1 /* -*- Mode: C++; tab-width: 8; indent-tabs-mode: nil; c-basic-offset: 2 -*- */
2 /* vim: set ts=8 sts=2 et sw=2 tw=80: */
3 
4 // Copyright (c) 2010 Google Inc. All Rights Reserved.
5 //
6 // Redistribution and use in source and binary forms, with or without
7 // modification, are permitted provided that the following conditions are
8 // met:
9 //
10 //     * Redistributions of source code must retain the above copyright
11 // notice, this list of conditions and the following disclaimer.
12 //     * Redistributions in binary form must reproduce the above
13 // copyright notice, this list of conditions and the following disclaimer
14 // in the documentation and/or other materials provided with the
15 // distribution.
16 //     * Neither the name of Google Inc. nor the names of its
17 // contributors may be used to endorse or promote products derived from
18 // this software without specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
21 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
22 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
23 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
24 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
25 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
26 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
27 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
28 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
29 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
30 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // CFI reader author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
33 // Original author: Jim Blandy <jimb@mozilla.com> <jimb@red-bean.com>
34 
35 // Implementation of dwarf2reader::LineInfo, dwarf2reader::CompilationUnit,
36 // and dwarf2reader::CallFrameInfo. See dwarf2reader.h for details.
37 
38 // This file is derived from the following files in
39 // toolkit/crashreporter/google-breakpad:
40 //   src/common/dwarf/bytereader.cc
41 //   src/common/dwarf/dwarf2reader.cc
42 //   src/common/dwarf_cfi_to_module.cc
43 
44 #include <stdint.h>
45 #include <stdio.h>
46 #include <string.h>
47 #include <stdlib.h>
48 
49 #include <map>
50 #include <stack>
51 #include <string>
52 
53 #include "mozilla/Assertions.h"
54 #include "mozilla/Sprintf.h"
55 
56 #include "LulCommonExt.h"
57 #include "LulDwarfInt.h"
58 
59 // Set this to 1 for verbose logging
60 #define DEBUG_DWARF 0
61 
62 namespace lul {
63 
64 using std::string;
65 
ByteReader(enum Endianness endian)66 ByteReader::ByteReader(enum Endianness endian)
67     : offset_reader_(NULL),
68       address_reader_(NULL),
69       endian_(endian),
70       address_size_(0),
71       offset_size_(0),
72       have_section_base_(),
73       have_text_base_(),
74       have_data_base_(),
75       have_function_base_() {}
76 
~ByteReader()77 ByteReader::~ByteReader() {}
78 
SetOffsetSize(uint8 size)79 void ByteReader::SetOffsetSize(uint8 size) {
80   offset_size_ = size;
81   MOZ_ASSERT(size == 4 || size == 8);
82   if (size == 4) {
83     this->offset_reader_ = &ByteReader::ReadFourBytes;
84   } else {
85     this->offset_reader_ = &ByteReader::ReadEightBytes;
86   }
87 }
88 
SetAddressSize(uint8 size)89 void ByteReader::SetAddressSize(uint8 size) {
90   address_size_ = size;
91   MOZ_ASSERT(size == 4 || size == 8);
92   if (size == 4) {
93     this->address_reader_ = &ByteReader::ReadFourBytes;
94   } else {
95     this->address_reader_ = &ByteReader::ReadEightBytes;
96   }
97 }
98 
ReadInitialLength(const char * start,size_t * len)99 uint64 ByteReader::ReadInitialLength(const char* start, size_t* len) {
100   const uint64 initial_length = ReadFourBytes(start);
101   start += 4;
102 
103   // In DWARF2/3, if the initial length is all 1 bits, then the offset
104   // size is 8 and we need to read the next 8 bytes for the real length.
105   if (initial_length == 0xffffffff) {
106     SetOffsetSize(8);
107     *len = 12;
108     return ReadOffset(start);
109   } else {
110     SetOffsetSize(4);
111     *len = 4;
112   }
113   return initial_length;
114 }
115 
ValidEncoding(DwarfPointerEncoding encoding) const116 bool ByteReader::ValidEncoding(DwarfPointerEncoding encoding) const {
117   if (encoding == DW_EH_PE_omit) return true;
118   if (encoding == DW_EH_PE_aligned) return true;
119   if ((encoding & 0x7) > DW_EH_PE_udata8) return false;
120   if ((encoding & 0x70) > DW_EH_PE_funcrel) return false;
121   return true;
122 }
123 
UsableEncoding(DwarfPointerEncoding encoding) const124 bool ByteReader::UsableEncoding(DwarfPointerEncoding encoding) const {
125   switch (encoding & 0x70) {
126     case DW_EH_PE_absptr:
127       return true;
128     case DW_EH_PE_pcrel:
129       return have_section_base_;
130     case DW_EH_PE_textrel:
131       return have_text_base_;
132     case DW_EH_PE_datarel:
133       return have_data_base_;
134     case DW_EH_PE_funcrel:
135       return have_function_base_;
136     default:
137       return false;
138   }
139 }
140 
ReadEncodedPointer(const char * buffer,DwarfPointerEncoding encoding,size_t * len) const141 uint64 ByteReader::ReadEncodedPointer(const char* buffer,
142                                       DwarfPointerEncoding encoding,
143                                       size_t* len) const {
144   // UsableEncoding doesn't approve of DW_EH_PE_omit, so we shouldn't
145   // see it here.
146   MOZ_ASSERT(encoding != DW_EH_PE_omit);
147 
148   // The Linux Standards Base 4.0 does not make this clear, but the
149   // GNU tools (gcc/unwind-pe.h; readelf/dwarf.c; gdb/dwarf2-frame.c)
150   // agree that aligned pointers are always absolute, machine-sized,
151   // machine-signed pointers.
152   if (encoding == DW_EH_PE_aligned) {
153     MOZ_ASSERT(have_section_base_);
154 
155     // We don't need to align BUFFER in *our* address space. Rather, we
156     // need to find the next position in our buffer that would be aligned
157     // when the .eh_frame section the buffer contains is loaded into the
158     // program's memory. So align assuming that buffer_base_ gets loaded at
159     // address section_base_, where section_base_ itself may or may not be
160     // aligned.
161 
162     // First, find the offset to START from the closest prior aligned
163     // address.
164     uint64 skew = section_base_ & (AddressSize() - 1);
165     // Now find the offset from that aligned address to buffer.
166     uint64 offset = skew + (buffer - buffer_base_);
167     // Round up to the next boundary.
168     uint64 aligned = (offset + AddressSize() - 1) & -AddressSize();
169     // Convert back to a pointer.
170     const char* aligned_buffer = buffer_base_ + (aligned - skew);
171     // Finally, store the length and actually fetch the pointer.
172     *len = aligned_buffer - buffer + AddressSize();
173     return ReadAddress(aligned_buffer);
174   }
175 
176   // Extract the value first, ignoring whether it's a pointer or an
177   // offset relative to some base.
178   uint64 offset;
179   switch (encoding & 0x0f) {
180     case DW_EH_PE_absptr:
181       // DW_EH_PE_absptr is weird, as it is used as a meaningful value for
182       // both the high and low nybble of encoding bytes. When it appears in
183       // the high nybble, it means that the pointer is absolute, not an
184       // offset from some base address. When it appears in the low nybble,
185       // as here, it means that the pointer is stored as a normal
186       // machine-sized and machine-signed address. A low nybble of
187       // DW_EH_PE_absptr does not imply that the pointer is absolute; it is
188       // correct for us to treat the value as an offset from a base address
189       // if the upper nybble is not DW_EH_PE_absptr.
190       offset = ReadAddress(buffer);
191       *len = AddressSize();
192       break;
193 
194     case DW_EH_PE_uleb128:
195       offset = ReadUnsignedLEB128(buffer, len);
196       break;
197 
198     case DW_EH_PE_udata2:
199       offset = ReadTwoBytes(buffer);
200       *len = 2;
201       break;
202 
203     case DW_EH_PE_udata4:
204       offset = ReadFourBytes(buffer);
205       *len = 4;
206       break;
207 
208     case DW_EH_PE_udata8:
209       offset = ReadEightBytes(buffer);
210       *len = 8;
211       break;
212 
213     case DW_EH_PE_sleb128:
214       offset = ReadSignedLEB128(buffer, len);
215       break;
216 
217     case DW_EH_PE_sdata2:
218       offset = ReadTwoBytes(buffer);
219       // Sign-extend from 16 bits.
220       offset = (offset ^ 0x8000) - 0x8000;
221       *len = 2;
222       break;
223 
224     case DW_EH_PE_sdata4:
225       offset = ReadFourBytes(buffer);
226       // Sign-extend from 32 bits.
227       offset = (offset ^ 0x80000000ULL) - 0x80000000ULL;
228       *len = 4;
229       break;
230 
231     case DW_EH_PE_sdata8:
232       // No need to sign-extend; this is the full width of our type.
233       offset = ReadEightBytes(buffer);
234       *len = 8;
235       break;
236 
237     default:
238       abort();
239   }
240 
241   // Find the appropriate base address.
242   uint64 base;
243   switch (encoding & 0x70) {
244     case DW_EH_PE_absptr:
245       base = 0;
246       break;
247 
248     case DW_EH_PE_pcrel:
249       MOZ_ASSERT(have_section_base_);
250       base = section_base_ + (buffer - buffer_base_);
251       break;
252 
253     case DW_EH_PE_textrel:
254       MOZ_ASSERT(have_text_base_);
255       base = text_base_;
256       break;
257 
258     case DW_EH_PE_datarel:
259       MOZ_ASSERT(have_data_base_);
260       base = data_base_;
261       break;
262 
263     case DW_EH_PE_funcrel:
264       MOZ_ASSERT(have_function_base_);
265       base = function_base_;
266       break;
267 
268     default:
269       abort();
270   }
271 
272   uint64 pointer = base + offset;
273 
274   // Remove inappropriate upper bits.
275   if (AddressSize() == 4)
276     pointer = pointer & 0xffffffff;
277   else
278     MOZ_ASSERT(AddressSize() == sizeof(uint64));
279 
280   return pointer;
281 }
282 
283 // A DWARF rule for recovering the address or value of a register, or
284 // computing the canonical frame address. There is one subclass of this for
285 // each '*Rule' member function in CallFrameInfo::Handler.
286 //
287 // It's annoying that we have to handle Rules using pointers (because
288 // the concrete instances can have an arbitrary size). They're small,
289 // so it would be much nicer if we could just handle them by value
290 // instead of fretting about ownership and destruction.
291 //
292 // It seems like all these could simply be instances of std::tr1::bind,
293 // except that we need instances to be EqualityComparable, too.
294 //
295 // This could logically be nested within State, but then the qualified names
296 // get horrendous.
297 class CallFrameInfo::Rule {
298  public:
~Rule()299   virtual ~Rule() {}
300 
301   // Tell HANDLER that, at ADDRESS in the program, REG can be
302   // recovered using this rule. If REG is kCFARegister, then this rule
303   // describes how to compute the canonical frame address. Return what the
304   // HANDLER member function returned.
305   virtual bool Handle(Handler* handler, uint64 address, int reg) const = 0;
306 
307   // Equality on rules. We use these to decide which rules we need
308   // to report after a DW_CFA_restore_state instruction.
309   virtual bool operator==(const Rule& rhs) const = 0;
310 
operator !=(const Rule & rhs) const311   bool operator!=(const Rule& rhs) const { return !(*this == rhs); }
312 
313   // Return a pointer to a copy of this rule.
314   virtual Rule* Copy() const = 0;
315 
316   // If this is a base+offset rule, change its base register to REG.
317   // Otherwise, do nothing. (Ugly, but required for DW_CFA_def_cfa_register.)
SetBaseRegister(unsigned reg)318   virtual void SetBaseRegister(unsigned reg) {}
319 
320   // If this is a base+offset rule, change its offset to OFFSET. Otherwise,
321   // do nothing. (Ugly, but required for DW_CFA_def_cfa_offset.)
SetOffset(long long offset)322   virtual void SetOffset(long long offset) {}
323 
324   // A RTTI workaround, to make it possible to implement equality
325   // comparisons on classes derived from this one.
