1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 /* This Source Code Form is subject to the terms of the Mozilla Public
4  * License, v. 2.0. If a copy of the MPL was not distributed with this
5  * file, You can obtain one at http://mozilla.org/MPL/2.0/. */
6 
7 /* Smart pointer managing sole ownership of a resource. */
8 
9 #ifndef mozilla_UniquePtr_h
10 #define mozilla_UniquePtr_h
11 
12 #include <type_traits>
13 #include <utility>
14 
15 #include "mozilla/Assertions.h"
16 #include "mozilla/Attributes.h"
17 #include "mozilla/CompactPair.h"
18 #include "mozilla/Compiler.h"
19 
20 namespace mozilla {
21 
22 template <typename T>
23 class DefaultDelete;
24 template <typename T, class D = DefaultDelete<T>>
25 class UniquePtr;
26 
27 }  // namespace mozilla
28 
29 namespace mozilla {
30 
31 namespace detail {
32 
33 struct HasPointerTypeHelper {
34   template <class U>
35   static double Test(...);
36   template <class U>
37   static char Test(typename U::pointer* = 0);
38 };
39 
40 template <class T>
41 class HasPointerType
42     : public std::integral_constant<bool, sizeof(HasPointerTypeHelper::Test<T>(
43                                               0)) == 1> {};
44 
45 template <class T, class D, bool = HasPointerType<D>::value>
46 struct PointerTypeImpl {
47   typedef typename D::pointer Type;
48 };
49 
50 template <class T, class D>
51 struct PointerTypeImpl<T, D, false> {
52   typedef T* Type;
53 };
54 
55 template <class T, class D>
56 struct PointerType {
57   typedef typename PointerTypeImpl<T, std::remove_reference_t<D>>::Type Type;
58 };
59 
60 }  // namespace detail
61 
62 /**
63  * UniquePtr is a smart pointer that wholly owns a resource.  Ownership may be
64  * transferred out of a UniquePtr through explicit action, but otherwise the
65  * resource is destroyed when the UniquePtr is destroyed.
66  *
67  * UniquePtr is similar to C++98's std::auto_ptr, but it improves upon auto_ptr
68  * in one crucial way: it's impossible to copy a UniquePtr.  Copying an auto_ptr
69  * obviously *can't* copy ownership of its singly-owned resource.  So what
70  * happens if you try to copy one?  Bizarrely, ownership is implicitly
71  * *transferred*, preserving single ownership but breaking code that assumes a
72  * copy of an object is identical to the original.  (This is why auto_ptr is
73  * prohibited in STL containers.)
74  *
75  * UniquePtr solves this problem by being *movable* rather than copyable.
76  * Instead of passing a |UniquePtr u| directly to the constructor or assignment
77  * operator, you pass |Move(u)|.  In doing so you indicate that you're *moving*
78  * ownership out of |u|, into the target of the construction/assignment.  After
79  * the transfer completes, |u| contains |nullptr| and may be safely destroyed.
80  * This preserves single ownership but also allows UniquePtr to be moved by
81  * algorithms that have been made move-safe.  (Note: if |u| is instead a
82  * temporary expression, don't use |Move()|: just pass the expression, because
83  * it's already move-ready.  For more information see Move.h.)
84  *
85  * UniquePtr is also better than std::auto_ptr in that the deletion operation is
86  * customizable.  An optional second template parameter specifies a class that
87  * (through its operator()(T*)) implements the desired deletion policy.  If no
88  * policy is specified, mozilla::DefaultDelete<T> is used -- which will either
89  * |delete| or |delete[]| the resource, depending whether the resource is an
90  * array.  Custom deletion policies ideally should be empty classes (no member
91  * fields, no member fields in base classes, no virtual methods/inheritance),
92  * because then UniquePtr can be just as efficient as a raw pointer.
