1*> \brief \b CLACON estimates the 1-norm of a square matrix, using reverse communication for evaluating matrix-vector products.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download CLACON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clacon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clacon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clacon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE CLACON( N, V, X, EST, KASE )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            KASE, N
25*       REAL               EST
26*       ..
27*       .. Array Arguments ..
28*       COMPLEX            V( N ), X( N )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> CLACON estimates the 1-norm of a square, complex matrix A.
38*> Reverse communication is used for evaluating matrix-vector products.
39*> \endverbatim
40*
41*  Arguments:
42*  ==========
43*
44*> \param[in] N
45*> \verbatim
46*>          N is INTEGER
47*>         The order of the matrix.  N >= 1.
48*> \endverbatim
49*>
50*> \param[out] V
51*> \verbatim
52*>          V is COMPLEX array, dimension (N)
53*>         On the final return, V = A*W,  where  EST = norm(V)/norm(W)
54*>         (W is not returned).
55*> \endverbatim
56*>
57*> \param[in,out] X
58*> \verbatim
59*>          X is COMPLEX array, dimension (N)
60*>         On an intermediate return, X should be overwritten by
61*>               A * X,   if KASE=1,
62*>               A**H * X,  if KASE=2,
63*>         where A**H is the conjugate transpose of A, and CLACON must be
64*>         re-called with all the other parameters unchanged.
65*> \endverbatim
66*>
67*> \param[in,out] EST
68*> \verbatim
69*>          EST is REAL
70*>         On entry with KASE = 1 or 2 and JUMP = 3, EST should be
71*>         unchanged from the previous call to CLACON.
72*>         On exit, EST is an estimate (a lower bound) for norm(A).
73*> \endverbatim
74*>
75*> \param[in,out] KASE
76*> \verbatim
77*>          KASE is INTEGER
78*>         On the initial call to CLACON, KASE should be 0.
79*>         On an intermediate return, KASE will be 1 or 2, indicating
80*>         whether X should be overwritten by A * X  or A**H * X.
81*>         On the final return from CLACON, KASE will again be 0.
82*> \endverbatim
83*
84*  Authors:
85*  ========
86*
87*> \author Univ. of Tennessee
88*> \author Univ. of California Berkeley
89*> \author Univ. of Colorado Denver
90*> \author NAG Ltd.
91*
92*> \ingroup complexOTHERauxiliary
93*
94*> \par Further Details:
95*  =====================
96*>
97*>  Originally named CONEST, dated March 16, 1988. \n
98*>  Last modified:  April, 1999
99*
100*> \par Contributors:
101*  ==================
102*>
103*>     Nick Higham, University of Manchester
104*
105*> \par References:
106*  ================
107*>
108*>  N.J. Higham, "FORTRAN codes for estimating the one-norm of
109*>  a real or complex matrix, with applications to condition estimation",
110*>  ACM Trans. Math. Soft., vol. 14, no. 4, pp. 381-396, December 1988.
111*>
112*  =====================================================================
113      SUBROUTINE CLACON( N, V, X, EST, KASE )
114*
115*  -- LAPACK auxiliary routine --
116*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
117*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
118*
119*     .. Scalar Arguments ..
120      INTEGER            KASE, N
121      REAL               EST
122*     ..
123*     .. Array Arguments ..
124      COMPLEX            V( N ), X( N )
125*     ..
126*
127*  =====================================================================
128*
129*     .. Parameters ..
130      INTEGER            ITMAX
131      PARAMETER          ( ITMAX = 5 )
132      REAL               ONE, TWO
133      PARAMETER          ( ONE = 1.0E0, TWO = 2.0E0 )
134      COMPLEX            CZERO, CONE
135      PARAMETER          ( CZERO = ( 0.0E0, 0.0E0 ),
136     $                   CONE = ( 1.0E0, 0.0E0 ) )
137*     ..
138*     .. Local Scalars ..
139      INTEGER            I, ITER, J, JLAST, JUMP
140      REAL               ABSXI, ALTSGN, ESTOLD, SAFMIN, TEMP
141*     ..
142*     .. External Functions ..
143      INTEGER            ICMAX1
144      REAL               SCSUM1, SLAMCH
145      EXTERNAL           ICMAX1, SCSUM1, SLAMCH
146*     ..
147*     .. External Subroutines ..
148      EXTERNAL           CCOPY
149*     ..
150*     .. Intrinsic Functions ..
