result to dest.
480      * limit can be NULL if src is NUL-terminated.
481      * destLengthEstimate is the initial dest buffer capacity and can be -1.
482      */
483     void decompose(const UChar *src, const UChar *limit,
484                    UnicodeString &dest, int32_t destLengthEstimate,
485                    UErrorCode &errorCode) const;
486 
487     const UChar *decompose(const UChar *src, const UChar *limit,
488                            ReorderingBuffer *buffer, UErrorCode &errorCode) const;
489     void decomposeAndAppend(const UChar *src, const UChar *limit,
490                             UBool doDecompose,
491                             UnicodeString &safeMiddle,
492                             ReorderingBuffer &buffer,
493                             UErrorCode &errorCode) const;
494 
495     /** sink==nullptr: isNormalized()/spanQuickCheckYes() */
496     const uint8_t *decomposeUTF8(uint32_t options,
497                                  const uint8_t *src, const uint8_t *limit,
498                                  ByteSink *sink, Edits *edits, UErrorCode &errorCode) const;
499 
500     UBool compose(const UChar *src, const UChar *limit,
501                   UBool onlyContiguous,
502                   UBool doCompose,
503                   ReorderingBuffer &buffer,
504                   UErrorCode &errorCode) const;
505     const UChar *composeQuickCheck(const UChar *src, const UChar *limit,
506                                    UBool onlyContiguous,
507                                    UNormalizationCheckResult *pQCResult) const;
508     void composeAndAppend(const UChar *src, const UChar *limit,
509                           UBool doCompose,
510                           UBool onlyContiguous,
511                           UnicodeString &safeMiddle,
512                           ReorderingBuffer &buffer,
513                           UErrorCode &errorCode) const;
514 
515     /** sink==nullptr: isNormalized() */
516     UBool composeUTF8(uint32_t options, UBool onlyContiguous,
517                       const uint8_t *src, const uint8_t *limit,
518                       ByteSink *sink, icu::Edits *edits, UErrorCode &errorCode) const;
519 
520     const UChar *makeFCD(const UChar *src, const UChar *limit,
521                          ReorderingBuffer *buffer, UErrorCode &errorCode) const;
522     void makeFCDAndAppend(const UChar *src, const UChar *limit,
523                           UBool doMakeFCD,
524                           UnicodeString &safeMiddle,
525                           ReorderingBuffer &buffer,
526                           UErrorCode &errorCode) const;
527 
528     UBool hasDecompBoundaryBefore(UChar32 c) const;
529     UBool norm16HasDecompBoundaryBefore(uint16_t norm16) const;
530     UBool hasDecompBoundaryAfter(UChar32 c) const;
531     UBool norm16HasDecompBoundaryAfter(uint16_t norm16) const;
isDecompInert(UChar32 c)532     UBool isDecompInert(UChar32 c) const { return isDecompYesAndZeroCC(getNorm16(c)); }
533 
hasCompBoundaryBefore(UChar32 c)534     UBool hasCompBoundaryBefore(UChar32 c) const {
535         return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(getNorm16(c));
536     }
hasCompBoundaryAfter(UChar32 c,UBool onlyContiguous)537     UBool hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous) const {
538         return norm16HasCompBoundaryAfter(getNorm16(c), onlyContiguous);
539     }
isCompInert(UChar32 c,UBool onlyContiguous)540     UBool isCompInert(UChar32 c, UBool onlyContiguous) const {
541         uint16_t norm16=getNorm16(c);
542         return isCompYesAndZeroCC(norm16) &&
543             (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
544             (!onlyContiguous || isInert(norm16) || *getMapping(norm16) <= 0x1ff);