93  *
94  * Use of UniquePtr proceeds like so:
95  *
96  *   UniquePtr<int> g1; // initializes to nullptr
97  *   g1.reset(new int); // switch resources using reset()
98  *   g1 = nullptr; // clears g1, deletes the int
99  *
100  *   UniquePtr<int> g2(new int); // owns that int
101  *   int* p = g2.release(); // g2 leaks its int -- still requires deletion
102  *   delete p; // now freed
103  *
104  *   struct S { int x; S(int x) : x(x) {} };
105  *   UniquePtr<S> g3, g4(new S(5));
106  *   g3 = std::move(g4); // g3 owns the S, g4 cleared
107  *   S* p = g3.get(); // g3 still owns |p|
108  *   assert(g3->x == 5); // operator-> works (if .get() != nullptr)
109  *   assert((*g3).x == 5); // also operator* (again, if not cleared)
110  *   std::swap(g3, g4); // g4 now owns the S, g3 cleared
111  *   g3.swap(g4);  // g3 now owns the S, g4 cleared
112  *   UniquePtr<S> g5(std::move(g3)); // g5 owns the S, g3 cleared
113  *   g5.reset(); // deletes the S, g5 cleared
114  *
115  *   struct FreePolicy { void operator()(void* p) { free(p); } };
116  *   UniquePtr<int, FreePolicy> g6(static_cast<int*>(malloc(sizeof(int))));
117  *   int* ptr = g6.get();
118  *   g6 = nullptr; // calls free(ptr)
119  *
120  * Now, carefully note a few things you *can't* do:
121  *
122  *   UniquePtr<int> b1;
123  *   b1 = new int; // BAD: can only assign another UniquePtr
124  *   int* ptr = b1; // BAD: no auto-conversion to pointer, use get()
125  *
126  *   UniquePtr<int> b2(b1); // BAD: can't copy a UniquePtr
127  *   UniquePtr<int> b3 = b1; // BAD: can't copy-assign a UniquePtr
128  *
129  * (Note that changing a UniquePtr to store a direct |new| expression is
130  * permitted, but usually you should use MakeUnique, defined at the end of this
131  * header.)
132  *
133  * A few miscellaneous notes:
134  *
135  * UniquePtr, when not instantiated for an array type, can be move-constructed
136  * and move-assigned, not only from itself but from "derived" UniquePtr<U, E>
137  * instantiations where U converts to T and E converts to D.  If you want to use
138  * this, you're going to have to specify a deletion policy for both UniquePtr
139  * instantations, and T pretty much has to have a virtual destructor.  In other
140  * words, this doesn't work:
141  *
142  *   struct Base { virtual ~Base() {} };
143  *   struct Derived : Base {};
144  *
145  *   UniquePtr<Base> b1;
146  *   // BAD: DefaultDelete<Base> and DefaultDelete<Derived> don't interconvert
147  *   UniquePtr<Derived> d1(std::move(b));
148  *
149  *   UniquePtr<Base> b2;
150  *   UniquePtr<Derived, DefaultDelete<Base>> d2(std::move(b2)); // okay
151  *
152  * UniquePtr is specialized for array types.  Specializing with an array type
153  * creates a smart-pointer version of that array -- not a pointer to such an
154  * array.
155  *
156  *   UniquePtr<int[]> arr(new int[5]);
157  *   arr[0] = 4;
158  *
159  * What else is different?  Deletion of course uses |delete[]|.  An operator[]
160  * is provided.  Functionality that doesn't make sense for arrays is removed.
161  * The constructors and mutating methods only accept array pointers (not T*, U*
162  * that converts to T*, or UniquePtr<U[]> or UniquePtr<U>) or |nullptr|.
163  *
164  * It's perfectly okay for a function to return a UniquePtr. This transfers
165  * the UniquePtr's sole ownership of the data, to the fresh UniquePtr created
166  * in the calling function, that will then solely own that data. Such functions
167  * can return a local variable UniquePtr, |nullptr|, |UniquePtr(ptr)| where
168  * |ptr| is a |T*|, or a UniquePtr |Move()|'d from elsewhere.
169  *
170  * UniquePtr will commonly be a member of a class, with lifetime equivalent to
171  * that of that class.  If you want to expose the related resource, you could
172  * expose a raw pointer via |get()|, but ownership of a raw pointer is
173  * inherently unclear.  So it's better to expose a |const UniquePtr&| instead.
174  * This prohibits mutation but still allows use of |get()| when needed (but
175  * operator-> is preferred).  Of course, you can only use this smart pointer as
176  * long as the enclosing class instance remains live -- no different than if you
177  * exposed the |get()| raw pointer.
