1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*-
2  * vim: set ts=8 sts=2 et sw=2 tw=80:
3  */
4 // Copyright 2011 the V8 project authors. All rights reserved.
5 // Use of this source code is governed by a BSD-style license that can be
6 // found in the LICENSE file.
7 
8 #ifndef jit_arm_disasm_Constants_arm_h
9 #define jit_arm_disasm_Constants_arm_h
10 
11 #ifdef JS_DISASM_ARM
12 
13 #  include "mozilla/Assertions.h"
14 #  include "mozilla/Types.h"
15 
16 #  include <string.h>
17 
18 namespace js {
19 namespace jit {
20 namespace disasm {
21 
22 // Constant pool marker.
23 // Use UDF, the permanently undefined instruction.
24 const int kConstantPoolMarkerMask = 0xfff000f0;
25 const int kConstantPoolMarker = 0xe7f000f0;
26 const int kConstantPoolLengthMaxMask = 0xffff;
27 
EncodeConstantPoolLength(int length)28 inline int EncodeConstantPoolLength(int length) {
29   MOZ_ASSERT((length & kConstantPoolLengthMaxMask) == length);
30   return ((length & 0xfff0) << 4) | (length & 0xf);
31 }
32 
DecodeConstantPoolLength(int instr)33 inline int DecodeConstantPoolLength(int instr) {
34   MOZ_ASSERT((instr & kConstantPoolMarkerMask) == kConstantPoolMarker);
35   return ((instr >> 4) & 0xfff0) | (instr & 0xf);
36 }
37 
38 // Used in code age prologue - ldr(pc, MemOperand(pc, -4))
39 const int kCodeAgeJumpInstruction = 0xe51ff004;
40 
41 // Number of registers in normal ARM mode.
42 const int kNumRegisters = 16;
43 
44 // VFP support.
45 const int kNumVFPSingleRegisters = 32;
46 const int kNumVFPDoubleRegisters = 32;
47 const int kNumVFPRegisters = kNumVFPSingleRegisters + kNumVFPDoubleRegisters;
48 
49 // PC is register 15.
50 const int kPCRegister = 15;
51 const int kNoRegister = -1;
52 
53 // -----------------------------------------------------------------------------
54 // Conditions.
55 
56 // Defines constants and accessor classes to assemble, disassemble and
57 // simulate ARM instructions.
58 //
59 // Section references in the code refer to the "ARM Architecture Reference
60 // Manual" from July 2005 (available at http://www.arm.com/miscPDFs/14128.pdf)
61 //
62 // Constants for specific fields are defined in their respective named enums.
63 // General constants are in an anonymous enum in class Instr.
64 
65 // Values for the condition field as defined in section A3.2
66 enum Condition {
67   kNoCondition = -1,
68 
69   eq = 0 << 28,   // Z set            Equal.
70   ne = 1 << 28,   // Z clear          Not equal.
71   cs = 2 << 28,   // C set            Unsigned higher or same.
72   cc = 3 << 28,   // C clear          Unsigned lower.
73   mi = 4 << 28,   // N set            Negative.
74   pl = 5 << 28,   // N clear          Positive or zero.
75   vs = 6 << 28,   // V set            Overflow.
76   vc = 7 << 28,   // V clear          No overflow.
77   hi = 8 << 28,   // C set, Z clear   Unsigned higher.
78   ls = 9 << 28,   // C clear or Z set Unsigned lower or same.
79   ge = 10 << 28,  // N == V           Greater or equal.
80   lt = 11 << 28,  // N != V           Less than.
81   gt = 12 << 28,  // Z clear, N == V  Greater than.
82   le = 13 << 28,  // Z set or N != V  Less then or equal
83   al = 14 << 28,  //                  Always.
84 
85   kSpecialCondition = 15 << 28,  // Special condition (refer to section A3.2.1).
86   kNumberOfConditions = 16,
87 
88   // Aliases.
89   hs = cs,  // C set            Unsigned higher or same.