545     }
546 
hasFCDBoundaryBefore(UChar32 c)547     UBool hasFCDBoundaryBefore(UChar32 c) const { return hasDecompBoundaryBefore(c); }
hasFCDBoundaryAfter(UChar32 c)548     UBool hasFCDBoundaryAfter(UChar32 c) const { return hasDecompBoundaryAfter(c); }
isFCDInert(UChar32 c)549     UBool isFCDInert(UChar32 c) const { return getFCD16(c)<=1; }
550 private:
551     friend class InitCanonIterData;
552     friend class LcccContext;
553 
isMaybe(uint16_t norm16)554     UBool isMaybe(uint16_t norm16) const { return minMaybeYes<=norm16 && norm16<=JAMO_VT; }
isMaybeOrNonZeroCC(uint16_t norm16)555     UBool isMaybeOrNonZeroCC(uint16_t norm16) const { return norm16>=minMaybeYes; }
isInert(uint16_t norm16)556     static UBool isInert(uint16_t norm16) { return norm16==INERT; }
isJamoL(uint16_t norm16)557     static UBool isJamoL(uint16_t norm16) { return norm16==JAMO_L; }
isJamoVT(uint16_t norm16)558     static UBool isJamoVT(uint16_t norm16) { return norm16==JAMO_VT; }
hangulLVT()559     uint16_t hangulLVT() const { return minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER; }
isHangulLV(uint16_t norm16)560     UBool isHangulLV(uint16_t norm16) const { return norm16==minYesNo; }
isHangulLVT(uint16_t norm16)561     UBool isHangulLVT(uint16_t norm16) const {
562         return norm16==hangulLVT();
563     }
isCompYesAndZeroCC(uint16_t norm16)564     UBool isCompYesAndZeroCC(uint16_t norm16) const { return norm16<minNoNo; }
565     // UBool isCompYes(uint16_t norm16) const {
566     //     return norm16>=MIN_YES_YES_WITH_CC || norm16<minNoNo;
567     // }
568     // UBool isCompYesOrMaybe(uint16_t norm16) const {
569     //     return norm16<minNoNo || minMaybeYes<=norm16;
570     // }
571     // UBool hasZeroCCFromDecompYes(uint16_t norm16) const {
572     //     return norm16<=MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
573     // }
isDecompYesAndZeroCC(uint16_t norm16)574     UBool isDecompYesAndZeroCC(uint16_t norm16) const {
575         return norm16<minYesNo ||
576                norm16==JAMO_VT ||
577                (minMaybeYes<=norm16 && norm16<=MIN_NORMAL_MAYBE_YES);
578     }
579     /**
580      * A little faster and simpler than isDecompYesAndZeroCC() but does not include
581      * the MaybeYes which combine-forward and have ccc=0.
582      * (Standard Unicode 10 normalization does not have such characters.)
583      */
isMostDecompYesAndZeroCC(uint16_t norm16)584     UBool isMostDecompYesAndZeroCC(uint16_t norm16) const {
585         return norm16<minYesNo || norm16==MIN_NORMAL_MAYBE_YES || norm16==JAMO_VT;
586     }
isDecompNoAlgorithmic(uint16_t norm16)587     UBool isDecompNoAlgorithmic(uint16_t norm16) const { return norm16>=limitNoNo; }
588 
589     // For use with isCompYes().
590     // Perhaps the compiler can combine the two tests for MIN_YES_YES_WITH_CC.
591     // static uint8_t getCCFromYes(uint16_t norm16) {
592     //     return norm16>=MIN_YES_YES_WITH_CC ? getCCFromNormalYesOrMaybe(norm16) : 0;
593     // }
getCCFromNoNo(uint16_t norm16)594     uint8_t getCCFromNoNo(uint16_t norm16) const {
595         const uint16_t *mapping=getMapping(norm16);
596         if(*mapping&MAPPING_HAS_CCC_LCCC_WORD) {
597             return (uint8_t)*(mapping-1);
598         } else {
599             return 0;
600         }
601     }
602     // requires that the [cpStart..cpLimit[ character passes isCompYesAndZeroCC()
getTrailCCFromCompYesAndZeroCC(uint16_t norm16)603     uint8_t getTrailCCFromCompYesAndZeroCC(uint16_t norm16) const {
604         if(norm16<=minYesNo) {
605             return 0;  // yesYes and Hangul LV have ccc=tccc=0
606         } else {
607             // For Hangul LVT we harmlessly fetch a firstUnit with tccc=0 here.