178  *
179  * To pass a UniquePtr-managed resource as a pointer, use a |const UniquePtr&|
180  * argument.  To specify an inout parameter (where the method may or may not
181  * take ownership of the resource, or reset it), or to specify an out parameter
182  * (where simply returning a |UniquePtr| isn't possible), use a |UniquePtr&|
183  * argument.  To unconditionally transfer ownership of a UniquePtr
184  * into a method, use a |UniquePtr| argument.  To conditionally transfer
185  * ownership of a resource into a method, should the method want it, use a
186  * |UniquePtr&&| argument.
187  */
188 template <typename T, class D>
189 class UniquePtr {
190  public:
191   typedef T ElementType;
192   typedef D DeleterType;
193   typedef typename detail::PointerType<T, DeleterType>::Type Pointer;
194 
195  private:
196   mozilla::CompactPair<Pointer, DeleterType> mTuple;
197 
198   Pointer& ptr() { return mTuple.first(); }
199   const Pointer& ptr() const { return mTuple.first(); }
200 
201   DeleterType& del() { return mTuple.second(); }
202   const DeleterType& del() const { return mTuple.second(); }
203 
204  public:
205   /**
206    * Construct a UniquePtr containing |nullptr|.
207    */
208   constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
209     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
210     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
211   }
212 
213   /**
214    * Construct a UniquePtr containing |aPtr|.
215    */
216   explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
217     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
218     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
219   }
220 
221   UniquePtr(Pointer aPtr,
222             std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
223       : mTuple(aPtr, aD1) {}
224 
225   UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
226       : mTuple(aPtr, std::move(aD2)) {
227     static_assert(!std::is_reference_v<D>,
228                   "rvalue deleter can't be stored by reference");
229   }
230 
231   UniquePtr(UniquePtr&& aOther)
232       : mTuple(aOther.release(),
233                std::forward<DeleterType>(aOther.get_deleter())) {}
234 
235   MOZ_IMPLICIT
236   UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
237     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
238     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
239   }
240 
241   template <typename U, class E>
242   MOZ_IMPLICIT UniquePtr(
243       UniquePtr<U, E>&& aOther,
244       std::enable_if_t<
245           std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer> &&
246               !std::is_array_v<U> &&
247               (std::is_reference_v<D> ? std::is_same_v<D, E>
248                                       : std::is_convertible_v<E, D>),
249           int>
250           aDummy = 0)
251       : mTuple(aOther.release(), std::forward<E>(aOther.get_deleter())) {}
252 
253   ~UniquePtr() { reset(nullptr); }
254 
255   UniquePtr& operator=(UniquePtr&& aOther) {
256     reset(aOther.release());
257     get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
258     return *this;
259   }
260 
261   template <typename U, typename E>
262   UniquePtr& operator=(UniquePtr<U, E>&& aOther) {
263     static_assert(
264         std::is_convertible_v<typename UniquePtr<U, E>::Pointer, Pointer>,
265         "incompatible UniquePtr pointees");
266     static_assert(!std::is_array_v<U>,
267                   "can't assign from UniquePtr holding an array");
268 
269     reset(aOther.release());
270     get_deleter() = std::forward<E>(aOther.get_deleter());
271     return *this;
272   }
273 
274   UniquePtr& operator=(decltype(nullptr)) {
275     reset(nullptr);
276     return *this;
277   }
278 
279   std::add_lvalue_reference_t<T> operator*() const {
280     MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with *");
281     return *get();
282   }
283   Pointer operator->() const {
284     MOZ_ASSERT(get(), "dereferencing a UniquePtr containing nullptr with ->");
285     return get();
286   }
287 
288   explicit operator bool() const { return get() != nullptr; }
289 
290   Pointer get() const { return ptr(); }
291 
292   DeleterType& get_deleter() { return del(); }
293   const DeleterType& get_deleter() const { return del(); }
294 
295   [[nodiscard]] Pointer release() {
296     Pointer p = ptr();
297     ptr() = nullptr;
298     return p;
299   }
300 
301   void reset(Pointer aPtr = Pointer()) {
302     Pointer old = ptr();
303     ptr() = aPtr;
304     if (old != nullptr) {
305       get_deleter()(old);
306     }
307   }
308 
309   void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
310 
311   UniquePtr(const UniquePtr& aOther) = delete;  // construct using std::move()!
312   void operator=(const UniquePtr& aOther) =
313       delete;  // assign using std::move()!