90   lo = cc   // C clear          Unsigned lower.
91 };
92 
NegateCondition(Condition cond)93 inline Condition NegateCondition(Condition cond) {
94   MOZ_ASSERT(cond != al);
95   return static_cast<Condition>(cond ^ ne);
96 }
97 
98 // Commute a condition such that {a cond b == b cond' a}.
CommuteCondition(Condition cond)99 inline Condition CommuteCondition(Condition cond) {
100   switch (cond) {
101     case lo:
102       return hi;
103     case hi:
104       return lo;
105     case hs:
106       return ls;
107     case ls:
108       return hs;
109     case lt:
110       return gt;
111     case gt:
112       return lt;
113     case ge:
114       return le;
115     case le:
116       return ge;
117     default:
118       return cond;
119   }
120 }
121 
122 // -----------------------------------------------------------------------------
123 // Instructions encoding.
124 
125 // Instr is merely used by the Assembler to distinguish 32bit integers
126 // representing instructions from usual 32 bit values.
127 // Instruction objects are pointers to 32bit values, and provide methods to
128 // access the various ISA fields.
129 typedef int32_t Instr;
130 
131 // Opcodes for Data-processing instructions (instructions with a type 0 and 1)
132 // as defined in section A3.4
133 enum Opcode {
134   AND = 0 << 21,   // Logical AND.
135   EOR = 1 << 21,   // Logical Exclusive OR.
136   SUB = 2 << 21,   // Subtract.
137   RSB = 3 << 21,   // Reverse Subtract.
138   ADD = 4 << 21,   // Add.
139   ADC = 5 << 21,   // Add with Carry.
140   SBC = 6 << 21,   // Subtract with Carry.
141   RSC = 7 << 21,   // Reverse Subtract with Carry.
142   TST = 8 << 21,   // Test.
143   TEQ = 9 << 21,   // Test Equivalence.
144   CMP = 10 << 21,  // Compare.
145   CMN = 11 << 21,  // Compare Negated.
146   ORR = 12 << 21,  // Logical (inclusive) OR.
147   MOV = 13 << 21,  // Move.
148   BIC = 14 << 21,  // Bit Clear.
149   MVN = 15 << 21   // Move Not.
150 };
151 
152 // The bits for bit 7-4 for some type 0 miscellaneous instructions.
153 enum MiscInstructionsBits74 {
154   // With bits 22-21 01.
155   BX = 1 << 4,
156   BXJ = 2 << 4,
157   BLX = 3 << 4,
158   BKPT = 7 << 4,
159 
160   // With bits 22-21 11.
161   CLZ = 1 << 4
162 };
163 
164 // Load and store exclusive instructions.
165 
166 // Bit positions.
167 enum {
168   ExclusiveOpHi = 24,    // Hi bit of opcode field
169   ExclusiveOpLo = 23,    // Lo bit of opcode field
170   ExclusiveSizeHi = 22,  // Hi bit of operand size field
171   ExclusiveSizeLo = 21,  // Lo bit of operand size field
172   ExclusiveLoad = 20     // Bit indicating load
173 };
174 
175 // Opcode bits for exclusive instructions.
176 enum { ExclusiveOpcode = 3 };
177 
178 // Operand size, Bits(ExclusiveSizeHi,ExclusiveSizeLo).
179 enum {
180   ExclusiveWord = 0,
181   ExclusiveDouble = 1,
182   ExclusiveByte = 2,
183   ExclusiveHalf = 3
184 };
185 
186 // Instruction encoding bits and masks.