608             return (uint8_t)(*getMapping(norm16)>>8);  // tccc from yesNo
609         }
610     }
611     uint8_t getPreviousTrailCC(const UChar *start, const UChar *p) const;
612     uint8_t getPreviousTrailCC(const uint8_t *start, const uint8_t *p) const;
613 
614     // Requires algorithmic-NoNo.
mapAlgorithmic(UChar32 c,uint16_t norm16)615     UChar32 mapAlgorithmic(UChar32 c, uint16_t norm16) const {
616         return c+(norm16>>DELTA_SHIFT)-centerNoNoDelta;
617     }
getAlgorithmicDelta(uint16_t norm16)618     UChar32 getAlgorithmicDelta(uint16_t norm16) const {
619         return (norm16>>DELTA_SHIFT)-centerNoNoDelta;
620     }
621 
622     // Requires minYesNo<norm16<limitNoNo.
getMapping(uint16_t norm16)623     const uint16_t *getMapping(uint16_t norm16) const { return extraData+(norm16>>OFFSET_SHIFT); }
getCompositionsListForDecompYes(uint16_t norm16)624     const uint16_t *getCompositionsListForDecompYes(uint16_t norm16) const {
625         if(norm16<JAMO_L || MIN_NORMAL_MAYBE_YES<=norm16) {
626             return NULL;
627         } else if(norm16<minMaybeYes) {
628             return getMapping(norm16);  // for yesYes; if Jamo L: harmless empty list
629         } else {
630             return maybeYesCompositions+norm16-minMaybeYes;
631         }
632     }
getCompositionsListForComposite(uint16_t norm16)633     const uint16_t *getCompositionsListForComposite(uint16_t norm16) const {
634         // A composite has both mapping & compositions list.
635         const uint16_t *list=getMapping(norm16);
636         return list+  // mapping pointer
637             1+  // +1 to skip the first unit with the mapping length
638             (*list&MAPPING_LENGTH_MASK);  // + mapping length
639     }
getCompositionsListForMaybe(uint16_t norm16)640     const uint16_t *getCompositionsListForMaybe(uint16_t norm16) const {
641         // minMaybeYes<=norm16<MIN_NORMAL_MAYBE_YES
642         return maybeYesCompositions+((norm16-minMaybeYes)>>OFFSET_SHIFT);
643     }
644     /**
645      * @param c code point must have compositions
646      * @return compositions list pointer
647      */
getCompositionsList(uint16_t norm16)648     const uint16_t *getCompositionsList(uint16_t norm16) const {
649         return isDecompYes(norm16) ?
650                 getCompositionsListForDecompYes(norm16) :
651                 getCompositionsListForComposite(norm16);
652     }
653 
654     const UChar *copyLowPrefixFromNulTerminated(const UChar *src,
655                                                 UChar32 minNeedDataCP,
656                                                 ReorderingBuffer *buffer,
657                                                 UErrorCode &errorCode) const;
658 
659     enum StopAt { STOP_AT_LIMIT, STOP_AT_DECOMP_BOUNDARY, STOP_AT_COMP_BOUNDARY };
660 
661     const UChar *decomposeShort(const UChar *src, const UChar *limit,
662                                 UBool stopAtCompBoundary, UBool onlyContiguous,
663                                 ReorderingBuffer &buffer, UErrorCode &errorCode) const;
664     UBool decompose(UChar32 c, uint16_t norm16,
665                     ReorderingBuffer &buffer, UErrorCode &errorCode) const;
666 
667     const uint8_t *decomposeShort(const uint8_t *src, const uint8_t *limit,
668                                   StopAt stopAt, UBool onlyContiguous,
669                                   ReorderingBuffer &buffer, UErrorCode &errorCode) const;
670 
671     static int32_t combine(const uint16_t *list, UChar32 trail);
672     void addComposites(const uint16_t *list, UnicodeSet &set) const;
673     void recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex,
674                    UBool onlyContiguous) const;
675 
hasCompBoundaryBefore(UChar32 c,uint16_t norm16)676     UBool hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const {
677         return c<minCompNoMaybeCP || norm16HasCompBoundaryBefore(norm16);
678     }
norm16HasCompBoundaryBefore(uint16_t norm16)679     UBool norm16HasCompBoundaryBefore(uint16_t norm16) const  {
680         return norm16 < minNoNoCompNoMaybeCC || isAlgorithmicNoNo(norm16);
681     }
682     UBool hasCompBoundaryBefore(const UChar *src, const UChar *limit) const;
683     UBool hasCompBoundaryBefore(const uint8_t *src, const uint8_t *limit) const;
684     UBool hasCompBoundaryAfter(const UChar *start, const UChar *p,
685                                UBool onlyContiguous) const;
686     UBool hasCompBoundaryAfter(const uint8_t *start, const uint8_t *p,
687                                UBool onlyContiguous) const;
norm16HasCompBoundaryAfter(uint16_t norm16,UBool onlyContiguous)688     UBool norm16HasCompBoundaryAfter(uint16_t norm16, UBool onlyContiguous) const {
689         return (norm16 & HAS_COMP_BOUNDARY_AFTER) != 0 &&
690             (!onlyContiguous || isTrailCC01ForCompBoundaryAfter(norm16));
691     }
692     /** For FCC: Given norm16 HAS_COMP_BOUNDARY_AFTER, does it have tccc<=1? */
isTrailCC01ForCompBoundaryAfter(uint16_t norm16)693     UBool isTrailCC01ForCompBoundaryAfter(uint16_t norm16) const {
694         return isInert(norm16) || (isDecompNoAlgorithmic(norm16) ?