314 };
315 
316 // In case you didn't read the comment by the main definition (you should!): the
317 // UniquePtr<T[]> specialization exists to manage array pointers.  It deletes
318 // such pointers using delete[], it will reject construction and modification
319 // attempts using U* or U[].  Otherwise it works like the normal UniquePtr.
320 template <typename T, class D>
321 class UniquePtr<T[], D> {
322  public:
323   typedef T* Pointer;
324   typedef T ElementType;
325   typedef D DeleterType;
326 
327  private:
328   mozilla::CompactPair<Pointer, DeleterType> mTuple;
329 
330  public:
331   /**
332    * Construct a UniquePtr containing nullptr.
333    */
334   constexpr UniquePtr() : mTuple(static_cast<Pointer>(nullptr), DeleterType()) {
335     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
336     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
337   }
338 
339   /**
340    * Construct a UniquePtr containing |aPtr|.
341    */
342   explicit UniquePtr(Pointer aPtr) : mTuple(aPtr, DeleterType()) {
343     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
344     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
345   }
346 
347   // delete[] knows how to handle *only* an array of a single class type.  For
348   // delete[] to work correctly, it must know the size of each element, the
349   // fields and base classes of each element requiring destruction, and so on.
350   // So forbid all overloads which would end up invoking delete[] on a pointer
351   // of the wrong type.
352   template <typename U>
353   UniquePtr(U&& aU,
354             std::enable_if_t<
355                 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
356                 aDummy = 0) = delete;
357 
358   UniquePtr(Pointer aPtr,
359             std::conditional_t<std::is_reference_v<D>, D, const D&> aD1)
360       : mTuple(aPtr, aD1) {}
361 
362   UniquePtr(Pointer aPtr, std::remove_reference_t<D>&& aD2)
363       : mTuple(aPtr, std::move(aD2)) {
364     static_assert(!std::is_reference_v<D>,
365                   "rvalue deleter can't be stored by reference");
366   }
367 
368   // Forbidden for the same reasons as stated above.
369   template <typename U, typename V>
370   UniquePtr(U&& aU, V&& aV,
371             std::enable_if_t<
372                 std::is_pointer_v<U> && std::is_convertible_v<U, Pointer>, int>
373                 aDummy = 0) = delete;
374 
375   UniquePtr(UniquePtr&& aOther)
376       : mTuple(aOther.release(),
377                std::forward<DeleterType>(aOther.get_deleter())) {}
378 
379   MOZ_IMPLICIT
380   UniquePtr(decltype(nullptr)) : mTuple(nullptr, DeleterType()) {
381     static_assert(!std::is_pointer_v<D>, "must provide a deleter instance");
382     static_assert(!std::is_reference_v<D>, "must provide a deleter instance");
383   }
384 
385   ~UniquePtr() { reset(nullptr); }
386 
387   UniquePtr& operator=(UniquePtr&& aOther) {
388     reset(aOther.release());
389     get_deleter() = std::forward<DeleterType>(aOther.get_deleter());
390     return *this;
391   }
392 
393   UniquePtr& operator=(decltype(nullptr)) {
394     reset();
395     return *this;
396   }
397 
398   explicit operator bool() const { return get() != nullptr; }
399 
400   T& operator[](decltype(sizeof(int)) aIndex) const { return get()[aIndex]; }
401   Pointer get() const { return mTuple.first(); }
402 
403   DeleterType& get_deleter() { return mTuple.second(); }
404   const DeleterType& get_deleter() const { return mTuple.second(); }
405 
406   [[nodiscard]] Pointer release() {
407     Pointer p = mTuple.first();
408     mTuple.first() = nullptr;
409     return p;
410   }
411 
412   void reset(Pointer aPtr = Pointer()) {
413     Pointer old = mTuple.first();
414     mTuple.first() = aPtr;
415     if (old != nullptr) {
416       mTuple.second()(old);
417     }
418   }
419 
420   void reset(decltype(nullptr)) {
421     Pointer old = mTuple.first();
422     mTuple.first() = nullptr;
423     if (old != nullptr) {
424       mTuple.second()(old);
425     }
426   }
427 
428   template <typename U>
429   void reset(U) = delete;
430 
431   void swap(UniquePtr& aOther) { mTuple.swap(aOther.mTuple); }
432 
433   UniquePtr(const UniquePtr& aOther) = delete;  // construct using std::move()!
434   void operator=(const UniquePtr& aOther) =
435       delete;  // assign using std::move()!