326   enum CFIRTag {
327     CFIR_UNDEFINED_RULE,
328     CFIR_SAME_VALUE_RULE,
329     CFIR_OFFSET_RULE,
330     CFIR_VAL_OFFSET_RULE,
331     CFIR_REGISTER_RULE,
332     CFIR_EXPRESSION_RULE,
333     CFIR_VAL_EXPRESSION_RULE
334   };
335 
336   // Produce the tag that identifies the child class of this object.
337   virtual CFIRTag getTag() const = 0;
338 };
339 
340 // Rule: the value the register had in the caller cannot be recovered.
341 class CallFrameInfo::UndefinedRule : public CallFrameInfo::Rule {
342  public:
UndefinedRule()343   UndefinedRule() {}
~UndefinedRule()344   ~UndefinedRule() {}
getTag() const345   CFIRTag getTag() const override { return CFIR_UNDEFINED_RULE; }
Handle(Handler * handler,uint64 address,int reg) const346   bool Handle(Handler* handler, uint64 address, int reg) const override {
347     return handler->UndefinedRule(address, reg);
348   }
operator ==(const Rule & rhs) const349   bool operator==(const Rule& rhs) const override {
350     if (rhs.getTag() != CFIR_UNDEFINED_RULE) return false;
351     return true;
352   }
Copy() const353   Rule* Copy() const override { return new UndefinedRule(*this); }
354 };
355 
356 // Rule: the register's value is the same as that it had in the caller.
357 class CallFrameInfo::SameValueRule : public CallFrameInfo::Rule {
358  public:
SameValueRule()359   SameValueRule() {}
~SameValueRule()360   ~SameValueRule() {}
getTag() const361   CFIRTag getTag() const override { return CFIR_SAME_VALUE_RULE; }
Handle(Handler * handler,uint64 address,int reg) const362   bool Handle(Handler* handler, uint64 address, int reg) const override {
363     return handler->SameValueRule(address, reg);
364   }
operator ==(const Rule & rhs) const365   bool operator==(const Rule& rhs) const override {
366     if (rhs.getTag() != CFIR_SAME_VALUE_RULE) return false;
367     return true;
368   }
Copy() const369   Rule* Copy() const override { return new SameValueRule(*this); }
370 };
371 
372 // Rule: the register is saved at OFFSET from BASE_REGISTER.  BASE_REGISTER
373 // may be CallFrameInfo::Handler::kCFARegister.
374 class CallFrameInfo::OffsetRule : public CallFrameInfo::Rule {
375  public:
OffsetRule(int base_register,long offset)376   OffsetRule(int base_register, long offset)
377       : base_register_(base_register), offset_(offset) {}
~OffsetRule()378   ~OffsetRule() {}
getTag() const379   CFIRTag getTag() const override { return CFIR_OFFSET_RULE; }
Handle(Handler * handler,uint64 address,int reg) const380   bool Handle(Handler* handler, uint64 address, int reg) const override {
381     return handler->OffsetRule(address, reg, base_register_, offset_);
382   }
operator ==(const Rule & rhs) const383   bool operator==(const Rule& rhs) const override {
384     if (rhs.getTag() != CFIR_OFFSET_RULE) return false;
385     const OffsetRule* our_rhs = static_cast<const OffsetRule*>(&rhs);
386     return (base_register_ == our_rhs->base_register_ &&
387             offset_ == our_rhs->offset_);
388   }
Copy() const389   Rule* Copy() const override { return new OffsetRule(*this); }
390   // We don't actually need SetBaseRegister or SetOffset here, since they
391   // are only ever applied to CFA rules, for DW_CFA_def_cfa_offset, and it
392   // doesn't make sense to use OffsetRule for computing the CFA: it
393   // computes the address at which a register is saved, not a value.
394  private:
395   int base_register_;
396   long offset_;
397 };
398 
399 // Rule: the value the register had in the caller is the value of
400 // BASE_REGISTER plus offset. BASE_REGISTER may be
401 // CallFrameInfo::Handler::kCFARegister.
402 class CallFrameInfo::ValOffsetRule : public CallFrameInfo::Rule {
403  public:
ValOffsetRule(int base_register,long offset)404   ValOffsetRule(int base_register, long offset)
405       : base_register_(base_register), offset_(offset) {}
~ValOffsetRule()406   ~ValOffsetRule() {}
getTag() const407   CFIRTag getTag() const override { return CFIR_VAL_OFFSET_RULE; }
Handle(Handler * handler,uint64 address,int reg) const408   bool Handle(Handler* handler, uint64 address, int reg) const override {
409     return handler->ValOffsetRule(address, reg, base_register_, offset_);
410   }
operator ==(const Rule & rhs) const411   bool operator==(const Rule& rhs) const override {
412     if (rhs.getTag() != CFIR_VAL_OFFSET_RULE) return false;
413     const ValOffsetRule* our_rhs = static_cast<const ValOffsetRule*>(&rhs);
414     return (base_register_ == our_rhs->base_register_ &&
415             offset_ == our_rhs->offset_);
416   }
Copy() const417   Rule* Copy() const override { return new ValOffsetRule(*this); }
SetBaseRegister(unsigned reg)418   void SetBaseRegister(unsigned reg) override { base_register_ = reg; }
SetOffset(long long offset)419   void SetOffset(long long offset) override { offset_ = offset; }
420 
421  private:
422   int base_register_;
423   long offset_;
424 };
425 
426 // Rule: the register has been saved in another register REGISTER_NUMBER_.
427 class CallFrameInfo::RegisterRule : public CallFrameInfo::Rule {
428  public:
RegisterRule(int register_number)429   explicit RegisterRule(int register_number)
430       : register_number_(register_number) {}
~RegisterRule()431   ~RegisterRule() {}
getTag() const432   CFIRTag getTag() const override { return CFIR_REGISTER_RULE; }
Handle(Handler * handler,uint64 address,int reg) const433   bool Handle(Handler* handler, uint64 address, int reg) const override {
434     return handler->RegisterRule(address, reg, register_number_);
435   }
operator ==(const Rule & rhs) const436   bool operator==(const Rule& rhs) const override {
437     if (rhs.getTag() != CFIR_REGISTER_RULE) return false;
438     const RegisterRule* our_rhs = static_cast<const RegisterRule*>(&rhs);
439     return (register_number_ == our_rhs->register_number_);
440   }
Copy() const441   Rule* Copy() const override { return new RegisterRule(*this); }
442 
443  private:
444   int register_number_;
445 };
446 
447 // Rule: EXPRESSION evaluates to the address at which the register is saved.
448 class CallFrameInfo::ExpressionRule : public CallFrameInfo::Rule {
449  public:
ExpressionRule(const string & expression)450   explicit ExpressionRule(const string& expression) : expression_(expression) {}
~ExpressionRule()451   ~ExpressionRule() {}
getTag() const452   CFIRTag getTag() const override { return CFIR_EXPRESSION_RULE; }
Handle(Handler * handler,uint64 address,int reg) const453   bool Handle(Handler* handler, uint64 address, int reg) const override {
454     return handler->ExpressionRule(address, reg, expression_);
455   }
operator ==(const Rule & rhs) const456   bool operator==(const Rule& rhs) const override {
457     if (rhs.getTag() != CFIR_EXPRESSION_RULE) return false;
458     const ExpressionRule* our_rhs = static_cast<const ExpressionRule*>(&rhs);
459     return (expression_ == our_rhs->expression_);
460   }
Copy() const461   Rule* Copy() const override { return new ExpressionRule(*this); }
462 
463  private:
464   string expression_;
465 };
466 
467 // Rule: EXPRESSION evaluates to the previous value of the register.
468 class CallFrameInfo::ValExpressionRule : public CallFrameInfo::Rule {
469  public:
ValExpressionRule(const string & expression)470   explicit ValExpressionRule(const string& expression)
471       : expression_(expression) {}
~ValExpressionRule()472   ~ValExpressionRule() {}
getTag() const473   CFIRTag getTag() const override { return CFIR_VAL_EXPRESSION_RULE; }
Handle(Handler * handler,uint64 address,int reg) const474   bool Handle(Handler* handler, uint64 address, int reg) const override {
475     return handler->ValExpressionRule(address, reg, expression_);
476   }
operator ==(const Rule & rhs) const477   bool operator==(const Rule& rhs) const override {
478     if (rhs.getTag() != CFIR_VAL_EXPRESSION_RULE) return false;
479     const ValExpressionRule* our_rhs =
480         static_cast<const ValExpressionRule*>(&rhs);
481     return (expression_ == our_rhs->expression_);
482   }
Copy() const483   Rule* Copy() const override { return new ValExpressionRule(*this); }
484 
485  private:
486   string expression_;
487 };
488 
489 // A map from register numbers to rules.
490 class CallFrameInfo::RuleMap {
491  public:
RuleMap()492   RuleMap() : cfa_rule_(NULL) {}
RuleMap(const RuleMap & rhs)493   RuleMap(const RuleMap& rhs) : cfa_rule_(NULL) { *this = rhs; }
~RuleMap()494   ~RuleMap() { Clear(); }
495 
496   RuleMap& operator=(const RuleMap& rhs);
497 
498   // Set the rule for computing the CFA to RULE. Take ownership of RULE.
SetCFARule(Rule * rule)499   void SetCFARule(Rule* rule) {
500     delete cfa_rule_;
501     cfa_rule_ = rule;
502   }
503 
504   // Return the current CFA rule. Unlike RegisterRule, this RuleMap retains
505   // ownership of the rule. We use this for DW_CFA_def_cfa_offset and
506   // DW_CFA_def_cfa_register, and for detecting references to the CFA before
507   // a rule for it has been established.
CFARule() const508   Rule* CFARule() const { return cfa_rule_; }
509 
510   // Return the rule for REG, or NULL if there is none. The caller takes
511   // ownership of the result.
512   Rule* RegisterRule(int reg) const;
513 
514   // Set the rule for computing REG to RULE. Take ownership of RULE.
515   void SetRegisterRule(int reg, Rule* rule);
516 
517   // Make all the appropriate calls to HANDLER as if we were changing from
518   // this RuleMap to NEW_RULES at ADDRESS. We use this to implement
519   // DW_CFA_restore_state, where lots of rules can change simultaneously.
520   // Return true if all handlers returned true; otherwise, return false.
521   bool HandleTransitionTo(Handler* handler, uint64 address,
522                           const RuleMap& new_rules) const;
523 
524  private:
525   // A map from register numbers to Rules.
526   typedef std::map<int, Rule*> RuleByNumber;
527 
528   // Remove all register rules and clear cfa_rule_.
529   void Clear();
530 
531   // The rule for computing the canonical frame address. This RuleMap owns
532   // this rule.
533   Rule* cfa_rule_;
534 
535   // A map from register numbers to postfix expressions to recover
536   // their values. This RuleMap owns the Rules the map refers to.
537   RuleByNumber registers_;
538 };
539 
operator =(const RuleMap & rhs)540 CallFrameInfo::RuleMap& CallFrameInfo::RuleMap::operator=(const RuleMap& rhs) {
541   Clear();
542   // Since each map owns the rules it refers to, assignment must copy them.
543   if (rhs.cfa_rule_) cfa_rule_ = rhs.cfa_rule_->Copy();
544   for (RuleByNumber::const_iterator it = rhs.registers_.begin();
545        it != rhs.registers_.end(); it++)
546     registers_[it->first] = it->second->Copy();
547   return *this;
548 }
549 
RegisterRule(int reg) const550 CallFrameInfo::Rule* CallFrameInfo::RuleMap::RegisterRule(int reg) const {
551   MOZ_ASSERT(reg != Handler::kCFARegister);
552   RuleByNumber::const_iterator it = registers_.find(reg);
553   if (it != registers_.end())
554     return it->second->Copy();
555   else
556     return NULL;
557 }
558 
SetRegisterRule(int reg,Rule * rule)559 void CallFrameInfo::RuleMap::SetRegisterRule(int reg, Rule* rule) {
560   MOZ_ASSERT(reg != Handler::kCFARegister);
561   MOZ_ASSERT(rule);
562   Rule** slot = &registers_[reg];
563   delete *slot;
564   *slot = rule;
565 }
566 
HandleTransitionTo(Handler * handler,uint64 address,const RuleMap & new_rules) const567 bool CallFrameInfo::RuleMap::HandleTransitionTo(
568     Handler* handler, uint64 address, const RuleMap& new_rules) const {
569   // Transition from cfa_rule_ to new_rules.cfa_rule_.