695             (norm16 & DELTA_TCCC_MASK) <= DELTA_TCCC_1 : *getMapping(norm16) <= 0x1ff);
696     }
697 
698     const UChar *findPreviousCompBoundary(const UChar *start, const UChar *p, UBool onlyContiguous) const;
699     const UChar *findNextCompBoundary(const UChar *p, const UChar *limit, UBool onlyContiguous) const;
700 
701     const UChar *findPreviousFCDBoundary(const UChar *start, const UChar *p) const;
702     const UChar *findNextFCDBoundary(const UChar *p, const UChar *limit) const;
703 
704     void makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, const uint16_t norm16,
705                                      CanonIterData &newData, UErrorCode &errorCode) const;
706 
707     int32_t getCanonValue(UChar32 c) const;
708     const UnicodeSet &getCanonStartSet(int32_t n) const;
709 
710     // UVersionInfo dataVersion;
711 
712     // BMP code point thresholds for quick check loops looking at single UTF-16 code units.
713     UChar minDecompNoCP;
714     UChar minCompNoMaybeCP;
715     UChar minLcccCP;
716 
717     // Norm16 value thresholds for quick check combinations and types of extra data.
718     uint16_t minYesNo;
719     uint16_t minYesNoMappingsOnly;
720     uint16_t minNoNo;
721     uint16_t minNoNoCompBoundaryBefore;
722     uint16_t minNoNoCompNoMaybeCC;
723     uint16_t minNoNoEmpty;
724     uint16_t limitNoNo;
725     uint16_t centerNoNoDelta;
726     uint16_t minMaybeYes;
727 
728     const UCPTrie *normTrie;
729     const uint16_t *maybeYesCompositions;
730     const uint16_t *extraData;  // mappings and/or compositions for yesYes, yesNo & noNo characters
731     const uint8_t *smallFCD;  // [0x100] one bit per 32 BMP code points, set if any FCD!=0
732 
733     UInitOnce       fCanonIterDataInitOnce = U_INITONCE_INITIALIZER;
734     CanonIterData  *fCanonIterData;
735 };
736 
737 // bits in canonIterData
738 #define CANON_NOT_SEGMENT_STARTER 0x80000000
739 #define CANON_HAS_COMPOSITIONS 0x40000000
740 #define CANON_HAS_SET 0x200000
741 #define CANON_VALUE_MASK 0x1fffff
742 
743 /**
744  * ICU-internal shortcut for quick access to standard Unicode normalization.
745  */
746 class U_COMMON_API Normalizer2Factory {
747 public:
748     static const Normalizer2 *getFCDInstance(UErrorCode &errorCode);
749     static const Normalizer2 *getFCCInstance(UErrorCode &errorCode);
750     static const Normalizer2 *getNoopInstance(UErrorCode &errorCode);
751 
752     static const Normalizer2 *getInstance(UNormalizationMode mode, UErrorCode &errorCode);
753 
754     static const Normalizer2Impl *getNFCImpl(UErrorCode &errorCode);
755     static const Normalizer2Impl *getNFKCImpl(UErrorCode &errorCode);
756     static const Normalizer2Impl *getNFKC_CFImpl(UErrorCode &errorCode);
757 
758     // Get the Impl instance of the Normalizer2.
759     // Must be used only when it is known that norm2 is a Normalizer2WithImpl instance.
760     static const Normalizer2Impl *getImpl(const Normalizer2 *norm2);
761 private:
762     Normalizer2Factory();  // No instantiation.
763 };
764 
765 U_NAMESPACE_END
766 
767 U_CAPI int32_t U_EXPORT2
768 unorm2_swap(const UDataSwapper *ds,
769             const void *inData, int32_t length, void *outData,
770             UErrorCode *pErrorCode);
771 
772 /**
773  * Get the NF*_QC property for a code point, for u_getIntPropertyValue().