436 };
437 
438 /**
439  * A default deletion policy using plain old operator delete.
440  *
441  * Note that this type can be specialized, but authors should beware of the risk
442  * that the specialization may at some point cease to match (either because it
443  * gets moved to a different compilation unit or the signature changes). If the
444  * non-specialized (|delete|-based) version compiles for that type but does the
445  * wrong thing, bad things could happen.
446  *
447  * This is a non-issue for types which are always incomplete (i.e. opaque handle
448  * types), since |delete|-ing such a type will always trigger a compilation
449  * error.
450  */
451 template <typename T>
452 class DefaultDelete {
453  public:
454   constexpr DefaultDelete() = default;
455 
456   template <typename U>
457   MOZ_IMPLICIT DefaultDelete(
458       const DefaultDelete<U>& aOther,
459       std::enable_if_t<std::is_convertible_v<U*, T*>, int> aDummy = 0) {}
460 
461   void operator()(T* aPtr) const {
462     static_assert(sizeof(T) > 0, "T must be complete");
463     delete aPtr;
464   }
465 };
466 
467 /** A default deletion policy using operator delete[]. */
468 template <typename T>
469 class DefaultDelete<T[]> {
470  public:
471   constexpr DefaultDelete() = default;
472 
473   void operator()(T* aPtr) const {
474     static_assert(sizeof(T) > 0, "T must be complete");
475     delete[] aPtr;
476   }
477 
478   template <typename U>
479   void operator()(U* aPtr) const = delete;
480 };
481 
482 template <typename T, class D, typename U, class E>
483 bool operator==(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
484   return aX.get() == aY.get();
485 }
486 
487 template <typename T, class D, typename U, class E>
488 bool operator!=(const UniquePtr<T, D>& aX, const UniquePtr<U, E>& aY) {
489   return aX.get() != aY.get();
490 }
491 
492 template <typename T, class D>
493 bool operator==(const UniquePtr<T, D>& aX, const T* aY) {
494   return aX.get() == aY;
495 }
496 
497 template <typename T, class D>
498 bool operator==(const T* aY, const UniquePtr<T, D>& aX) {
499   return aY == aX.get();
500 }
501 
502 template <typename T, class D>
503 bool operator!=(const UniquePtr<T, D>& aX, const T* aY) {
504   return aX.get() != aY;
505 }
506 
507 template <typename T, class D>
508 bool operator!=(const T* aY, const UniquePtr<T, D>& aX) {
509   return aY != aX.get();
510 }
511 
512 template <typename T, class D>
513 bool operator==(const UniquePtr<T, D>& aX, decltype(nullptr)) {
514   return !aX;
515 }
516 
517 template <typename T, class D>
518 bool operator==(decltype(nullptr), const UniquePtr<T, D>& aX) {
519   return !aX;
520 }
521 
522 template <typename T, class D>
523 bool operator!=(const UniquePtr<T, D>& aX, decltype(nullptr)) {
524   return bool(aX);
525 }
526 
527 template <typename T, class D>
528 bool operator!=(decltype(nullptr), const UniquePtr<T, D>& aX) {
529   return bool(aX);
530 }
531 
532 // No operator<, operator>, operator<=, operator>= for now because simplicity.
533 
534 namespace detail {
535 
536 template <typename T>
537 struct UniqueSelector {
538   typedef UniquePtr<T> SingleObject;
539 };
540 
541 template <typename T>
542 struct UniqueSelector<T[]> {
543   typedef UniquePtr<T[]> UnknownBound;
544 };
545 
546 template <typename T, decltype(sizeof(int)) N>
547 struct UniqueSelector<T[N]> {
548   typedef UniquePtr<T[N]> KnownBound;
549 };
550 
551 }  // namespace detail
552 
553 /**
554  * MakeUnique is a helper function for allocating new'd objects and arrays,
555  * returning a UniquePtr containing the resulting pointer.  The semantics of
556  * MakeUnique<Type>(...) are as follows.