570   if (cfa_rule_ && new_rules.cfa_rule_) {
571     if (*cfa_rule_ != *new_rules.cfa_rule_ &&
572         !new_rules.cfa_rule_->Handle(handler, address, Handler::kCFARegister))
573       return false;
574   } else if (cfa_rule_) {
575     // this RuleMap has a CFA rule but new_rules doesn't.
576     // CallFrameInfo::Handler has no way to handle this --- and shouldn't;
577     // it's garbage input. The instruction interpreter should have
578     // detected this and warned, so take no action here.
579   } else if (new_rules.cfa_rule_) {
580     // This shouldn't be possible: NEW_RULES is some prior state, and
581     // there's no way to remove entries.
582     MOZ_ASSERT(0);
583   } else {
584     // Both CFA rules are empty.  No action needed.
585   }
586 
587   // Traverse the two maps in order by register number, and report
588   // whatever differences we find.
589   RuleByNumber::const_iterator old_it = registers_.begin();
590   RuleByNumber::const_iterator new_it = new_rules.registers_.begin();
591   while (old_it != registers_.end() && new_it != new_rules.registers_.end()) {
592     if (old_it->first < new_it->first) {
593       // This RuleMap has an entry for old_it->first, but NEW_RULES
594       // doesn't.
595       //
596       // This isn't really the right thing to do, but since CFI generally
597       // only mentions callee-saves registers, and GCC's convention for
598       // callee-saves registers is that they are unchanged, it's a good
599       // approximation.
600       if (!handler->SameValueRule(address, old_it->first)) return false;
601       old_it++;
602     } else if (old_it->first > new_it->first) {
603       // NEW_RULES has entry for new_it->first, but this RuleMap
604       // doesn't. This shouldn't be possible: NEW_RULES is some prior
605       // state, and there's no way to remove entries.
606       MOZ_ASSERT(0);
607     } else {
608       // Both maps have an entry for this register. Report the new
609       // rule if it is different.
610       if (*old_it->second != *new_it->second &&
611           !new_it->second->Handle(handler, address, new_it->first))
612         return false;
613       new_it++;
614       old_it++;
615     }
616   }
617   // Finish off entries from this RuleMap with no counterparts in new_rules.
618   while (old_it != registers_.end()) {
619     if (!handler->SameValueRule(address, old_it->first)) return false;
620     old_it++;
621   }
622   // Since we only make transitions from a rule set to some previously
623   // saved rule set, and we can only add rules to the map, NEW_RULES
624   // must have fewer rules than *this.
625   MOZ_ASSERT(new_it == new_rules.registers_.end());
626 
627   return true;
628 }
629 
630 // Remove all register rules and clear cfa_rule_.
Clear()631 void CallFrameInfo::RuleMap::Clear() {
632   delete cfa_rule_;
633   cfa_rule_ = NULL;
634   for (RuleByNumber::iterator it = registers_.begin(); it != registers_.end();
635        it++)
636     delete it->second;
637   registers_.clear();
638 }
639 
640 // The state of the call frame information interpreter as it processes
641 // instructions from a CIE and FDE.
642 class CallFrameInfo::State {
643  public:
644   // Create a call frame information interpreter state with the given
645   // reporter, reader, handler, and initial call frame info address.
State(ByteReader * reader,Handler * handler,Reporter * reporter,uint64 address)646   State(ByteReader* reader, Handler* handler, Reporter* reporter,
647         uint64 address)
648       : reader_(reader),
649         handler_(handler),
650         reporter_(reporter),
651         address_(address),
652         entry_(NULL),
653         cursor_(NULL),
654         saved_rules_(NULL) {}
655 
~State()656   ~State() {
657     if (saved_rules_) delete saved_rules_;
658   }
659 
660   // Interpret instructions from CIE, save the resulting rule set for
661   // DW_CFA_restore instructions, and return true. On error, report
662   // the problem to reporter_ and return false.
663   bool InterpretCIE(const CIE& cie);
664 
665   // Interpret instructions from FDE, and return true. On error,
666   // report the problem to reporter_ and return false.
667   bool InterpretFDE(const FDE& fde);
668 
669  private:
670   // The operands of a CFI instruction, for ParseOperands.
671   struct Operands {
672     unsigned register_number;  // A register number.
673     uint64 offset;             // An offset or address.
674     long signed_offset;        // A signed offset.
675     string expression;         // A DWARF expression.
676   };
677 
678   // Parse CFI instruction operands from STATE's instruction stream as
679   // described by FORMAT. On success, populate OPERANDS with the
680   // results, and return true. On failure, report the problem and
681   // return false.
682   //
683   // Each character of FORMAT should be one of the following:
684   //
685   //   'r'  unsigned LEB128 register number (OPERANDS->register_number)
686   //   'o'  unsigned LEB128 offset          (OPERANDS->offset)
687   //   's'  signed LEB128 offset            (OPERANDS->signed_offset)
688   //   'a'  machine-size address            (OPERANDS->offset)
689   //        (If the CIE has a 'z' augmentation string, 'a' uses the
690   //        encoding specified by the 'R' argument.)
691   //   '1'  a one-byte offset               (OPERANDS->offset)
692   //   '2'  a two-byte offset               (OPERANDS->offset)
693   //   '4'  a four-byte offset              (OPERANDS->offset)
694   //   '8'  an eight-byte offset            (OPERANDS->offset)
695   //   'e'  a DW_FORM_block holding a       (OPERANDS->expression)
696   //        DWARF expression
697   bool ParseOperands(const char* format, Operands* operands);
698 
699   // Interpret one CFI instruction from STATE's instruction stream, update
700   // STATE, report any rule changes to handler_, and return true. On
701   // failure, report the problem and return false.
702   bool DoInstruction();
703 
704   // The following Do* member functions are subroutines of DoInstruction,
705   // factoring out the actual work of operations that have several
706   // different encodings.
707 
708   // Set the CFA rule to be the value of BASE_REGISTER plus OFFSET, and
709   // return true. On failure, report and return false. (Used for
710   // DW_CFA_def_cfa and DW_CFA_def_cfa_sf.)
711   bool DoDefCFA(unsigned base_register, long offset);
712 
713   // Change the offset of the CFA rule to OFFSET, and return true. On
714   // failure, report and return false. (Subroutine for
715   // DW_CFA_def_cfa_offset and DW_CFA_def_cfa_offset_sf.)
716   bool DoDefCFAOffset(long offset);
717 
718   // Specify that REG can be recovered using RULE, and return true. On
719   // failure, report and return false.
720   bool DoRule(unsigned reg, Rule* rule);
721 
722   // Specify that REG can be found at OFFSET from the CFA, and return true.
723   // On failure, report and return false. (Subroutine for DW_CFA_offset,
724   // DW_CFA_offset_extended, and DW_CFA_offset_extended_sf.)
725   bool DoOffset(unsigned reg, long offset);
726 
727   // Specify that the caller's value for REG is the CFA plus OFFSET,
728   // and return true. On failure, report and return false. (Subroutine
729   // for DW_CFA_val_offset and DW_CFA_val_offset_sf.)
730   bool DoValOffset(unsigned reg, long offset);
731 
732   // Restore REG to the rule established in the CIE, and return true. On
733   // failure, report and return false. (Subroutine for DW_CFA_restore and
734   // DW_CFA_restore_extended.)
735   bool DoRestore(unsigned reg);
736 
737   // Return the section offset of the instruction at cursor. For use
738   // in error messages.
CursorOffset()739   uint64 CursorOffset() { return entry_->offset + (cursor_ - entry_->start); }
740 
741   // Report that entry_ is incomplete, and return false. For brevity.
ReportIncomplete()742   bool ReportIncomplete() {
743     reporter_->Incomplete(entry_->offset, entry_->kind);
744     return false;
745   }
746 
747   // For reading multi-byte values with the appropriate endianness.
748   ByteReader* reader_;
749 
750   // The handler to which we should report the data we find.
751   Handler* handler_;
752 
753   // For reporting problems in the info we're parsing.
754   Reporter* reporter_;
755 
756   // The code address to which the next instruction in the stream applies.
757   uint64 address_;
758 
759   // The entry whose instructions we are currently processing. This is
760   // first a CIE, and then an FDE.
761   const Entry* entry_;
762 
763   // The next instruction to process.
764   const char* cursor_;
765 
766   // The current set of rules.
767   RuleMap rules_;
768 
769   // The set of rules established by the CIE, used by DW_CFA_restore
770   // and DW_CFA_restore_extended. We set this after interpreting the
771   // CIE's instructions.
772   RuleMap cie_rules_;
773 
774   // A stack of saved states, for DW_CFA_remember_state and
775   // DW_CFA_restore_state.
776   std::stack<RuleMap>* saved_rules_;
777 };
778 
InterpretCIE(const CIE & cie)779 bool CallFrameInfo::State::InterpretCIE(const CIE& cie) {
780   entry_ = &cie;
781   cursor_ = entry_->instructions;
782   while (cursor_ < entry_->end)
783     if (!DoInstruction()) return false;
784   // Note the rules established by the CIE, for use by DW_CFA_restore
785   // and DW_CFA_restore_extended.
786   cie_rules_ = rules_;
787   return true;
788 }
789 
InterpretFDE(const FDE & fde)790 bool CallFrameInfo::State::InterpretFDE(const FDE& fde) {
791   entry_ = &fde;
792   cursor_ = entry_->instructions;
793   while (cursor_ < entry_->end)
794     if (!DoInstruction()) return false;
795   return true;
796 }
797 
ParseOperands(const char * format,Operands * operands)798 bool CallFrameInfo::State::ParseOperands(const char* format,
799                                          Operands* operands) {
800   size_t len;
801   const char* operand;
802 
803   for (operand = format; *operand; operand++) {
804     size_t bytes_left = entry_->end - cursor_;
805     switch (*operand) {
806       case 'r':
807         operands->register_number = reader_->ReadUnsignedLEB128(cursor_, &len);
808         if (len > bytes_left) return ReportIncomplete();
809         cursor_ += len;
810         break;
811 
812       case 'o':
813         operands->offset = reader_->ReadUnsignedLEB128(cursor_, &len);
814         if (len > bytes_left) return ReportIncomplete();
815         cursor_ += len;
816         break;
817 
818       case 's':
819         operands->signed_offset = reader_->ReadSignedLEB128(cursor_, &len);
820         if (len > bytes_left) return ReportIncomplete();
821         cursor_ += len;
822         break;
823 
824       case 'a':
825         operands->offset = reader_->ReadEncodedPointer(
826             cursor_, entry_->cie->pointer_encoding, &len);
827         if (len > bytes_left) return ReportIncomplete();
828         cursor_ += len;
829         break;
830 
831       case '1':
832         if (1 > bytes_left) return ReportIncomplete();
833         operands->offset = static_cast<unsigned char>(*cursor_++);
834         break;
835 
836       case '2':
837         if (2 > bytes_left) return ReportIncomplete();
838         operands->offset = reader_->ReadTwoBytes(cursor_);
839         cursor_ += 2;
840         break;
841 
842       case '4':
843         if (4 > bytes_left) return ReportIncomplete();
844         operands->offset = reader_->ReadFourBytes(cursor_);
845         cursor_ += 4;
846         break;
847 
848       case '8':
849         if (8 > bytes_left) return ReportIncomplete();
850         operands->offset = reader_->ReadEightBytes(cursor_);
851         cursor_ += 8;
852         break;
853 
854       case 'e': {
855         size_t expression_length = reader_->ReadUnsignedLEB128(cursor_, &len);
856         if (len > bytes_left || expression_length > bytes_left - len)
857           return ReportIncomplete();
858         cursor_ += len;
859         operands->expression = string(cursor_, expression_length);
860         cursor_ += expression_length;
861         break;
862       }
863 
864       default:
865         MOZ_ASSERT(0);
866     }
867   }
868 
869   return true;
870 }
871 
DoInstruction()872 bool CallFrameInfo::State::DoInstruction() {
873   CIE* cie = entry_->cie;
874   Operands ops;
875 
876   // Our entry's kind should have been set by now.
