1\name{hunua} 2\alias{hunua} 3\docType{data} 4\title{Hunua Ranges Data} 5\description{ 6 The \code{hunua} data frame has 392 rows and 18 columns. 7 Altitude is explanatory, and there are binary responses 8 (presence/absence = 1/0 respectively) for 17 plant species. 9 10 11} 12\usage{data(hunua)} 13\format{ 14 This data frame contains the following columns: 15 \describe{ 16 \item{agaaus}{Agathis australis, or Kauri} 17 \item{beitaw}{Beilschmiedia tawa, or Tawa} 18 \item{corlae}{Corynocarpus laevigatus} 19 \item{cyadea}{Cyathea dealbata} 20 \item{cyamed}{Cyathea medullaris} 21 \item{daccup}{Dacrydium cupressinum} 22 \item{dacdac}{Dacrycarpus dacrydioides} 23 \item{eladen}{Elaecarpus dentatus} 24 \item{hedarb}{Hedycarya arborea} 25 \item{hohpop}{Species name unknown} 26 \item{kniexc}{Knightia excelsa, or Rewarewa} 27 \item{kuneri}{Kunzea ericoides} 28 \item{lepsco}{Leptospermum scoparium} 29 \item{metrob}{Metrosideros robusta} 30 \item{neslan}{Nestegis lanceolata} 31 \item{rhosap}{Rhopalostylis sapida} 32 \item{vitluc}{Vitex lucens, or Puriri} 33 \item{altitude}{meters above sea level} 34 } 35} 36\details{ 37 These were collected from the Hunua Ranges, a small forest in southern 38 Auckland, New Zealand. At 392 sites in the forest, the presence/absence 39 of 17 plant species was recorded, as well as the altitude. 40 Each site was of area size 200\eqn{m^2}{m^2}. 41 42 43} 44\source{ 45 Dr Neil Mitchell, University of Auckland. 46 47 48} 49%\references{ 50% None. 51%} 52\seealso{ 53 \code{\link{waitakere}}. 54 55 56} 57\examples{ 58# Fit a GAM using vgam() and compare it with the Waitakere Ranges one 59fit.h <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = hunua) 60\dontrun{ 61plot(fit.h, se = TRUE, lcol = "orange", scol = "orange", 62 llwd = 2, slwd = 2, main = "Orange is Hunua, Blue is Waitakere") } 63head(predict(fit.h, hunua, type = "response")) 64 65fit.w <- vgam(agaaus ~ s(altitude, df = 2), binomialff, data = waitakere) 66\dontrun{ 67plot(fit.w, se = TRUE, lcol = "blue", scol = "blue", add = TRUE) } 68head(predict(fit.w, hunua, type = "response")) # Same as above? 69} 70\keyword{datasets} 71