557  *
558  *   If Type is an array T[n]:
559  *     Disallowed, deleted, no overload for you!
560  *   If Type is an array T[]:
561  *     MakeUnique<T[]>(size_t) is the only valid overload.  The pointer returned
562  *     is as if by |new T[n]()|, which value-initializes each element.  (If T
563  *     isn't a class type, this will zero each element.  If T is a class type,
564  *     then roughly speaking, each element will be constructed using its default
565  *     constructor.  See C++11 [dcl.init]p7 for the full gory details.)
566  *   If Type is non-array T:
567  *     The arguments passed to MakeUnique<T>(...) are forwarded into a
568  *     |new T(...)| call, initializing the T as would happen if executing
569  *     |T(...)|.
570  *
571  * There are various benefits to using MakeUnique instead of |new| expressions.
572  *
573  * First, MakeUnique eliminates use of |new| from code entirely.  If objects are
574  * only created through UniquePtr, then (assuming all explicit release() calls
575  * are safe, including transitively, and no type-safety casting funniness)
576  * correctly maintained ownership of the UniquePtr guarantees no leaks are
577  * possible.  (This pays off best if a class is only ever created through a
578  * factory method on the class, using a private constructor.)
579  *
580  * Second, initializing a UniquePtr using a |new| expression requires repeating
581  * the name of the new'd type, whereas MakeUnique in concert with the |auto|
582  * keyword names it only once:
583  *
584  *   UniquePtr<char> ptr1(new char()); // repetitive
585  *   auto ptr2 = MakeUnique<char>();   // shorter
586  *
587  * Of course this assumes the reader understands the operation MakeUnique
588  * performs.  In the long run this is probably a reasonable assumption.  In the
589  * short run you'll have to use your judgment about what readers can be expected
590  * to know, or to quickly look up.
591  *
592  * Third, a call to MakeUnique can be assigned directly to a UniquePtr.  In
593  * contrast you can't assign a pointer into a UniquePtr without using the
594  * cumbersome reset().
595  *
596  *   UniquePtr<char> p;
597  *   p = new char;           // ERROR
598  *   p.reset(new char);      // works, but fugly
599  *   p = MakeUnique<char>(); // preferred
600  *
601  * (And third, although not relevant to Mozilla: MakeUnique is exception-safe.
602  * An exception thrown after |new T| succeeds will leak that memory, unless the
603  * pointer is assigned to an object that will manage its ownership.  UniquePtr
604  * ably serves this function.)
605  */
606 
607 template <typename T, typename... Args>
608 typename detail::UniqueSelector<T>::SingleObject MakeUnique(Args&&... aArgs) {
609   return UniquePtr<T>(new T(std::forward<Args>(aArgs)...));
610 }
611 
612 template <typename T>
613 typename detail::UniqueSelector<T>::UnknownBound MakeUnique(
614     decltype(sizeof(int)) aN) {
615   using ArrayType = std::remove_extent_t<T>;
616   return UniquePtr<T>(new ArrayType[aN]());
617 }
618 
619 template <typename T, typename... Args>
620 typename detail::UniqueSelector<T>::KnownBound MakeUnique(Args&&... aArgs) =
621     delete;
622 
623 /**
624  * WrapUnique is a helper function to transfer ownership from a raw pointer
625  * into a UniquePtr<T>. It can only be used with a single non-array type.
626  *
627  * It is generally used this way:
628  *
629  *   auto p = WrapUnique(new char);
630  *
631  * It can be used when MakeUnique is not usable, for example, when the
632  * constructor you are using is private, or you want to use aggregate
633  * initialization.
634  */
635 
636 template <typename T>
637 typename detail::UniqueSelector<T>::SingleObject WrapUnique(T* aPtr) {
638   return UniquePtr<T>(aPtr);
639 }
640 
641 }  // namespace mozilla
642 
643 namespace std {
644 
645 template <typename T, class D>
646 void swap(mozilla::UniquePtr<T, D>& aX, mozilla::UniquePtr<T, D>& aY) {
647   aX.swap(aY);
648 }
649 
650 }  // namespace std
651 
652 #endif /* mozilla_UniquePtr_h */
653