877   MOZ_ASSERT(entry_->kind != kUnknown);
878 
879   // We shouldn't have been invoked unless there were more
880   // instructions to parse.
881   MOZ_ASSERT(cursor_ < entry_->end);
882 
883   unsigned opcode = *cursor_++;
884   if ((opcode & 0xc0) != 0) {
885     switch (opcode & 0xc0) {
886       // Advance the address.
887       case DW_CFA_advance_loc: {
888         size_t code_offset = opcode & 0x3f;
889         address_ += code_offset * cie->code_alignment_factor;
890         break;
891       }
892 
893       // Find a register at an offset from the CFA.
894       case DW_CFA_offset:
895         if (!ParseOperands("o", &ops) ||
896             !DoOffset(opcode & 0x3f, ops.offset * cie->data_alignment_factor))
897           return false;
898         break;
899 
900       // Restore the rule established for a register by the CIE.
901       case DW_CFA_restore:
902         if (!DoRestore(opcode & 0x3f)) return false;
903         break;
904 
905       // The 'if' above should have excluded this possibility.
906       default:
907         MOZ_ASSERT(0);
908     }
909 
910     // Return here, so the big switch below won't be indented.
911     return true;
912   }
913 
914   switch (opcode) {
915     // Set the address.
916     case DW_CFA_set_loc:
917       if (!ParseOperands("a", &ops)) return false;
918       address_ = ops.offset;
919       break;
920 
921     // Advance the address.
922     case DW_CFA_advance_loc1:
923       if (!ParseOperands("1", &ops)) return false;
924       address_ += ops.offset * cie->code_alignment_factor;
925       break;
926 
927     // Advance the address.
928     case DW_CFA_advance_loc2:
929       if (!ParseOperands("2", &ops)) return false;
930       address_ += ops.offset * cie->code_alignment_factor;
931       break;
932 
933     // Advance the address.
934     case DW_CFA_advance_loc4:
935       if (!ParseOperands("4", &ops)) return false;
936       address_ += ops.offset * cie->code_alignment_factor;
937       break;
938 
939     // Advance the address.
940     case DW_CFA_MIPS_advance_loc8:
941       if (!ParseOperands("8", &ops)) return false;
942       address_ += ops.offset * cie->code_alignment_factor;
943       break;
944 
945     // Compute the CFA by adding an offset to a register.
946     case DW_CFA_def_cfa:
947       if (!ParseOperands("ro", &ops) ||
948           !DoDefCFA(ops.register_number, ops.offset))
949         return false;
950       break;
951 
952     // Compute the CFA by adding an offset to a register.
953     case DW_CFA_def_cfa_sf:
954       if (!ParseOperands("rs", &ops) ||
955           !DoDefCFA(ops.register_number,
956                     ops.signed_offset * cie->data_alignment_factor))
957         return false;
958       break;
959 
960     // Change the base register used to compute the CFA.
961     case DW_CFA_def_cfa_register: {
962       Rule* cfa_rule = rules_.CFARule();
963       if (!cfa_rule) {
964         reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
965         return false;
966       }
967       if (!ParseOperands("r", &ops)) return false;
968       cfa_rule->SetBaseRegister(ops.register_number);
969       if (!cfa_rule->Handle(handler_, address_, Handler::kCFARegister))
970         return false;
971       break;
972     }
973 
974     // Change the offset used to compute the CFA.
975     case DW_CFA_def_cfa_offset:
976       if (!ParseOperands("o", &ops) || !DoDefCFAOffset(ops.offset))
977         return false;
978       break;
979 
980     // Change the offset used to compute the CFA.
981     case DW_CFA_def_cfa_offset_sf:
982       if (!ParseOperands("s", &ops) ||
983           !DoDefCFAOffset(ops.signed_offset * cie->data_alignment_factor))
984         return false;
985       break;
986 
987     // Specify an expression whose value is the CFA.
988     case DW_CFA_def_cfa_expression: {
989       if (!ParseOperands("e", &ops)) return false;
990       Rule* rule = new ValExpressionRule(ops.expression);
991       rules_.SetCFARule(rule);
992       if (!rule->Handle(handler_, address_, Handler::kCFARegister))
993         return false;
994       break;
995     }
996 
997     // The register's value cannot be recovered.
998     case DW_CFA_undefined: {
999       if (!ParseOperands("r", &ops) ||
1000           !DoRule(ops.register_number, new UndefinedRule()))
1001         return false;
1002       break;
1003     }
1004 
1005     // The register's value is unchanged from its value in the caller.
1006     case DW_CFA_same_value: {
1007       if (!ParseOperands("r", &ops) ||
1008           !DoRule(ops.register_number, new SameValueRule()))
1009         return false;
1010       break;
1011     }
1012 
1013     // Find a register at an offset from the CFA.
1014     case DW_CFA_offset_extended:
1015       if (!ParseOperands("ro", &ops) ||
1016           !DoOffset(ops.register_number,
1017                     ops.offset * cie->data_alignment_factor))
1018         return false;
1019       break;
1020 
1021     // The register is saved at an offset from the CFA.
1022     case DW_CFA_offset_extended_sf:
1023       if (!ParseOperands("rs", &ops) ||
1024           !DoOffset(ops.register_number,
1025                     ops.signed_offset * cie->data_alignment_factor))
1026         return false;
1027       break;
1028 
1029     // The register is saved at an offset from the CFA.
1030     case DW_CFA_GNU_negative_offset_extended:
1031       if (!ParseOperands("ro", &ops) ||
1032           !DoOffset(ops.register_number,
1033                     -ops.offset * cie->data_alignment_factor))
1034         return false;
1035       break;
1036 
1037     // The register's value is the sum of the CFA plus an offset.
1038     case DW_CFA_val_offset:
1039       if (!ParseOperands("ro", &ops) ||
1040           !DoValOffset(ops.register_number,
1041                        ops.offset * cie->data_alignment_factor))
1042         return false;
1043       break;
1044 
1045     // The register's value is the sum of the CFA plus an offset.
1046     case DW_CFA_val_offset_sf:
1047       if (!ParseOperands("rs", &ops) ||
1048           !DoValOffset(ops.register_number,
1049                        ops.signed_offset * cie->data_alignment_factor))
1050         return false;
1051       break;
1052 
1053     // The register has been saved in another register.
1054     case DW_CFA_register: {
1055       if (!ParseOperands("ro", &ops) ||
1056           !DoRule(ops.register_number, new RegisterRule(ops.offset)))
1057         return false;
1058       break;
1059     }
1060 
1061     // An expression yields the address at which the register is saved.
1062     case DW_CFA_expression: {
1063       if (!ParseOperands("re", &ops) ||
1064           !DoRule(ops.register_number, new ExpressionRule(ops.expression)))
1065         return false;
1066       break;
1067     }
1068 
1069     // An expression yields the caller's value for the register.
1070     case DW_CFA_val_expression: {
1071       if (!ParseOperands("re", &ops) ||
1072           !DoRule(ops.register_number, new ValExpressionRule(ops.expression)))
1073         return false;
1074       break;
1075     }
1076 
1077     // Restore the rule established for a register by the CIE.
1078     case DW_CFA_restore_extended:
1079       if (!ParseOperands("r", &ops) || !DoRestore(ops.register_number))
1080         return false;
1081       break;
1082 
1083     // Save the current set of rules on a stack.
1084     case DW_CFA_remember_state:
1085       if (!saved_rules_) {
1086         saved_rules_ = new std::stack<RuleMap>();
1087       }
1088       saved_rules_->push(rules_);
1089       break;
1090 
1091     // Pop the current set of rules off the stack.
1092     case DW_CFA_restore_state: {
1093       if (!saved_rules_ || saved_rules_->empty()) {
1094         reporter_->EmptyStateStack(entry_->offset, entry_->kind,
1095                                    CursorOffset());
1096         return false;
1097       }
1098       const RuleMap& new_rules = saved_rules_->top();
1099       if (rules_.CFARule() && !new_rules.CFARule()) {
1100         reporter_->ClearingCFARule(entry_->offset, entry_->kind,
1101                                    CursorOffset());
1102         return false;
1103       }
1104       rules_.HandleTransitionTo(handler_, address_, new_rules);
1105       rules_ = new_rules;
1106       saved_rules_->pop();
1107       break;
1108     }
1109 
1110     // No operation.  (Padding instruction.)
1111     case DW_CFA_nop:
1112       break;
1113 
1114     // A SPARC register window save: Registers 8 through 15 (%o0-%o7)
1115     // are saved in registers 24 through 31 (%i0-%i7), and registers
1116     // 16 through 31 (%l0-%l7 and %i0-%i7) are saved at CFA offsets
1117     // (0-15 * the register size). The register numbers must be
1118     // hard-coded. A GNU extension, and not a pretty one.
1119     case DW_CFA_GNU_window_save: {
1120       // Save %o0-%o7 in %i0-%i7.
1121       for (int i = 8; i < 16; i++)
1122         if (!DoRule(i, new RegisterRule(i + 16))) return false;
1123       // Save %l0-%l7 and %i0-%i7 at the CFA.
1124       for (int i = 16; i < 32; i++)
1125         // Assume that the byte reader's address size is the same as
1126         // the architecture's register size. !@#%*^ hilarious.
1127         if (!DoRule(i, new OffsetRule(Handler::kCFARegister,
1128                                       (i - 16) * reader_->AddressSize())))
1129           return false;
1130       break;
1131     }
1132 
1133     // I'm not sure what this is. GDB doesn't use it for unwinding.
1134     case DW_CFA_GNU_args_size:
1135       if (!ParseOperands("o", &ops)) return false;
1136       break;
1137 
1138     // An opcode we don't recognize.
1139     default: {
1140       reporter_->BadInstruction(entry_->offset, entry_->kind, CursorOffset());
1141       return false;
1142     }
1143   }
1144 
1145   return true;
1146 }
1147 
DoDefCFA(unsigned base_register,long offset)1148 bool CallFrameInfo::State::DoDefCFA(unsigned base_register, long offset) {
1149   Rule* rule = new ValOffsetRule(base_register, offset);
1150   rules_.SetCFARule(rule);
1151   return rule->Handle(handler_, address_, Handler::kCFARegister);
1152 }
1153 
DoDefCFAOffset(long offset)1154 bool CallFrameInfo::State::DoDefCFAOffset(long offset) {
1155   Rule* cfa_rule = rules_.CFARule();
1156   if (!cfa_rule) {
1157     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1158     return false;
1159   }
1160   cfa_rule->SetOffset(offset);
1161   return cfa_rule->Handle(handler_, address_, Handler::kCFARegister);
1162 }
1163 
DoRule(unsigned reg,Rule * rule)1164 bool CallFrameInfo::State::DoRule(unsigned reg, Rule* rule) {
1165   rules_.SetRegisterRule(reg, rule);
1166   return rule->Handle(handler_, address_, reg);
1167 }
1168 
DoOffset(unsigned reg,long offset)1169 bool CallFrameInfo::State::DoOffset(unsigned reg, long offset) {
1170   if (!rules_.CFARule()) {
1171     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1172     return false;
1173   }
1174   return DoRule(reg, new OffsetRule(Handler::kCFARegister, offset));
1175 }
1176 
DoValOffset(unsigned reg,long offset)1177 bool CallFrameInfo::State::DoValOffset(unsigned reg, long offset) {
1178   if (!rules_.CFARule()) {
1179     reporter_->NoCFARule(entry_->offset, entry_->kind, CursorOffset());
1180     return false;
1181   }
1182   return DoRule(reg, new ValOffsetRule(Handler::kCFARegister, offset));
1183 }
1184 
DoRestore(unsigned reg)1185 bool CallFrameInfo::State::DoRestore(unsigned reg) {
1186   // DW_CFA_restore and DW_CFA_restore_extended don't make sense in a CIE.