151      INTRINSIC          ABS, AIMAG, CMPLX, REAL
152*     ..
153*     .. Save statement ..
154      SAVE
155*     ..
156*     .. Executable Statements ..
157*
158      SAFMIN = SLAMCH( 'Safe minimum' )
159      IF( KASE.EQ.0 ) THEN
160         DO 10 I = 1, N
161            X( I ) = CMPLX( ONE / REAL( N ) )
162   10    CONTINUE
163         KASE = 1
164         JUMP = 1
165         RETURN
166      END IF
167*
168      GO TO ( 20, 40, 70, 90, 120 )JUMP
169*
170*     ................ ENTRY   (JUMP = 1)
171*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY A*X.
172*
173   20 CONTINUE
174      IF( N.EQ.1 ) THEN
175         V( 1 ) = X( 1 )
176         EST = ABS( V( 1 ) )
177*        ... QUIT
178         GO TO 130
179      END IF
180      EST = SCSUM1( N, X, 1 )
181*
182      DO 30 I = 1, N
183         ABSXI = ABS( X( I ) )
184         IF( ABSXI.GT.SAFMIN ) THEN
185            X( I ) = CMPLX( REAL( X( I ) ) / ABSXI,
186     $               AIMAG( X( I ) ) / ABSXI )
187         ELSE
188            X( I ) = CONE
189         END IF
190   30 CONTINUE
191      KASE = 2
192      JUMP = 2
193      RETURN
194*
195*     ................ ENTRY   (JUMP = 2)
196*     FIRST ITERATION.  X HAS BEEN OVERWRITTEN BY CTRANS(A)*X.
197*
198   40 CONTINUE
199      J = ICMAX1( N, X, 1 )
200      ITER = 2
201*
202*     MAIN LOOP - ITERATIONS 2,3,...,ITMAX.
203*
204   50 CONTINUE
205      DO 60 I = 1, N
206         X( I ) = CZERO
207   60 CONTINUE
208      X( J ) = CONE
209      KASE = 1
210      JUMP = 3
211      RETURN
212*
213*     ................ ENTRY   (JUMP = 3)
214*     X HAS BEEN OVERWRITTEN BY A*X.
215*
216   70 CONTINUE
217      CALL CCOPY( N, X, 1, V, 1 )
218      ESTOLD = EST
219      EST = SCSUM1( N, V, 1 )
220*
221*     TEST FOR CYCLING.
222      IF( EST.LE.ESTOLD )
223     $   GO TO 100
224*
225      DO 80 I = 1, N
226         ABSXI = ABS( X( I ) )
227         IF( ABSXI.GT.SAFMIN ) THEN
228            X( I ) = CMPLX( REAL( X( I ) ) / ABSXI,
229     $               AIMAG( X( I ) ) / ABSXI )
230         ELSE
231            X( I ) = CONE
232         END IF
233   80 CONTINUE
234      KASE = 2
235      JUMP = 4
236      RETURN
237*
238*     ................ ENTRY   (JUMP = 4)
239*     X HAS BEEN OVERWRITTEN BY CTRANS(A)*X.
240*
241   90 CONTINUE
242      JLAST = J
243      J = ICMAX1( N, X, 1 )
244      IF( ( ABS( X( JLAST ) ).NE.ABS( X( J ) ) ) .AND.
245     $    ( ITER.LT.ITMAX ) ) THEN
246         ITER = ITER + 1
247         GO TO 50
248      END IF
249*
250*     ITERATION COMPLETE.  FINAL STAGE.
251*
252  100 CONTINUE
253      ALTSGN = ONE
254      DO 110 I = 1, N
255         X( I ) = CMPLX( ALTSGN*( ONE+REAL( I-1 ) / REAL( N-1 ) ) )
256         ALTSGN = -ALTSGN
257  110 CONTINUE
258      KASE = 1
259      JUMP = 5
260      RETURN
261*
262*     ................ ENTRY   (JUMP = 5)
263*     X HAS BEEN OVERWRITTEN BY A*X.
264*
265  120 CONTINUE
266      TEMP = TWO*( SCSUM1( N, X, 1 ) / REAL( 3*N ) )
267      IF( TEMP.GT.EST ) THEN
268         CALL CCOPY( N, X, 1, V, 1 )
269         EST = TEMP
270      END IF
271*
272  130 CONTINUE
273      KASE = 0
274      RETURN
275*
276*     End of CLACON
277*
278      END
279