774  * @internal
775  */
776 U_CFUNC UNormalizationCheckResult
777 unorm_getQuickCheck(UChar32 c, UNormalizationMode mode);
778 
779 /**
780  * Gets the 16-bit FCD value (lead & trail CCs) for a code point, for u_getIntPropertyValue().
781  * @internal
782  */
783 U_CFUNC uint16_t
784 unorm_getFCD16(UChar32 c);
785 
786 /**
787  * Format of Normalizer2 .nrm data files.
788  * Format version 4.0.
789  *
790  * Normalizer2 .nrm data files provide data for the Unicode Normalization algorithms.
791  * ICU ships with data files for standard Unicode Normalization Forms
792  * NFC and NFD (nfc.nrm), NFKC and NFKD (nfkc.nrm) and NFKC_Casefold (nfkc_cf.nrm).
793  * Custom (application-specific) data can be built into additional .nrm files
794  * with the gennorm2 build tool.
795  * ICU ships with one such file, uts46.nrm, for the implementation of UTS #46.
796  *
797  * Normalizer2.getInstance() causes a .nrm file to be loaded, unless it has been
798  * cached already. Internally, Normalizer2Impl.load() reads the .nrm file.
799  *
800  * A .nrm file begins with a standard ICU data file header
801  * (DataHeader, see ucmndata.h and unicode/udata.h).
802  * The UDataInfo.dataVersion field usually contains the Unicode version
803  * for which the data was generated.
804  *
805  * After the header, the file contains the following parts.
806  * Constants are defined as enum values of the Normalizer2Impl class.
807  *
808  * Many details of the data structures are described in the design doc
809  * which is at http://site.icu-project.org/design/normalization/custom
810  *
811  * int32_t indexes[indexesLength]; -- indexesLength=indexes[IX_NORM_TRIE_OFFSET]/4;
812  *
813  *      The first eight indexes are byte offsets in ascending order.
814  *      Each byte offset marks the start of the next part in the data file,
815  *      and the end of the previous one.
816  *      When two consecutive byte offsets are the same, then the corresponding part is empty.
817  *      Byte offsets are offsets from after the header,
818  *      that is, from the beginning of the indexes[].
819  *      Each part starts at an offset with proper alignment for its data.
820  *      If necessary, the previous part may include padding bytes to achieve this alignment.
821  *
822  *      minDecompNoCP=indexes[IX_MIN_DECOMP_NO_CP] is the lowest code point
823  *      with a decomposition mapping, that is, with NF*D_QC=No.
824  *      minCompNoMaybeCP=indexes[IX_MIN_COMP_NO_MAYBE_CP] is the lowest code point
825  *      with NF*C_QC=No (has a one-way mapping) or Maybe (combines backward).
826  *      minLcccCP=indexes[IX_MIN_LCCC_CP] (index 18, new in formatVersion 3)
827  *      is the lowest code point with lccc!=0.
828  *
829  *      The next eight indexes are thresholds of 16-bit trie values for ranges of
830  *      values indicating multiple normalization properties.
831  *      They are listed here in threshold order, not in the order they are stored in the indexes.
832  *          minYesNo=indexes[IX_MIN_YES_NO];
833  *          minYesNoMappingsOnly=indexes[IX_MIN_YES_NO_MAPPINGS_ONLY];
834  *          minNoNo=indexes[IX_MIN_NO_NO];
835  *          minNoNoCompBoundaryBefore=indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE];
836  *          minNoNoCompNoMaybeCC=indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC];
837  *          minNoNoEmpty=indexes[IX_MIN_NO_NO_EMPTY];
838  *          limitNoNo=indexes[IX_LIMIT_NO_NO];
839  *          minMaybeYes=indexes[IX_MIN_MAYBE_YES];
840  *      See the normTrie description below and the design doc for details.
841  *
842  * UCPTrie normTrie; -- see ucptrie_impl.h and ucptrie.h, same as Java CodePointTrie
843  *
844  *      The trie holds the main normalization data. Each code point is mapped to a 16-bit value.
845  *      Rather than using independent bits in the value (which would require more than 16 bits),
846  *      information is extracted primarily via range checks.