1187   if (entry_->kind == kCIE) {
1188     reporter_->RestoreInCIE(entry_->offset, CursorOffset());
1189     return false;
1190   }
1191   Rule* rule = cie_rules_.RegisterRule(reg);
1192   if (!rule) {
1193     // This isn't really the right thing to do, but since CFI generally
1194     // only mentions callee-saves registers, and GCC's convention for
1195     // callee-saves registers is that they are unchanged, it's a good
1196     // approximation.
1197     rule = new SameValueRule();
1198   }
1199   return DoRule(reg, rule);
1200 }
1201 
ReadEntryPrologue(const char * cursor,Entry * entry)1202 bool CallFrameInfo::ReadEntryPrologue(const char* cursor, Entry* entry) {
1203   const char* buffer_end = buffer_ + buffer_length_;
1204 
1205   // Initialize enough of ENTRY for use in error reporting.
1206   entry->offset = cursor - buffer_;
1207   entry->start = cursor;
1208   entry->kind = kUnknown;
1209   entry->end = NULL;
1210 
1211   // Read the initial length. This sets reader_'s offset size.
1212   size_t length_size;
1213   uint64 length = reader_->ReadInitialLength(cursor, &length_size);
1214   if (length_size > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
1215   cursor += length_size;
1216 
1217   // In a .eh_frame section, a length of zero marks the end of the series
1218   // of entries.
1219   if (length == 0 && eh_frame_) {
1220     entry->kind = kTerminator;
1221     entry->end = cursor;
1222     return true;
1223   }
1224 
1225   // Validate the length.
1226   if (length > size_t(buffer_end - cursor)) return ReportIncomplete(entry);
1227 
1228   // The length is the number of bytes after the initial length field;
1229   // we have that position handy at this point, so compute the end
1230   // now. (If we're parsing 64-bit-offset DWARF on a 32-bit machine,
1231   // and the length didn't fit in a size_t, we would have rejected it
1232   // above.)
1233   entry->end = cursor + length;
1234 
1235   // Parse the next field: either the offset of a CIE or a CIE id.
1236   size_t offset_size = reader_->OffsetSize();
1237   if (offset_size > size_t(entry->end - cursor)) return ReportIncomplete(entry);
1238   entry->id = reader_->ReadOffset(cursor);
1239 
1240   // Don't advance cursor past id field yet; in .eh_frame data we need
1241   // the id's position to compute the section offset of an FDE's CIE.
1242 
1243   // Now we can decide what kind of entry this is.
1244   if (eh_frame_) {
1245     // In .eh_frame data, an ID of zero marks the entry as a CIE, and
1246     // anything else is an offset from the id field of the FDE to the start
1247     // of the CIE.
1248     if (entry->id == 0) {
1249       entry->kind = kCIE;
1250     } else {
1251       entry->kind = kFDE;
1252       // Turn the offset from the id into an offset from the buffer's start.
1253       entry->id = (cursor - buffer_) - entry->id;
1254     }
1255   } else {
1256     // In DWARF CFI data, an ID of ~0 (of the appropriate width, given the
1257     // offset size for the entry) marks the entry as a CIE, and anything
1258     // else is the offset of the CIE from the beginning of the section.
1259     if (offset_size == 4)
1260       entry->kind = (entry->id == 0xffffffff) ? kCIE : kFDE;
1261     else {
1262       MOZ_ASSERT(offset_size == 8);
1263       entry->kind = (entry->id == 0xffffffffffffffffULL) ? kCIE : kFDE;
1264     }
1265   }
1266 
1267   // Now advance cursor past the id.
1268   cursor += offset_size;
1269 
1270   // The fields specific to this kind of entry start here.
1271   entry->fields = cursor;
1272 
1273   entry->cie = NULL;
1274 
1275   return true;
1276 }
1277 
ReadCIEFields(CIE * cie)1278 bool CallFrameInfo::ReadCIEFields(CIE* cie) {
1279   const char* cursor = cie->fields;
1280   size_t len;
1281 
1282   MOZ_ASSERT(cie->kind == kCIE);
1283 
1284   // Prepare for early exit.
1285   cie->version = 0;
1286   cie->augmentation.clear();
1287   cie->code_alignment_factor = 0;
1288   cie->data_alignment_factor = 0;
1289   cie->return_address_register = 0;
1290   cie->has_z_augmentation = false;
1291   cie->pointer_encoding = DW_EH_PE_absptr;
1292   cie->instructions = 0;
1293 
1294   // Parse the version number.
1295   if (cie->end - cursor < 1) return ReportIncomplete(cie);
1296   cie->version = reader_->ReadOneByte(cursor);
1297   cursor++;
1298 
1299   // If we don't recognize the version, we can't parse any more fields of the
1300   // CIE. For DWARF CFI, we handle versions 1 through 4 (there was never a
1301   // version 2 of CFI data). For .eh_frame, we handle versions 1 and 4 as well;
1302   // the difference between those versions seems to be the same as for
1303   // .debug_frame.
1304   if (cie->version < 1 || cie->version > 4) {
1305     reporter_->UnrecognizedVersion(cie->offset, cie->version);
1306     return false;
1307   }
1308 
1309   const char* augmentation_start = cursor;
1310   const void* augmentation_end =
1311       memchr(augmentation_start, '\0', cie->end - augmentation_start);
1312   if (!augmentation_end) return ReportIncomplete(cie);
1313   cursor = static_cast<const char*>(augmentation_end);
1314   cie->augmentation = string(augmentation_start, cursor - augmentation_start);
1315   // Skip the terminating '\0'.
1316   cursor++;
1317 
1318   // Is this CFI augmented?
1319   if (!cie->augmentation.empty()) {
1320     // Is it an augmentation we recognize?
1321     if (cie->augmentation[0] == DW_Z_augmentation_start) {
1322       // Linux C++ ABI 'z' augmentation, used for exception handling data.
1323       cie->has_z_augmentation = true;
1324     } else {
1325       // Not an augmentation we recognize. Augmentations can have arbitrary
1326       // effects on the form of rest of the content, so we have to give up.
1327       reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
1328       return false;
1329     }
1330   }
1331 
1332   if (cie->version >= 4) {
1333     // Check that the address_size and segment_size fields are plausible.
1334     if (cie->end - cursor < 2) {
1335       return ReportIncomplete(cie);
1336     }
1337     uint8_t address_size = reader_->ReadOneByte(cursor);
1338     cursor++;
1339     if (address_size != sizeof(void*)) {
1340       // This is not per-se invalid CFI.  But we can reasonably expect to
1341       // be running on a target of the same word size as the CFI is for,
1342       // so we reject this case.
1343       reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid address_size");
1344       return false;
1345     }
1346     uint8_t segment_size = reader_->ReadOneByte(cursor);
1347     cursor++;
1348     if (segment_size != 0) {
1349       // This is also not per-se invalid CFI, but we don't currently handle
1350       // the case of non-zero |segment_size|.
1351       reporter_->InvalidDwarf4Artefact(cie->offset, "Invalid segment_size");
1352       return false;
1353     }
1354     // We only continue parsing if |segment_size| is zero.  If this routine
1355     // is ever changed to allow non-zero |segment_size|, then
1356     // ReadFDEFields() below will have to be changed to match, per comments
1357     // there.
1358   }
1359 
1360   // Parse the code alignment factor.
1361   cie->code_alignment_factor = reader_->ReadUnsignedLEB128(cursor, &len);
1362   if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1363   cursor += len;
1364 
1365   // Parse the data alignment factor.
1366   cie->data_alignment_factor = reader_->ReadSignedLEB128(cursor, &len);
1367   if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1368   cursor += len;
1369 
1370   // Parse the return address register. This is a ubyte in version 1, and
1371   // a ULEB128 in version 3.
1372   if (cie->version == 1) {
1373     if (cursor >= cie->end) return ReportIncomplete(cie);
1374     cie->return_address_register = uint8(*cursor++);
1375   } else {
1376     cie->return_address_register = reader_->ReadUnsignedLEB128(cursor, &len);
1377     if (size_t(cie->end - cursor) < len) return ReportIncomplete(cie);
1378     cursor += len;
1379   }
1380 
1381   // If we have a 'z' augmentation string, find the augmentation data and
1382   // use the augmentation string to parse it.
1383   if (cie->has_z_augmentation) {
1384     uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &len);
1385     if (size_t(cie->end - cursor) < len + data_size)
1386       return ReportIncomplete(cie);
1387     cursor += len;
1388     const char* data = cursor;
1389     cursor += data_size;
1390     const char* data_end = cursor;
1391 
1392     cie->has_z_lsda = false;
1393     cie->has_z_personality = false;
1394     cie->has_z_signal_frame = false;
1395 
1396     // Walk the augmentation string, and extract values from the
1397     // augmentation data as the string directs.
1398     for (size_t i = 1; i < cie->augmentation.size(); i++) {
1399       switch (cie->augmentation[i]) {
1400         case DW_Z_has_LSDA:
1401           // The CIE's augmentation data holds the language-specific data
1402           // area pointer's encoding, and the FDE's augmentation data holds
1403           // the pointer itself.
1404           cie->has_z_lsda = true;
1405           // Fetch the LSDA encoding from the augmentation data.
1406           if (data >= data_end) return ReportIncomplete(cie);
1407           cie->lsda_encoding = DwarfPointerEncoding(*data++);
1408           if (!reader_->ValidEncoding(cie->lsda_encoding)) {
1409             reporter_->InvalidPointerEncoding(cie->offset, cie->lsda_encoding);
1410             return false;
1411           }
1412           // Don't check if the encoding is usable here --- we haven't
1413           // read the FDE's fields yet, so we're not prepared for
1414           // DW_EH_PE_funcrel, although that's a fine encoding for the
1415           // LSDA to use, since it appears in the FDE.
1416           break;
1417 
1418         case DW_Z_has_personality_routine:
1419           // The CIE's augmentation data holds the personality routine
1420           // pointer's encoding, followed by the pointer itself.
1421           cie->has_z_personality = true;
1422           // Fetch the personality routine pointer's encoding from the
1423           // augmentation data.
1424           if (data >= data_end) return ReportIncomplete(cie);
1425           cie->personality_encoding = DwarfPointerEncoding(*data++);
1426           if (!reader_->ValidEncoding(cie->personality_encoding)) {
1427             reporter_->InvalidPointerEncoding(cie->offset,
1428                                               cie->personality_encoding);
1429             return false;
1430           }
1431           if (!reader_->UsableEncoding(cie->personality_encoding)) {
1432             reporter_->UnusablePointerEncoding(cie->offset,
1433                                                cie->personality_encoding);
1434             return false;
1435           }
1436           // Fetch the personality routine's pointer itself from the data.
1437           cie->personality_address = reader_->ReadEncodedPointer(
1438               data, cie->personality_encoding, &len);
1439           if (len > size_t(data_end - data)) return ReportIncomplete(cie);
1440           data += len;
1441           break;
1442 
1443         case DW_Z_has_FDE_address_encoding:
1444           // The CIE's augmentation data holds the pointer encoding to use
1445           // for addresses in the FDE.
1446           if (data >= data_end) return ReportIncomplete(cie);
1447           cie->pointer_encoding = DwarfPointerEncoding(*data++);
1448           if (!reader_->ValidEncoding(cie->pointer_encoding)) {
1449             reporter_->InvalidPointerEncoding(cie->offset,
1450                                               cie->pointer_encoding);
1451             return false;
1452           }
1453           if (!reader_->UsableEncoding(cie->pointer_encoding)) {
1454             reporter_->UnusablePointerEncoding(cie->offset,
1455                                                cie->pointer_encoding);
1456             return false;
1457           }
1458           break;
1459 
1460         case DW_Z_is_signal_trampoline:
1461           // Frames using this CIE are signal delivery frames.
1462           cie->has_z_signal_frame = true;
1463           break;
1464 
1465         default:
1466           // An augmentation we don't recognize.
1467           reporter_->UnrecognizedAugmentation(cie->offset, cie->augmentation);
1468           return false;
1469       }
1470     }
1471   }
1472 
1473   // The CIE's instructions start here.