187 enum {
188   H = 1 << 5,   // Halfword (or byte).
189   S6 = 1 << 6,  // Signed (or unsigned).
190   L = 1 << 20,  // Load (or store).
191   S = 1 << 20,  // Set condition code (or leave unchanged).
192   W = 1 << 21,  // Writeback base register (or leave unchanged).
193   A = 1 << 21,  // Accumulate in multiply instruction (or not).
194   B = 1 << 22,  // Unsigned byte (or word).
195   N = 1 << 22,  // Long (or short).
196   U = 1 << 23,  // Positive (or negative) offset/index.
197   P = 1 << 24,  // Offset/pre-indexed addressing (or post-indexed addressing).
198   I = 1 << 25,  // Immediate shifter operand (or not).
199   B0 = 1 << 0,
200   B4 = 1 << 4,
201   B5 = 1 << 5,
202   B6 = 1 << 6,
203   B7 = 1 << 7,
204   B8 = 1 << 8,
205   B9 = 1 << 9,
206   B12 = 1 << 12,
207   B16 = 1 << 16,
208   B17 = 1 << 17,
209   B18 = 1 << 18,
210   B19 = 1 << 19,
211   B20 = 1 << 20,
212   B21 = 1 << 21,
213   B22 = 1 << 22,
214   B23 = 1 << 23,
215   B24 = 1 << 24,
216   B25 = 1 << 25,
217   B26 = 1 << 26,
218   B27 = 1 << 27,
219   B28 = 1 << 28,
220 
221   // Instruction bit masks.
222   kCondMask = 15 << 28,
223   kALUMask = 0x6f << 21,
224   kRdMask = 15 << 12,  // In str instruction.
225   kCoprocessorMask = 15 << 8,
226   kOpCodeMask = 15 << 21,  // In data-processing instructions.
227   kImm24Mask = (1 << 24) - 1,
228   kImm16Mask = (1 << 16) - 1,
229   kImm8Mask = (1 << 8) - 1,
230   kOff12Mask = (1 << 12) - 1,
231   kOff8Mask = (1 << 8) - 1
232 };
233 
234 // -----------------------------------------------------------------------------
235 // Addressing modes and instruction variants.
236 
237 // Condition code updating mode.
238 enum SBit {
239   SetCC = 1 << 20,   // Set condition code.
240   LeaveCC = 0 << 20  // Leave condition code unchanged.
241 };
242 
243 // Status register selection.
244 enum SRegister { CPSR = 0 << 22, SPSR = 1 << 22 };
245 
246 // Shifter types for Data-processing operands as defined in section A5.1.2.
247 enum ShiftOp {
248   LSL = 0 << 5,  // Logical shift left.
249   LSR = 1 << 5,  // Logical shift right.
250   ASR = 2 << 5,  // Arithmetic shift right.
251   ROR = 3 << 5,  // Rotate right.
252 
253   // RRX is encoded as ROR with shift_imm == 0.
254   // Use a special code to make the distinction. The RRX ShiftOp is only used
255   // as an argument, and will never actually be encoded. The Assembler will
256   // detect it and emit the correct ROR shift operand with shift_imm == 0.
257   RRX = -1,
258   kNumberOfShifts = 4
259 };
260 
261 // Status register fields.
262 enum SRegisterField {
263   CPSR_c = CPSR | 1 << 16,
264   CPSR_x = CPSR | 1 << 17,
265   CPSR_s = CPSR | 1 << 18,
266   CPSR_f = CPSR | 1 << 19,
267   SPSR_c = SPSR | 1 << 16,
268   SPSR_x = SPSR | 1 << 17,
269   SPSR_s = SPSR | 1 << 18,
270   SPSR_f = SPSR | 1 << 19
271 };
272 
273 // Status register field mask (or'ed SRegisterField enum values).
274 typedef uint32_t SRegisterFieldMask;
275 
276 // Memory operand addressing mode.
277 enum AddrMode {
278   // Bit encoding P U W.
279   Offset = (8 | 4 | 0) << 21,     // Offset (without writeback to base).
280   PreIndex = (8 | 4 | 1) << 21,   // Pre-indexed addressing with writeback.
281   PostIndex = (0 | 4 | 0) << 21,  // Post-indexed addressing with writeback.
282   NegOffset =
283       (8 | 0 | 0) << 21,  // Negative offset (without writeback to base).