847  *      Except, format version 3 uses bit 0 for hasCompBoundaryAfter().
848  *      For example, a 16-bit value norm16 in the range minYesNo<=norm16<minNoNo
849  *      means that the character has NF*C_QC=Yes and NF*D_QC=No properties,
850  *      which means it has a two-way (round-trip) decomposition mapping.
851  *      Values in the range 2<=norm16<limitNoNo are also directly indexes into the extraData
852  *      pointing to mappings, compositions lists, or both.
853  *      Value norm16==INERT (0 in versions 1 & 2, 1 in version 3)
854  *      means that the character is normalization-inert, that is,
855  *      it does not have a mapping, does not participate in composition, has a zero
856  *      canonical combining class, and forms a boundary where text before it and after it
857  *      can be normalized independently.
858  *      For details about how multiple properties are encoded in 16-bit values
859  *      see the design doc.
860  *      Note that the encoding cannot express all combinations of the properties involved;
861  *      it only supports those combinations that are allowed by
862  *      the Unicode Normalization algorithms. Details are in the design doc as well.
863  *      The gennorm2 tool only builds .nrm files for data that conforms to the limitations.
864  *
865  *      The trie has a value for each lead surrogate code unit representing the "worst case"
866  *      properties of the 1024 supplementary characters whose UTF-16 form starts with
867  *      the lead surrogate. If all of the 1024 supplementary characters are normalization-inert,
868  *      then their lead surrogate code unit has the trie value INERT.
869  *      When the lead surrogate unit's value exceeds the quick check minimum during processing,
870  *      the properties for the full supplementary code point need to be looked up.
871  *
872  * uint16_t maybeYesCompositions[MIN_NORMAL_MAYBE_YES-minMaybeYes];
873  * uint16_t extraData[];
874  *
875  *      There is only one byte offset for the end of these two arrays.
876  *      The split between them is given by the constant and variable mentioned above.
877  *      In version 3, the difference must be shifted right by OFFSET_SHIFT.
878  *
879  *      The maybeYesCompositions array contains compositions lists for characters that
880  *      combine both forward (as starters in composition pairs)
881  *      and backward (as trailing characters in composition pairs).
882  *      Such characters do not occur in Unicode 5.2 but are allowed by
883  *      the Unicode Normalization algorithms.
884  *      If there are no such characters, then minMaybeYes==MIN_NORMAL_MAYBE_YES
885  *      and the maybeYesCompositions array is empty.
886  *      If there are such characters, then minMaybeYes is subtracted from their norm16 values
887  *      to get the index into this array.
888  *
889  *      The extraData array contains compositions lists for "YesYes" characters,
890  *      followed by mappings and optional compositions lists for "YesNo" characters,
891  *      followed by only mappings for "NoNo" characters.
892  *      (Referring to pairs of NFC/NFD quick check values.)
893  *      The norm16 values of those characters are directly indexes into the extraData array.
894  *      In version 3, the norm16 values must be shifted right by OFFSET_SHIFT
895  *      for accessing extraData.
896  *
897  *      The data structures for compositions lists and mappings are described in the design doc.
898  *
899  * uint8_t smallFCD[0x100]; -- new in format version 2
900  *
901  *      This is a bit set to help speed up FCD value lookups in the absence of a full
902  *      UTrie2 or other large data structure with the full FCD value mapping.
903  *
904  *      Each smallFCD bit is set if any of the corresponding 32 BMP code points
905  *      has a non-zero FCD value (lccc!=0 or tccc!=0).
906  *      Bit 0 of smallFCD[0] is for U+0000..U+001F. Bit 7 of smallFCD[0xff] is for U+FFE0..U+FFFF.
907  *      A bit for 32 lead surrogates is set if any of the 32k corresponding
908  *      _supplementary_ code points has a non-zero FCD value.
909  *
910  *      This bit set is most useful for the large blocks of CJK characters with FCD=0.
911  *
912  * Changes from format version 1 to format version 2 ---------------------------
913  *
914  * - Addition of data for raw (not recursively decomposed) mappings.
915  *   + The MAPPING_NO_COMP_BOUNDARY_AFTER bit in the extraData is now also set when
916  *     the mapping is to an empty string or when the character combines-forward.
917  *     This subsumes the one actual use of the MAPPING_PLUS_COMPOSITION_LIST bit which
918  *     is then repurposed for the MAPPING_HAS_RAW_MAPPING bit.