1474   cie->instructions = cursor;
1475 
1476   return true;
1477 }
1478 
ReadFDEFields(FDE * fde)1479 bool CallFrameInfo::ReadFDEFields(FDE* fde) {
1480   const char* cursor = fde->fields;
1481   size_t size;
1482 
1483   // At this point, for Dwarf 4 and above, we are assuming that the
1484   // associated CIE has its |segment_size| field equal to zero.  This is
1485   // checked for in ReadCIEFields() above.  If ReadCIEFields() is ever
1486   // changed to allow non-zero |segment_size| CIEs then we will have to read
1487   // the segment_selector value at this point.
1488 
1489   fde->address =
1490       reader_->ReadEncodedPointer(cursor, fde->cie->pointer_encoding, &size);
1491   if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
1492   cursor += size;
1493   reader_->SetFunctionBase(fde->address);
1494 
1495   // For the length, we strip off the upper nybble of the encoding used for
1496   // the starting address.
1497   DwarfPointerEncoding length_encoding =
1498       DwarfPointerEncoding(fde->cie->pointer_encoding & 0x0f);
1499   fde->size = reader_->ReadEncodedPointer(cursor, length_encoding, &size);
1500   if (size > size_t(fde->end - cursor)) return ReportIncomplete(fde);
1501   cursor += size;
1502 
1503   // If the CIE has a 'z' augmentation string, then augmentation data
1504   // appears here.
1505   if (fde->cie->has_z_augmentation) {
1506     uint64_t data_size = reader_->ReadUnsignedLEB128(cursor, &size);
1507     if (size_t(fde->end - cursor) < size + data_size)
1508       return ReportIncomplete(fde);
1509     cursor += size;
1510 
1511     // In the abstract, we should walk the augmentation string, and extract
1512     // items from the FDE's augmentation data as we encounter augmentation
1513     // string characters that specify their presence: the ordering of items
1514     // in the augmentation string determines the arrangement of values in
1515     // the augmentation data.
1516     //
1517     // In practice, there's only ever one value in FDE augmentation data
1518     // that we support --- the LSDA pointer --- and we have to bail if we
1519     // see any unrecognized augmentation string characters. So if there is
1520     // anything here at all, we know what it is, and where it starts.
1521     if (fde->cie->has_z_lsda) {
1522       // Check whether the LSDA's pointer encoding is usable now: only once
1523       // we've parsed the FDE's starting address do we call reader_->
1524       // SetFunctionBase, so that the DW_EH_PE_funcrel encoding becomes
1525       // usable.
1526       if (!reader_->UsableEncoding(fde->cie->lsda_encoding)) {
1527         reporter_->UnusablePointerEncoding(fde->cie->offset,
1528                                            fde->cie->lsda_encoding);
1529         return false;
1530       }
1531 
1532       fde->lsda_address =
1533           reader_->ReadEncodedPointer(cursor, fde->cie->lsda_encoding, &size);
1534       if (size > data_size) return ReportIncomplete(fde);
1535       // Ideally, we would also complain here if there were unconsumed
1536       // augmentation data.
1537     }
1538 
1539     cursor += data_size;
1540   }
1541 
1542   // The FDE's instructions start after those.
1543   fde->instructions = cursor;
1544 
1545   return true;
1546 }
1547 
Start()1548 bool CallFrameInfo::Start() {
1549   const char* buffer_end = buffer_ + buffer_length_;
1550   const char* cursor;
1551   bool all_ok = true;
1552   const char* entry_end;
1553   bool ok;
1554 
1555   // Traverse all the entries in buffer_, skipping CIEs and offering
1556   // FDEs to the handler.
1557   for (cursor = buffer_; cursor < buffer_end;
1558        cursor = entry_end, all_ok = all_ok && ok) {
1559     FDE fde;
1560 
1561     // Make it easy to skip this entry with 'continue': assume that
1562     // things are not okay until we've checked all the data, and
1563     // prepare the address of the next entry.
1564     ok = false;
1565 
1566     // Read the entry's prologue.
1567     if (!ReadEntryPrologue(cursor, &fde)) {
1568       if (!fde.end) {
1569         // If we couldn't even figure out this entry's extent, then we
1570         // must stop processing entries altogether.
1571         all_ok = false;
1572         break;
1573       }
1574       entry_end = fde.end;
1575       continue;
1576     }
1577 
1578     // The next iteration picks up after this entry.
1579     entry_end = fde.end;
1580 
1581     // Did we see an .eh_frame terminating mark?
1582     if (fde.kind == kTerminator) {
1583       // If there appears to be more data left in the section after the
1584       // terminating mark, warn the user. But this is just a warning;
1585       // we leave all_ok true.
1586       if (fde.end < buffer_end) reporter_->EarlyEHTerminator(fde.offset);
1587       break;
1588     }
1589 
1590     // In this loop, we skip CIEs. We only parse them fully when we
1591     // parse an FDE that refers to them. This limits our memory
1592     // consumption (beyond the buffer itself) to that needed to
1593     // process the largest single entry.
1594     if (fde.kind != kFDE) {
1595       ok = true;
1596       continue;
1597     }
1598 
1599     // Validate the CIE pointer.
1600     if (fde.id > buffer_length_) {
1601       reporter_->CIEPointerOutOfRange(fde.offset, fde.id);
1602       continue;
1603     }
1604 
1605     CIE cie;
1606 
1607     // Parse this FDE's CIE header.
1608     if (!ReadEntryPrologue(buffer_ + fde.id, &cie)) continue;
1609     // This had better be an actual CIE.
1610     if (cie.kind != kCIE) {
1611       reporter_->BadCIEId(fde.offset, fde.id);
1612       continue;
1613     }
1614     if (!ReadCIEFields(&cie)) continue;
1615 
1616     // We now have the values that govern both the CIE and the FDE.
1617     cie.cie = &cie;
1618     fde.cie = &cie;
1619 
1620     // Parse the FDE's header.
1621     if (!ReadFDEFields(&fde)) continue;
1622 
1623     // Call Entry to ask the consumer if they're interested.
1624     if (!handler_->Entry(fde.offset, fde.address, fde.size, cie.version,
1625                          cie.augmentation, cie.return_address_register)) {
1626       // The handler isn't interested in this entry. That's not an error.
1627       ok = true;
1628       continue;
1629     }
1630 
1631     if (cie.has_z_augmentation) {
1632       // Report the personality routine address, if we have one.
1633       if (cie.has_z_personality) {
1634         if (!handler_->PersonalityRoutine(
1635                 cie.personality_address,
1636                 IsIndirectEncoding(cie.personality_encoding)))
1637           continue;
1638       }
1639 
1640       // Report the language-specific data area address, if we have one.
1641       if (cie.has_z_lsda) {
1642         if (!handler_->LanguageSpecificDataArea(
1643                 fde.lsda_address, IsIndirectEncoding(cie.lsda_encoding)))
1644           continue;
1645       }
1646 
1647       // If this is a signal-handling frame, report that.
1648       if (cie.has_z_signal_frame) {
1649         if (!handler_->SignalHandler()) continue;
1650       }
1651     }
1652 
1653     // Interpret the CIE's instructions, and then the FDE's instructions.
1654     State state(reader_, handler_, reporter_, fde.address);
1655     ok = state.InterpretCIE(cie) && state.InterpretFDE(fde);
1656 
1657     // Tell the ByteReader that the function start address from the
1658     // FDE header is no longer valid.
1659     reader_->ClearFunctionBase();
1660 
1661     // Report the end of the entry.
1662     handler_->End();
1663   }
1664 
1665   return all_ok;
1666 }
1667 
KindName(EntryKind kind)1668 const char* CallFrameInfo::KindName(EntryKind kind) {
1669   if (kind == CallFrameInfo::kUnknown)
1670     return "entry";
1671   else if (kind == CallFrameInfo::kCIE)
1672     return "common information entry";
1673   else if (kind == CallFrameInfo::kFDE)
1674     return "frame description entry";
1675   else {
1676     MOZ_ASSERT(kind == CallFrameInfo::kTerminator);
1677     return ".eh_frame sequence terminator";
1678   }
1679 }
1680 
ReportIncomplete(Entry * entry)1681 bool CallFrameInfo::ReportIncomplete(Entry* entry) {
1682   reporter_->Incomplete(entry->offset, entry->kind);
1683   return false;
1684 }
1685 
Incomplete(uint64 offset,CallFrameInfo::EntryKind kind)1686 void CallFrameInfo::Reporter::Incomplete(uint64 offset,
1687                                          CallFrameInfo::EntryKind kind) {
1688   char buf[300];
1689   SprintfLiteral(buf, "%s: CFI %s at offset 0x%llx in '%s': entry ends early\n",
1690                  filename_.c_str(), CallFrameInfo::KindName(kind), offset,
1691                  section_.c_str());
1692   log_(buf);
1693 }
1694 
EarlyEHTerminator(uint64 offset)1695 void CallFrameInfo::Reporter::EarlyEHTerminator(uint64 offset) {
1696   char buf[300];
1697   SprintfLiteral(buf,
1698                  "%s: CFI at offset 0x%llx in '%s': saw end-of-data marker"
1699                  " before end of section contents\n",
1700                  filename_.c_str(), offset, section_.c_str());
1701   log_(buf);
1702 }
1703 
CIEPointerOutOfRange(uint64 offset,uint64 cie_offset)1704 void CallFrameInfo::Reporter::CIEPointerOutOfRange(uint64 offset,
1705                                                    uint64 cie_offset) {
1706   char buf[300];
1707   SprintfLiteral(buf,
1708                  "%s: CFI frame description entry at offset 0x%llx in '%s':"
1709                  " CIE pointer is out of range: 0x%llx\n",
1710                  filename_.c_str(), offset, section_.c_str(), cie_offset);
1711   log_(buf);
1712 }
1713 
BadCIEId(uint64 offset,uint64 cie_offset)1714 void CallFrameInfo::Reporter::BadCIEId(uint64 offset, uint64 cie_offset) {
1715   char buf[300];
1716   SprintfLiteral(buf,
1717                  "%s: CFI frame description entry at offset 0x%llx in '%s':"
1718                  " CIE pointer does not point to a CIE: 0x%llx\n",
1719                  filename_.c_str(), offset, section_.c_str(), cie_offset);
1720   log_(buf);
1721 }
1722 
UnrecognizedVersion(uint64 offset,int version)1723 void CallFrameInfo::Reporter::UnrecognizedVersion(uint64 offset, int version) {
1724   char buf[300];
1725   SprintfLiteral(buf,
1726                  "%s: CFI frame description entry at offset 0x%llx in '%s':"
1727                  " CIE specifies unrecognized version: %d\n",
1728                  filename_.c_str(), offset, section_.c_str(), version);
1729   log_(buf);
1730 }
1731 
UnrecognizedAugmentation(uint64 offset,const string & aug)1732 void CallFrameInfo::Reporter::UnrecognizedAugmentation(uint64 offset,
1733                                                        const string& aug) {
1734   char buf[300];
1735   SprintfLiteral(buf,
1736                  "%s: CFI frame description entry at offset 0x%llx in '%s':"
1737                  " CIE specifies unrecognized augmentation: '%s'\n",
1738                  filename_.c_str(), offset, section_.c_str(), aug.c_str());
1739   log_(buf);
1740 }
1741 
InvalidDwarf4Artefact(uint64 offset,const char * what)1742 void CallFrameInfo::Reporter::InvalidDwarf4Artefact(uint64 offset,
1743                                                     const char* what) {