284   NegPreIndex = (8 | 0 | 1) << 21,  // Negative pre-indexed with writeback.
285   NegPostIndex = (0 | 0 | 0) << 21  // Negative post-indexed with writeback.
286 };
287 
288 // Load/store multiple addressing mode.
289 enum BlockAddrMode {
290   // Bit encoding P U W .
291   da = (0 | 0 | 0) << 21,    // Decrement after.
292   ia = (0 | 4 | 0) << 21,    // Increment after.
293   db = (8 | 0 | 0) << 21,    // Decrement before.
294   ib = (8 | 4 | 0) << 21,    // Increment before.
295   da_w = (0 | 0 | 1) << 21,  // Decrement after with writeback to base.
296   ia_w = (0 | 4 | 1) << 21,  // Increment after with writeback to base.
297   db_w = (8 | 0 | 1) << 21,  // Decrement before with writeback to base.
298   ib_w = (8 | 4 | 1) << 21,  // Increment before with writeback to base.
299 
300   // Alias modes for comparison when writeback does not matter.
301   da_x = (0 | 0 | 0) << 21,  // Decrement after.
302   ia_x = (0 | 4 | 0) << 21,  // Increment after.
303   db_x = (8 | 0 | 0) << 21,  // Decrement before.
304   ib_x = (8 | 4 | 0) << 21,  // Increment before.
305 
306   kBlockAddrModeMask = (8 | 4 | 1) << 21
307 };
308 
309 // Coprocessor load/store operand size.
310 enum LFlag {
311   Long = 1 << 22,  // Long load/store coprocessor.
312   Short = 0 << 22  // Short load/store coprocessor.
313 };
314 
315 // NEON data type
316 enum NeonDataType {
317   NeonS8 = 0x1,             // U = 0, imm3 = 0b001
318   NeonS16 = 0x2,            // U = 0, imm3 = 0b010
319   NeonS32 = 0x4,            // U = 0, imm3 = 0b100
320   NeonU8 = 1 << 24 | 0x1,   // U = 1, imm3 = 0b001
321   NeonU16 = 1 << 24 | 0x2,  // U = 1, imm3 = 0b010
322   NeonU32 = 1 << 24 | 0x4,  // U = 1, imm3 = 0b100
323   NeonDataTypeSizeMask = 0x7,
324   NeonDataTypeUMask = 1 << 24
325 };
326 
327 enum NeonListType { nlt_1 = 0x7, nlt_2 = 0xA, nlt_3 = 0x6, nlt_4 = 0x2 };
328 
329 enum NeonSize { Neon8 = 0x0, Neon16 = 0x1, Neon32 = 0x2, Neon64 = 0x3 };
330 
331 // -----------------------------------------------------------------------------
332 // Supervisor Call (svc) specific support.
333 
334 // Special Software Interrupt codes when used in the presence of the ARM
335 // simulator.
336 // svc (formerly swi) provides a 24bit immediate value. Use bits 22:0 for
337 // standard SoftwareInterrupCode. Bit 23 is reserved for the stop feature.
338 enum SoftwareInterruptCodes {
339   // transition to C code
340   kCallRtRedirected = 0x10,
341   // break point
342   kBreakpoint = 0x20,
343   // stop
344   kStopCode = 1 << 23
345 };
346 const uint32_t kStopCodeMask = kStopCode - 1;
347 const uint32_t kMaxStopCode = kStopCode - 1;
348 const int32_t kDefaultStopCode = -1;
349 
350 // Type of VFP register. Determines register encoding.
351 enum VFPRegPrecision { kSinglePrecision = 0, kDoublePrecision = 1 };
352 
353 // VFP FPSCR constants.
354 enum VFPConversionMode { kFPSCRRounding = 0, kDefaultRoundToZero = 1 };
355 
356 // This mask does not include the "inexact" or "input denormal" cumulative
357 // exceptions flags, because we usually don't want to check for it.