919  *   + For details see the design doc.
920  * - Addition of indexes[IX_MIN_YES_NO_MAPPINGS_ONLY] and separation of the yesNo extraData into
921  *   distinct ranges (combines-forward vs. not)
922  *   so that a range check can be used to find out if there is a compositions list.
923  *   This is fully equivalent with formatVersion 1's MAPPING_PLUS_COMPOSITION_LIST flag.
924  *   It is needed for the new (in ICU 49) composePair(), not for other normalization.
925  * - Addition of the smallFCD[] bit set.
926  *
927  * Changes from format version 2 to format version 3 (ICU 60) ------------------
928  *
929  * - norm16 bit 0 indicates hasCompBoundaryAfter(),
930  *   except that for contiguous composition (FCC) the tccc must be checked as well.
931  *   Data indexes and ccc values are shifted left by one (OFFSET_SHIFT).
932  *   Thresholds like minNoNo are tested before shifting.
933  *
934  * - Algorithmic mapping deltas are shifted left by two more bits (total DELTA_SHIFT),
935  *   to make room for two bits (three values) indicating whether the tccc is 0, 1, or greater.
936  *   See DELTA_TCCC_MASK etc.
937  *   This helps with fetching tccc/FCD values and FCC hasCompBoundaryAfter().
938  *   minMaybeYes is 8-aligned so that the DELTA_TCCC_MASK bits can be tested directly.
939  *
940  * - Algorithmic mappings are only used for mapping to "comp yes and ccc=0" characters,
941  *   and ASCII characters are mapped algorithmically only to other ASCII characters.
942  *   This helps with hasCompBoundaryBefore() and compose() fast paths.
943  *   It is never necessary any more to loop for algorithmic mappings.
944  *
945  * - Addition of indexes[IX_MIN_NO_NO_COMP_BOUNDARY_BEFORE],
946  *   indexes[IX_MIN_NO_NO_COMP_NO_MAYBE_CC], and indexes[IX_MIN_NO_NO_EMPTY],
947  *   and separation of the noNo extraData into distinct ranges.
948  *   With this, the noNo norm16 value indicates whether the mapping is
949  *   compose-normalized, not normalized but hasCompBoundaryBefore(),
950  *   not even that, or maps to an empty string.
951  *   hasCompBoundaryBefore() can be determined solely from the norm16 value.
952  *
953  * - The norm16 value for Hangul LVT is now different from that for Hangul LV,
954  *   so that hasCompBoundaryAfter() need not check for the syllable type.
955  *   For Hangul LV, minYesNo continues to be used (no comp-boundary-after).
956  *   For Hangul LVT, minYesNoMappingsOnly|HAS_COMP_BOUNDARY_AFTER is used.
957  *   The extraData units at these indexes are set to firstUnit=2 and firstUnit=3, respectively,
958  *   to simplify some code.
959  *
960  * - The extraData firstUnit bit 5 is no longer necessary
961  *   (norm16 bit 0 used instead of firstUnit MAPPING_NO_COMP_BOUNDARY_AFTER),
962  *   is reserved again, and always set to 0.
963  *
964  * - Addition of indexes[IX_MIN_LCCC_CP], the first code point where lccc!=0.
965  *   This used to be hardcoded to U+0300, but in data like NFKC_Casefold it is lower:
966  *   U+00AD Soft Hyphen maps to an empty string,
967  *   which is artificially assigned "worst case" values lccc=1 and tccc=255.
968  *
969  * - A mapping to an empty string has explicit lccc=1 and tccc=255 values.
970  *
971  * Changes from format version 3 to format version 4 (ICU 63) ------------------
972  *
973  * Switched from UTrie2 to UCPTrie/CodePointTrie.
974  *
975  * The new trie no longer stores different values for surrogate code *units* vs.
976  * surrogate code *points*.
977  * Lead surrogates still have values for optimized UTF-16 string processing.
978  * When looking up code point properties, the code now checks for lead surrogates and
979  * treats them as inert.
980  *
981  * gennorm2 now has to reject mappings for surrogate code points.
982  * UTS #46 maps unpaired surrogates to U+FFFD in code rather than via its
983  * custom normalization data file.
984  */
985 
986 #endif  /* !UCONFIG_NO_NORMALIZATION */
987 #endif  /* __NORMALIZER2IMPL_H__ */
988