1744   char* what_safe = strndup(what, 100);
1745   char buf[300];
1746   SprintfLiteral(buf,
1747                  "%s: CFI frame description entry at offset 0x%llx in '%s':"
1748                  " CIE specifies invalid Dwarf4 artefact: %s\n",
1749                  filename_.c_str(), offset, section_.c_str(), what_safe);
1750   log_(buf);
1751   free(what_safe);
1752 }
1753 
InvalidPointerEncoding(uint64 offset,uint8 encoding)1754 void CallFrameInfo::Reporter::InvalidPointerEncoding(uint64 offset,
1755                                                      uint8 encoding) {
1756   char buf[300];
1757   SprintfLiteral(buf,
1758                  "%s: CFI common information entry at offset 0x%llx in '%s':"
1759                  " 'z' augmentation specifies invalid pointer encoding: "
1760                  "0x%02x\n",
1761                  filename_.c_str(), offset, section_.c_str(), encoding);
1762   log_(buf);
1763 }
1764 
UnusablePointerEncoding(uint64 offset,uint8 encoding)1765 void CallFrameInfo::Reporter::UnusablePointerEncoding(uint64 offset,
1766                                                       uint8 encoding) {
1767   char buf[300];
1768   SprintfLiteral(buf,
1769                  "%s: CFI common information entry at offset 0x%llx in '%s':"
1770                  " 'z' augmentation specifies a pointer encoding for which"
1771                  " we have no base address: 0x%02x\n",
1772                  filename_.c_str(), offset, section_.c_str(), encoding);
1773   log_(buf);
1774 }
1775 
RestoreInCIE(uint64 offset,uint64 insn_offset)1776 void CallFrameInfo::Reporter::RestoreInCIE(uint64 offset, uint64 insn_offset) {
1777   char buf[300];
1778   SprintfLiteral(buf,
1779                  "%s: CFI common information entry at offset 0x%llx in '%s':"
1780                  " the DW_CFA_restore instruction at offset 0x%llx"
1781                  " cannot be used in a common information entry\n",
1782                  filename_.c_str(), offset, section_.c_str(), insn_offset);
1783   log_(buf);
1784 }
1785 
BadInstruction(uint64 offset,CallFrameInfo::EntryKind kind,uint64 insn_offset)1786 void CallFrameInfo::Reporter::BadInstruction(uint64 offset,
1787                                              CallFrameInfo::EntryKind kind,
1788                                              uint64 insn_offset) {
1789   char buf[300];
1790   SprintfLiteral(buf,
1791                  "%s: CFI %s at offset 0x%llx in section '%s':"
1792                  " the instruction at offset 0x%llx is unrecognized\n",
1793                  filename_.c_str(), CallFrameInfo::KindName(kind), offset,
1794                  section_.c_str(), insn_offset);
1795   log_(buf);
1796 }
1797 
NoCFARule(uint64 offset,CallFrameInfo::EntryKind kind,uint64 insn_offset)1798 void CallFrameInfo::Reporter::NoCFARule(uint64 offset,
1799                                         CallFrameInfo::EntryKind kind,
1800                                         uint64 insn_offset) {
1801   char buf[300];
1802   SprintfLiteral(buf,
1803                  "%s: CFI %s at offset 0x%llx in section '%s':"
1804                  " the instruction at offset 0x%llx assumes that a CFA rule "
1805                  "has been set, but none has been set\n",
1806                  filename_.c_str(), CallFrameInfo::KindName(kind), offset,
1807                  section_.c_str(), insn_offset);
1808   log_(buf);
1809 }
1810 
EmptyStateStack(uint64 offset,CallFrameInfo::EntryKind kind,uint64 insn_offset)1811 void CallFrameInfo::Reporter::EmptyStateStack(uint64 offset,
1812                                               CallFrameInfo::EntryKind kind,
1813                                               uint64 insn_offset) {
1814   char buf[300];
1815   SprintfLiteral(buf,
1816                  "%s: CFI %s at offset 0x%llx in section '%s':"
1817                  " the DW_CFA_restore_state instruction at offset 0x%llx"
1818                  " should pop a saved state from the stack, but the stack "
1819                  "is empty\n",
1820                  filename_.c_str(), CallFrameInfo::KindName(kind), offset,
1821                  section_.c_str(), insn_offset);
1822   log_(buf);
1823 }
1824 
ClearingCFARule(uint64 offset,CallFrameInfo::EntryKind kind,uint64 insn_offset)1825 void CallFrameInfo::Reporter::ClearingCFARule(uint64 offset,
1826                                               CallFrameInfo::EntryKind kind,
1827                                               uint64 insn_offset) {
1828   char buf[300];
1829   SprintfLiteral(buf,
1830                  "%s: CFI %s at offset 0x%llx in section '%s':"
1831                  " the DW_CFA_restore_state instruction at offset 0x%llx"
1832                  " would clear the CFA rule in effect\n",
1833                  filename_.c_str(), CallFrameInfo::KindName(kind), offset,
1834                  section_.c_str(), insn_offset);
1835   log_(buf);
1836 }
1837 
I386()1838 unsigned int DwarfCFIToModule::RegisterNames::I386() {
1839   /*
1840    8 "$eax", "$ecx", "$edx", "$ebx", "$esp", "$ebp", "$esi", "$edi",
1841    3 "$eip", "$eflags", "$unused1",
1842    8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
1843    2 "$unused2", "$unused3",
1844    8 "$xmm0", "$xmm1", "$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
1845    8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
1846    3 "$fcw", "$fsw", "$mxcsr",
1847    8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused4", "$unused5",
1848    2 "$tr", "$ldtr"
1849   */
1850   return 8 + 3 + 8 + 2 + 8 + 8 + 3 + 8 + 2;
1851 }
1852 
X86_64()1853 unsigned int DwarfCFIToModule::RegisterNames::X86_64() {
1854   /*
1855    8 "$rax", "$rdx", "$rcx", "$rbx", "$rsi", "$rdi", "$rbp", "$rsp",
1856    8 "$r8",  "$r9",  "$r10", "$r11", "$r12", "$r13", "$r14", "$r15",
1857    1 "$rip",
1858    8 "$xmm0","$xmm1","$xmm2", "$xmm3", "$xmm4", "$xmm5", "$xmm6", "$xmm7",
1859    8 "$xmm8","$xmm9","$xmm10","$xmm11","$xmm12","$xmm13","$xmm14","$xmm15",
1860    8 "$st0", "$st1", "$st2", "$st3", "$st4", "$st5", "$st6", "$st7",
1861    8 "$mm0", "$mm1", "$mm2", "$mm3", "$mm4", "$mm5", "$mm6", "$mm7",
1862    1 "$rflags",
1863    8 "$es", "$cs", "$ss", "$ds", "$fs", "$gs", "$unused1", "$unused2",
1864    4 "$fs.base", "$gs.base", "$unused3", "$unused4",
1865    2 "$tr", "$ldtr",
1866    3 "$mxcsr", "$fcw", "$fsw"
1867   */
1868   return 8 + 8 + 1 + 8 + 8 + 8 + 8 + 1 + 8 + 4 + 2 + 3;
1869 }
1870 
1871 // Per ARM IHI 0040A, section 3.1
ARM()1872 unsigned int DwarfCFIToModule::RegisterNames::ARM() {
1873   /*
1874    8 "r0",  "r1",  "r2",  "r3",  "r4",  "r5",  "r6",  "r7",
1875    8 "r8",  "r9",  "r10", "r11", "r12", "sp",  "lr",  "pc",
1876    8 "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7",
1877    8 "fps", "cpsr", "",   "",    "",    "",    "",    "",
1878    8 "",    "",    "",    "",    "",    "",    "",    "",
1879    8 "",    "",    "",    "",    "",    "",    "",    "",
1880    8 "",    "",    "",    "",    "",    "",    "",    "",
1881    8 "",    "",    "",    "",    "",    "",    "",    "",
1882    8 "s0",  "s1",  "s2",  "s3",  "s4",  "s5",  "s6",  "s7",
1883    8 "s8",  "s9",  "s10", "s11", "s12", "s13", "s14", "s15",
1884    8 "s16", "s17", "s18", "s19", "s20", "s21", "s22", "s23",
1885    8 "s24", "s25", "s26", "s27", "s28", "s29", "s30", "s31",
1886    8 "f0",  "f1",  "f2",  "f3",  "f4",  "f5",  "f6",  "f7"
1887   */
1888   return 13 * 8;
1889 }
1890 
1891 // Per ARM IHI 0057A, section 3.1
ARM64()1892 unsigned int DwarfCFIToModule::RegisterNames::ARM64() {
1893   /*
1894    8 "x0",  "x1",  "x2",  "x3",  "x4",  "x5",  "x6",  "x7",
1895    8 "x8",  "x9",  "x10", "x11", "x12", "x13", "x14", "x15",
1896    8 "x16"  "x17", "x18", "x19", "x20", "x21", "x22", "x23",
1897    8 "x24", "x25", "x26", "x27", "x28", "x29",  "x30","sp",
1898    8 "",    "",    "",    "",    "",    "",    "",    "",
1899    8 "",    "",    "",    "",    "",    "",    "",    "",
1900    8 "",    "",    "",    "",    "",    "",    "",    "",
1901    8 "",    "",    "",    "",    "",    "",    "",    "",
1902    8 "v0",  "v1",  "v2",  "v3",  "v4",  "v5",  "v6",  "v7",
1903    8 "v8",  "v9",  "v10", "v11", "v12", "v13", "v14", "v15",
1904    8 "v16", "v17", "v18", "v19", "v20", "v21", "v22,  "v23",
1905    8 "v24", "x25", "x26,  "x27", "v28", "v29", "v30", "v31",
1906   */
1907   return 12 * 8;
1908 }
1909 
MIPS()1910 unsigned int DwarfCFIToModule::RegisterNames::MIPS() {
1911   /*
1912    8 "$zero", "$at",  "$v0",  "$v1",  "$a0",   "$a1",  "$a2",  "$a3",
1913    8 "$t0",   "$t1",  "$t2",  "$t3",  "$t4",   "$t5",  "$t6",  "$t7",
1914    8 "$s0",   "$s1",  "$s2",  "$s3",  "$s4",   "$s5",  "$s6",  "$s7",
1915    8 "$t8",   "$t9",  "$k0",  "$k1",  "$gp",   "$sp",  "$fp",  "$ra",
1916    9 "$lo",   "$hi",  "$pc",  "$f0",  "$f1",   "$f2",  "$f3",  "$f4",  "$f5",
1917    8 "$f6",   "$f7",  "$f8",  "$f9",  "$f10",  "$f11", "$f12", "$f13",
1918    7 "$f14",  "$f15", "$f16", "$f17", "$f18",  "$f19", "$f20",
1919    7 "$f21",  "$f22", "$f23", "$f24", "$f25",  "$f26", "$f27",
1920    6 "$f28",  "$f29", "$f30", "$f31", "$fcsr", "$fir"
1921   */
1922   return 8 + 8 + 8 + 8 + 9 + 8 + 7 + 7 + 6;
1923 }
1924 
1925 // See prototype for comments.
parseDwarfExpr(Summariser * summ,const ByteReader * reader,string expr,bool debug,bool pushCfaAtStart,bool derefAtEnd)1926 int32_t parseDwarfExpr(Summariser* summ, const ByteReader* reader, string expr,
1927                        bool debug, bool pushCfaAtStart, bool derefAtEnd) {
1928   const char* cursor = expr.c_str();
1929   const char* end1 = cursor + expr.length();
1930 
1931   char buf[100];
1932   if (debug) {
1933     SprintfLiteral(buf, "LUL.DW  << DwarfExpr, len is %d\n",
1934                    (int)(end1 - cursor));
1935     summ->Log(buf);
1936   }
1937 
1938   // Add a marker for the start of this expression.  In it, indicate
1939   // whether or not the CFA should be pushed onto the stack prior to
1940   // evaluation.
1941   int32_t start_ix =
1942       summ->AddPfxInstr(PfxInstr(PX_Start, pushCfaAtStart ? 1 : 0));
1943   MOZ_ASSERT(start_ix >= 0);
1944 
1945   while (cursor < end1) {
1946     uint8 opc = reader->ReadOneByte(cursor);
1947     cursor++;
1948 
1949     const char* nm = nullptr;
1950     PfxExprOp pxop = PX_End;
1951 
1952     switch (opc) {
1953       case DW_OP_lit0 ... DW_OP_lit31: {
1954         int32_t simm32 = (int32_t)(opc - DW_OP_lit0);
1955         if (debug) {
1956           SprintfLiteral(buf, "LUL.DW   DW_OP_lit%d\n", (int)simm32);
1957           summ->Log(buf);
1958         }
1959         (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, simm32));
1960         break;
1961       }
1962 
1963       case DW_OP_breg0 ... DW_OP_breg31: {
1964         size_t len;
1965         int64_t n = reader->ReadSignedLEB128(cursor, &len);
1966         cursor += len;
1967         DW_REG_NUMBER reg = (DW_REG_NUMBER)(opc - DW_OP_breg0);
1968         if (debug) {
1969           SprintfLiteral(buf, "LUL.DW   DW_OP_breg%d %lld\n", (int)reg,
1970                          (long long int)n);
1971           summ->Log(buf);
1972         }
1973         // PfxInstr only allows a 32 bit signed offset.  So we
1974         // must fail if the immediate is out of range.