358 const uint32_t kVFPExceptionMask = 0xf;
359 const uint32_t kVFPInvalidOpExceptionBit = 1 << 0;
360 const uint32_t kVFPOverflowExceptionBit = 1 << 2;
361 const uint32_t kVFPUnderflowExceptionBit = 1 << 3;
362 const uint32_t kVFPInexactExceptionBit = 1 << 4;
363 const uint32_t kVFPFlushToZeroMask = 1 << 24;
364 const uint32_t kVFPDefaultNaNModeControlBit = 1 << 25;
365 
366 const uint32_t kVFPNConditionFlagBit = 1 << 31;
367 const uint32_t kVFPZConditionFlagBit = 1 << 30;
368 const uint32_t kVFPCConditionFlagBit = 1 << 29;
369 const uint32_t kVFPVConditionFlagBit = 1 << 28;
370 
371 // VFP rounding modes. See ARM DDI 0406B Page A2-29.
372 enum VFPRoundingMode {
373   RN = 0 << 22,  // Round to Nearest.
374   RP = 1 << 22,  // Round towards Plus Infinity.
375   RM = 2 << 22,  // Round towards Minus Infinity.
376   RZ = 3 << 22,  // Round towards zero.
377 
378   // Aliases.
379   kRoundToNearest = RN,
380   kRoundToPlusInf = RP,
381   kRoundToMinusInf = RM,
382   kRoundToZero = RZ
383 };
384 
385 const uint32_t kVFPRoundingModeMask = 3 << 22;
386 
387 enum CheckForInexactConversion {
388   kCheckForInexactConversion,
389   kDontCheckForInexactConversion
390 };
391 
392 // -----------------------------------------------------------------------------
393 // Hints.
394 
395 // Branch hints are not used on the ARM.  They are defined so that they can
396 // appear in shared function signatures, but will be ignored in ARM
397 // implementations.
398 enum Hint { no_hint };
399 
400 // Hints are not used on the arm.  Negating is trivial.
NegateHint(Hint ignored)401 inline Hint NegateHint(Hint ignored) { return no_hint; }
402 
403 // -----------------------------------------------------------------------------
404 // Instruction abstraction.
405 
406 // The class Instruction enables access to individual fields defined in the ARM
407 // architecture instruction set encoding as described in figure A3-1.
408 // Note that the Assembler uses typedef int32_t Instr.
409 //
410 // Example: Test whether the instruction at ptr does set the condition code
411 // bits.
412 //
413 // bool InstructionSetsConditionCodes(byte* ptr) {
414 //   Instruction* instr = Instruction::At(ptr);
415 //   int type = instr->TypeValue();
416 //   return ((type == 0) || (type == 1)) && instr->HasS();
417 // }
418 //
419 class Instruction {
420  public:
421   enum { kInstrSize = 4, kInstrSizeLog2 = 2, kPCReadOffset = 8 };
422 
423   // Helper macro to define static accessors.
424   // We use the cast to char* trick to bypass the strict anti-aliasing rules.
425 #  define DECLARE_STATIC_TYPED_ACCESSOR(return_type, Name) \
426     static inline return_type Name(Instr instr) {          \
427       char* temp = reinterpret_cast<char*>(&instr);        \
428       return reinterpret_cast<Instruction*>(temp)->Name(); \
429     }
430 
431 #  define DECLARE_STATIC_ACCESSOR(Name) DECLARE_STATIC_TYPED_ACCESSOR(int, Name)
432 
433   // Get the raw instruction bits.
InstructionBits()434   inline Instr InstructionBits() const {
435     return *reinterpret_cast<const Instr*>(this);
436   }
437 
438   // Set the raw instruction bits to value.
SetInstructionBits(Instr value)439   inline void SetInstructionBits(Instr value) {
440     *reinterpret_cast<Instr*>(this) = value;
441   }
442 
443   // Read one particular bit out of the instruction bits.
Bit(int nr)444   inline int Bit(int nr) const { return (InstructionBits() >> nr) & 1; }
445 
446   // Read a bit field's value out of the instruction bits.
Bits(int hi,int lo)447   inline int Bits(int hi, int lo) const {
448     return (InstructionBits() >> lo) & ((2 << (hi - lo)) - 1);
449   }
450 
451   // Read a bit field out of the instruction bits.
BitField(int hi,int lo)452   inline int BitField(int hi, int lo) const {
453     return InstructionBits() & (((2 << (hi - lo)) - 1) << lo);
454   }
455 
456   // Static support.
457 
458   // Read one particular bit out of the instruction bits.
Bit(Instr instr,int nr)459   static inline int Bit(Instr instr, int nr) { return (instr >> nr) & 1; }
460 
461   // Read the value of a bit field out of the instruction bits.
Bits(Instr instr,int hi,int lo)462   static inline int Bits(Instr instr, int hi, int lo) {
463     return (instr >> lo) & ((2 << (hi - lo)) - 1);
464   }
465 
466   // Read a bit field out of the instruction bits.
BitField(Instr instr,int hi,int lo)467   static inline int BitField(Instr instr, int hi, int lo) {
468     return instr & (((2 << (hi - lo)) - 1) << lo);
469   }
470 
471   // Accessors for the different named fields used in the ARM encoding.
472   // The naming of these accessor corresponds to figure A3-1.
473   //
474   // Two kind of accessors are declared:
475   // - <Name>Field() will return the raw field, i.e. the field's bits at their
476   //   original place in the instruction encoding.
477   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
478   //   0xC0810002 ConditionField(instr) will return 0xC0000000.
479   // - <Name>Value() will return the field value, shifted back to bit 0.
480   //   e.g. if instr is the 'addgt r0, r1, r2' instruction, encoded as
481   //   0xC0810002 ConditionField(instr) will return 0xC.
482 
483   // Generally applicable fields
ConditionValue()484   inline Condition ConditionValue() const {
485     return static_cast<Condition>(Bits(31, 28));
486   }
ConditionField()487   inline Condition ConditionField() const {
488     return static_cast<Condition>(BitField(31, 28));
489   }
490   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionValue);
491   DECLARE_STATIC_TYPED_ACCESSOR(Condition, ConditionField);
492 
TypeValue()493   inline int TypeValue() const { return Bits(27, 25); }
SpecialValue()494   inline int SpecialValue() const { return Bits(27, 23); }
495 
RnValue()496   inline int RnValue() const { return Bits(19, 16); }
497   DECLARE_STATIC_ACCESSOR(RnValue);
RdValue()498   inline int RdValue() const { return Bits(15, 12); }
499   DECLARE_STATIC_ACCESSOR(RdValue);
500 
CoprocessorValue()501   inline int CoprocessorValue() const { return Bits(11, 8); }
502   // Support for VFP.
503   // Vn(19-16) | Vd(15-12) |  Vm(3-0)
VnValue()504   inline int VnValue() const { return Bits(19, 16); }
VmValue()505   inline int VmValue() const { return Bits(3, 0); }
VdValue()506   inline int VdValue() const { return Bits(15, 12); }
NValue()507   inline int NValue() const { return Bit(7); }
MValue()508   inline int MValue() const { return Bit(5); }
DValue()509   inline int DValue() const { return Bit(22); }
RtValue()510   inline int RtValue() const { return Bits(15, 12); }
PValue()511   inline int PValue() const { return Bit(24); }
UValue()512   inline int UValue() const { return Bit(23); }
Opc1Value()513   inline int Opc1Value() const { return (Bit(23) << 2) | Bits(21, 20); }
Opc2Value()514   inline int Opc2Value() const { return Bits(19, 16); }
Opc3Value()515   inline int Opc3Value() const { return Bits(7, 6); }
SzValue()516   inline int SzValue() const { return Bit(8); }
VLValue()517   inline int VLValue() const { return Bit(20); }