1975         if (n < INT32_MIN || INT32_MAX < n) goto fail;
1976         (void)summ->AddPfxInstr(PfxInstr(PX_DwReg, reg));
1977         (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, (int32_t)n));
1978         (void)summ->AddPfxInstr(PfxInstr(PX_Add));
1979         break;
1980       }
1981 
1982       case DW_OP_const4s: {
1983         uint64_t u64 = reader->ReadFourBytes(cursor);
1984         cursor += 4;
1985         // u64 is guaranteed by |ReadFourBytes| to be in the
1986         // range 0 .. FFFFFFFF inclusive.  But to be safe:
1987         uint32_t u32 = (uint32_t)(u64 & 0xFFFFFFFF);
1988         int32_t s32 = (int32_t)u32;
1989         if (debug) {
1990           SprintfLiteral(buf, "LUL.DW   DW_OP_const4s %d\n", (int)s32);
1991           summ->Log(buf);
1992         }
1993         (void)summ->AddPfxInstr(PfxInstr(PX_SImm32, s32));
1994         break;
1995       }
1996 
1997       case DW_OP_deref:
1998         nm = "deref";
1999         pxop = PX_Deref;
2000         goto no_operands;
2001       case DW_OP_and:
2002         nm = "and";
2003         pxop = PX_And;
2004         goto no_operands;
2005       case DW_OP_plus:
2006         nm = "plus";
2007         pxop = PX_Add;
2008         goto no_operands;
2009       case DW_OP_minus:
2010         nm = "minus";
2011         pxop = PX_Sub;
2012         goto no_operands;
2013       case DW_OP_shl:
2014         nm = "shl";
2015         pxop = PX_Shl;
2016         goto no_operands;
2017       case DW_OP_ge:
2018         nm = "ge";
2019         pxop = PX_CmpGES;
2020         goto no_operands;
2021       no_operands:
2022         MOZ_ASSERT(nm && pxop != PX_End);
2023         if (debug) {
2024           SprintfLiteral(buf, "LUL.DW   DW_OP_%s\n", nm);
2025           summ->Log(buf);
2026         }
2027         (void)summ->AddPfxInstr(PfxInstr(pxop));
2028         break;
2029 
2030       default:
2031         if (debug) {
2032           SprintfLiteral(buf, "LUL.DW   unknown opc %d\n", (int)opc);
2033           summ->Log(buf);
2034         }
2035         goto fail;
2036 
2037     }  // switch (opc)
2038 
2039   }  // while (cursor < end1)
2040 
2041   MOZ_ASSERT(cursor >= end1);
2042 
2043   if (cursor > end1) {
2044     // We overran the Dwarf expression.  Give up.
2045     goto fail;
2046   }
2047 
2048   // For DW_CFA_expression, what the expression denotes is the address
2049   // of where the previous value is located.  The caller of this routine
2050   // may therefore request one last dereference before the end marker is
2051   // inserted.
2052   if (derefAtEnd) {
2053     (void)summ->AddPfxInstr(PfxInstr(PX_Deref));
2054   }
2055 
2056   // Insert an end marker, and declare success.
2057   (void)summ->AddPfxInstr(PfxInstr(PX_End));
2058   if (debug) {
2059     SprintfLiteral(buf,
2060                    "LUL.DW   conversion of dwarf expression succeeded, "
2061                    "ix = %d\n",
2062                    (int)start_ix);
2063     summ->Log(buf);
2064     summ->Log("LUL.DW  >>\n");
2065   }
2066   return start_ix;
2067 
2068 fail:
2069   if (debug) {
2070     summ->Log("LUL.DW   conversion of dwarf expression failed\n");
2071     summ->Log("LUL.DW  >>\n");
2072   }
2073   return -1;
2074 }
2075 
Entry(size_t offset,uint64 address,uint64 length,uint8 version,const string & augmentation,unsigned return_address)2076 bool DwarfCFIToModule::Entry(size_t offset, uint64 address, uint64 length,
2077                              uint8 version, const string& augmentation,
2078                              unsigned return_address) {
2079   if (DEBUG_DWARF) {
2080     char buf[100];
2081     SprintfLiteral(buf, "LUL.DW DwarfCFIToModule::Entry 0x%llx,+%lld\n",
2082                    address, length);
2083     summ_->Log(buf);
2084   }
2085 
2086   summ_->Entry(address, length);
2087 
2088   // If dwarf2reader::CallFrameInfo can handle this version and
2089   // augmentation, then we should be okay with that, so there's no
2090   // need to check them here.
2091 
2092   // Get ready to collect entries.
2093   return_address_ = return_address;
2094 
2095   // Breakpad STACK CFI records must provide a .ra rule, but DWARF CFI
2096   // may not establish any rule for .ra if the return address column
2097   // is an ordinary register, and that register holds the return
2098   // address on entry to the function. So establish an initial .ra
2099   // rule citing the return address register.
2100   if (return_address_ < num_dw_regs_) {
2101     summ_->Rule(address, return_address_, NODEREF, return_address, 0);
2102   }
2103 
2104   return true;
2105 }
2106 
RegisterName(int i)2107 const UniqueString* DwarfCFIToModule::RegisterName(int i) {
2108   if (i < 0) {
2109     MOZ_ASSERT(i == kCFARegister);
2110     return usu_->ToUniqueString(".cfa");
2111   }
2112   unsigned reg = i;
2113   if (reg == return_address_) return usu_->ToUniqueString(".ra");
2114 
2115   char buf[30];
2116   SprintfLiteral(buf, "dwarf_reg_%u", reg);
2117   return usu_->ToUniqueString(buf);
2118 }
2119 
UndefinedRule(uint64 address,int reg)2120 bool DwarfCFIToModule::UndefinedRule(uint64 address, int reg) {
2121   reporter_->UndefinedNotSupported(entry_offset_, RegisterName(reg));
2122   // Treat this as a non-fatal error.
2123   return true;
2124 }
2125 
SameValueRule(uint64 address,int reg)2126 bool DwarfCFIToModule::SameValueRule(uint64 address, int reg) {
2127   if (DEBUG_DWARF) {
2128     char buf[100];
2129     SprintfLiteral(buf, "LUL.DW  0x%llx: old r%d = Same\n", address, reg);
2130     summ_->Log(buf);
2131   }
2132   // reg + 0
2133   summ_->Rule(address, reg, NODEREF, reg, 0);
2134   return true;
2135 }
2136 
OffsetRule(uint64 address,int reg,int base_register,long offset)2137 bool DwarfCFIToModule::OffsetRule(uint64 address, int reg, int base_register,
2138                                   long offset) {
2139   if (DEBUG_DWARF) {
2140     char buf[100];
2141     SprintfLiteral(buf, "LUL.DW  0x%llx: old r%d = *(r%d + %ld)\n", address,
2142                    reg, base_register, offset);
2143     summ_->Log(buf);
2144   }
2145   // *(base_register + offset)
2146   summ_->Rule(address, reg, DEREF, base_register, offset);
2147   return true;
2148 }
2149 
ValOffsetRule(uint64 address,int reg,int base_register,long offset)2150 bool DwarfCFIToModule::ValOffsetRule(uint64 address, int reg, int base_register,
2151                                      long offset) {
2152   if (DEBUG_DWARF) {
2153     char buf[100];
2154     SprintfLiteral(buf, "LUL.DW  0x%llx: old r%d = r%d + %ld\n", address, reg,
2155                    base_register, offset);
2156     summ_->Log(buf);
2157   }
2158   // base_register + offset
2159   summ_->Rule(address, reg, NODEREF, base_register, offset);
2160   return true;
2161 }
2162 
RegisterRule(uint64 address,int reg,int base_register)2163 bool DwarfCFIToModule::RegisterRule(uint64 address, int reg,
2164                                     int base_register) {
2165   if (DEBUG_DWARF) {
2166     char buf[100];
2167     SprintfLiteral(buf, "LUL.DW  0x%llx: old r%d = r%d\n", address, reg,
2168                    base_register);
2169     summ_->Log(buf);
2170   }
2171   // base_register + 0
2172   summ_->Rule(address, reg, NODEREF, base_register, 0);
2173   return true;
2174 }
2175 
ExpressionRule(uint64 address,int reg,const string & expression)2176 bool DwarfCFIToModule::ExpressionRule(uint64 address, int reg,
2177                                       const string& expression) {
2178   bool debug = !!DEBUG_DWARF;
2179   int32_t start_ix =
2180       parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
2181                      true /*derefAtEnd*/);
2182   if (start_ix >= 0) {
2183     summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
2184   } else {
2185     // Parsing of the Dwarf expression failed.  Treat this as a
2186     // non-fatal error, hence return |true| even on this path.
2187     reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
2188   }
2189   return true;
2190 }
2191 
ValExpressionRule(uint64 address,int reg,const string & expression)2192 bool DwarfCFIToModule::ValExpressionRule(uint64 address, int reg,
2193                                          const string& expression) {
2194   bool debug = !!DEBUG_DWARF;
2195   int32_t start_ix =
2196       parseDwarfExpr(summ_, reader_, expression, debug, true /*pushCfaAtStart*/,
2197                      false /*!derefAtEnd*/);
2198   if (start_ix >= 0) {
2199     summ_->Rule(address, reg, PFXEXPR, 0, start_ix);
2200   } else {
2201     // Parsing of the Dwarf expression failed.  Treat this as a
2202     // non-fatal error, hence return |true| even on this path.
2203     reporter_->ExpressionCouldNotBeSummarised(entry_offset_, RegisterName(reg));
2204   }
2205   return true;
2206 }
2207 
End()2208 bool DwarfCFIToModule::End() {
2209   // module_->AddStackFrameEntry(entry_);
2210   if (DEBUG_DWARF) {
2211     summ_->Log("LUL.DW DwarfCFIToModule::End()\n");
2212   }
2213   summ_->End();
2214   return true;
2215 }
2216 
UndefinedNotSupported(size_t offset,const UniqueString * reg)2217 void DwarfCFIToModule::Reporter::UndefinedNotSupported(
2218     size_t offset, const UniqueString* reg) {
2219   char buf[300];
2220   SprintfLiteral(buf, "DwarfCFIToModule::Reporter::UndefinedNotSupported()\n");
2221   log_(buf);
2222   // BPLOG(INFO) << file_ << ", section '" << section_
2223   //  << "': the call frame entry at offset 0x"
2224   //  << std::setbase(16) << offset << std::setbase(10)
2225   //  << " sets the rule for register '" << FromUniqueString(reg)
2226   //  << "' to 'undefined', but the Breakpad symbol file format cannot "
2227   //  << " express this";
2228 }
2229 
2230 // FIXME: move this somewhere sensible
is_power_of_2(uint64_t n)2231 static bool is_power_of_2(uint64_t n) {
2232   int i, nSetBits = 0;
2233   for (i = 0; i < 8 * (int)sizeof(n); i++) {
2234     if ((n & ((uint64_t)1) << i) != 0) nSetBits++;
2235   }
2236   return nSetBits <= 1;
2237 }
2238 
ExpressionCouldNotBeSummarised(size_t offset,const UniqueString * reg)2239 void DwarfCFIToModule::Reporter::ExpressionCouldNotBeSummarised(
2240     size_t offset, const UniqueString* reg) {
2241   static uint64_t n_complaints = 0;  // This isn't threadsafe
2242   n_complaints++;
2243   if (!is_power_of_2(n_complaints)) return;
2244   char buf[300];
2245   SprintfLiteral(buf,
2246                  "DwarfCFIToModule::Reporter::"
2247                  "ExpressionCouldNotBeSummarised(shown %llu times)\n",
2248                  (unsigned long long int)n_complaints);
2249   log_(buf);
2250 }
2251 
2252 }  // namespace lul
2253