VCValue()518   inline int VCValue() const { return Bit(8); }
VAValue()519   inline int VAValue() const { return Bits(23, 21); }
VBValue()520   inline int VBValue() const { return Bits(6, 5); }
VFPNRegValue(VFPRegPrecision pre)521   inline int VFPNRegValue(VFPRegPrecision pre) {
522     return VFPGlueRegValue(pre, 16, 7);
523   }
VFPMRegValue(VFPRegPrecision pre)524   inline int VFPMRegValue(VFPRegPrecision pre) {
525     return VFPGlueRegValue(pre, 0, 5);
526   }
VFPDRegValue(VFPRegPrecision pre)527   inline int VFPDRegValue(VFPRegPrecision pre) {
528     return VFPGlueRegValue(pre, 12, 22);
529   }
530 
531   // Fields used in Data processing instructions
OpcodeValue()532   inline int OpcodeValue() const { return static_cast<Opcode>(Bits(24, 21)); }
OpcodeField()533   inline Opcode OpcodeField() const {
534     return static_cast<Opcode>(BitField(24, 21));
535   }
SValue()536   inline int SValue() const { return Bit(20); }
537   // with register
RmValue()538   inline int RmValue() const { return Bits(3, 0); }
539   DECLARE_STATIC_ACCESSOR(RmValue);
ShiftValue()540   inline int ShiftValue() const { return static_cast<ShiftOp>(Bits(6, 5)); }
ShiftField()541   inline ShiftOp ShiftField() const {
542     return static_cast<ShiftOp>(BitField(6, 5));
543   }
RegShiftValue()544   inline int RegShiftValue() const { return Bit(4); }
RsValue()545   inline int RsValue() const { return Bits(11, 8); }
ShiftAmountValue()546   inline int ShiftAmountValue() const { return Bits(11, 7); }
547   // with immediate
RotateValue()548   inline int RotateValue() const { return Bits(11, 8); }
549   DECLARE_STATIC_ACCESSOR(RotateValue);
Immed8Value()550   inline int Immed8Value() const { return Bits(7, 0); }
551   DECLARE_STATIC_ACCESSOR(Immed8Value);
Immed4Value()552   inline int Immed4Value() const { return Bits(19, 16); }
ImmedMovwMovtValue()553   inline int ImmedMovwMovtValue() const {
554     return Immed4Value() << 12 | Offset12Value();
555   }
556   DECLARE_STATIC_ACCESSOR(ImmedMovwMovtValue);
557 
558   // Fields used in Load/Store instructions
PUValue()559   inline int PUValue() const { return Bits(24, 23); }
PUField()560   inline int PUField() const { return BitField(24, 23); }
BValue()561   inline int BValue() const { return Bit(22); }
WValue()562   inline int WValue() const { return Bit(21); }
LValue()563   inline int LValue() const { return Bit(20); }
564   // with register uses same fields as Data processing instructions above
565   // with immediate
Offset12Value()566   inline int Offset12Value() const { return Bits(11, 0); }
567   // multiple
RlistValue()568   inline int RlistValue() const { return Bits(15, 0); }
569   // extra loads and stores
SignValue()570   inline int SignValue() const { return Bit(6); }
HValue()571   inline int HValue() const { return Bit(5); }
ImmedHValue()572   inline int ImmedHValue() const { return Bits(11, 8); }
ImmedLValue()573   inline int ImmedLValue() const { return Bits(3, 0); }
574 
575   // Fields used in Branch instructions
LinkValue()576   inline int LinkValue() const { return Bit(24); }
SImmed24Value()577   inline int SImmed24Value() const { return ((InstructionBits() << 8) >> 8); }
578 
579   // Fields used in Software interrupt instructions
SvcValue()580   inline SoftwareInterruptCodes SvcValue() const {
581     return static_cast<SoftwareInterruptCodes>(Bits(23, 0));
582   }
583 
584   // Test for special encodings of type 0 instructions (extra loads and stores,
585   // as well as multiplications).
IsSpecialType0()586   inline bool IsSpecialType0() const { return (Bit(7) == 1) && (Bit(4) == 1); }
587 
588   // Test for miscellaneous instructions encodings of type 0 instructions.
IsMiscType0()589   inline bool IsMiscType0() const {
590     return (Bit(24) == 1) && (Bit(23) == 0) && (Bit(20) == 0) &&
591            ((Bit(7) == 0));
592   }
593 
594   // Test for a nop instruction, which falls under type 1.
IsNopType1()595   inline bool IsNopType1() const { return Bits(24, 0) == 0x0120F000; }
596 
597   // Test for a nop instruction, which falls under type 1.
IsCsdbType1()598   inline bool IsCsdbType1() const { return Bits(24, 0) == 0x0120F014; }
599 
600   // Test for a stop instruction.
IsStop()601   inline bool IsStop() const {
602     return (TypeValue() == 7) && (Bit(24) == 1) && (SvcValue() >= kStopCode);
603   }
604 
605   // Special accessors that test for existence of a value.
HasS()606   inline bool HasS() const { return SValue() == 1; }
HasB()607   inline bool HasB() const { return BValue() == 1; }
HasW()608   inline bool HasW() const { return WValue() == 1; }
HasL()609   inline bool HasL() const { return LValue() == 1; }
HasU()610   inline bool HasU() const { return UValue() == 1; }
HasSign()611   inline bool HasSign() const { return SignValue() == 1; }
HasH()612   inline bool HasH() const { return HValue() == 1; }
HasLink()613   inline bool HasLink() const { return LinkValue() == 1; }
614 
615   // Decoding the double immediate in the vmov instruction.
616   double DoubleImmedVmov() const;
617 
618   // Instructions are read of out a code stream. The only way to get a
619   // reference to an instruction is to convert a pointer. There is no way
620   // to allocate or create instances of class Instruction.
621   // Use the At(pc) function to create references to Instruction.
At(uint8_t * pc)622   static Instruction* At(uint8_t* pc) {
623     return reinterpret_cast<Instruction*>(pc);
624   }
625 
626  private:
627   // Join split register codes, depending on single or double precision.
628   // four_bit is the position of the least-significant bit of the four
629   // bit specifier. one_bit is the position of the additional single bit
630   // specifier.
VFPGlueRegValue(VFPRegPrecision pre,int four_bit,int one_bit)631   inline int VFPGlueRegValue(VFPRegPrecision pre, int four_bit, int one_bit) {
632     if (pre == kSinglePrecision) {
633       return (Bits(four_bit + 3, four_bit) << 1) | Bit(one_bit);
634     }
635     return (Bit(one_bit) << 4) | Bits(four_bit + 3, four_bit);
636   }
637 
638   // We need to prevent the creation of instances of class Instruction.
639   Instruction() = delete;
640   Instruction(const Instruction&) = delete;
641   void operator=(const Instruction&) = delete;
642 };
643 
644 // Helper functions for converting between register numbers and names.
645 class Registers {
646  public:
647   // Return the name of the register.
648   static const char* Name(int reg);
649 
650   // Lookup the register number for the name provided.
651   static int Number(const char* name);
652 
653   struct RegisterAlias {
654     int reg;
655     const char* name;
656   };
657 
658  private:
659   static const char* names_[kNumRegisters];
660   static const RegisterAlias aliases_[];
661 };
662 
663 // Helper functions for converting between VFP register numbers and names.
664 class VFPRegisters {
665  public:
666   // Return the name of the register.
667   static const char* Name(int reg, bool is_double);
668 
669   // Lookup the register number for the name provided.
670   // Set flag pointed by is_double to true if register
671   // is double-precision.
672   static int Number(const char* name, bool* is_double);
673 
674  private:
675   static const char* names_[kNumVFPRegisters];
676 };
677 
678 }  // namespace disasm
679 }  // namespace jit
680 }  // namespace js
681 
682 #endif  // JS_DISASM_ARM
683 
684 #endif  // jit_arm_disasm_Constants_arm_h
685