1*> \brief \b DLAEIN computes a specified right or left eigenvector of an upper Hessenberg matrix by inverse iteration.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLAEIN + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaein.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaein.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaein.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
22*                          LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
23*
24*       .. Scalar Arguments ..
25*       LOGICAL            NOINIT, RIGHTV
26*       INTEGER            INFO, LDB, LDH, N
27*       DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
31*      $                   WORK( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> DLAEIN uses inverse iteration to find a right or left eigenvector
41*> corresponding to the eigenvalue (WR,WI) of a real upper Hessenberg
42*> matrix H.
43*> \endverbatim
44*
45*  Arguments:
46*  ==========
47*
48*> \param[in] RIGHTV
49*> \verbatim
50*>          RIGHTV is LOGICAL
51*>          = .TRUE. : compute right eigenvector;
52*>          = .FALSE.: compute left eigenvector.
53*> \endverbatim
54*>
55*> \param[in] NOINIT
56*> \verbatim
57*>          NOINIT is LOGICAL
58*>          = .TRUE. : no initial vector supplied in (VR,VI).
59*>          = .FALSE.: initial vector supplied in (VR,VI).
60*> \endverbatim
61*>
62*> \param[in] N
63*> \verbatim
64*>          N is INTEGER
65*>          The order of the matrix H.  N >= 0.
66*> \endverbatim
67*>
68*> \param[in] H
69*> \verbatim
70*>          H is DOUBLE PRECISION array, dimension (LDH,N)
71*>          The upper Hessenberg matrix H.
72*> \endverbatim
73*>
74*> \param[in] LDH
75*> \verbatim
76*>          LDH is INTEGER
77*>          The leading dimension of the array H.  LDH >= max(1,N).
78*> \endverbatim
79*>
80*> \param[in] WR
81*> \verbatim
82*>          WR is DOUBLE PRECISION
83*> \endverbatim
84*>
85*> \param[in] WI
86*> \verbatim
87*>          WI is DOUBLE PRECISION
88*>          The real and imaginary parts of the eigenvalue of H whose
89*>          corresponding right or left eigenvector is to be computed.
90*> \endverbatim
91*>
92*> \param[in,out] VR
93*> \verbatim
94*>          VR is DOUBLE PRECISION array, dimension (N)
95*> \endverbatim
96*>
97*> \param[in,out] VI
98*> \verbatim
99*>          VI is DOUBLE PRECISION array, dimension (N)
100*>          On entry, if NOINIT = .FALSE. and WI = 0.0, VR must contain
101*>          a real starting vector for inverse iteration using the real
102*>          eigenvalue WR; if NOINIT = .FALSE. and WI.ne.0.0, VR and VI
103*>          must contain the real and imaginary parts of a complex
104*>          starting vector for inverse iteration using the complex
105*>          eigenvalue (WR,WI); otherwise VR and VI need not be set.
106*>          On exit, if WI = 0.0 (real eigenvalue), VR contains the
107*>          computed real eigenvector; if WI.ne.0.0 (complex eigenvalue),
108*>          VR and VI contain the real and imaginary parts of the
109*>          computed complex eigenvector. The eigenvector is normalized
110*>          so that the component of largest magnitude has magnitude 1;
111*>          here the magnitude of a complex number (x,y) is taken to be
112*>          |x| + |y|.
113*>          VI is not referenced if WI = 0.0.
114*> \endverbatim
115*>
116*> \param[out] B
117*> \verbatim
118*>          B is DOUBLE PRECISION array, dimension (LDB,N)
119*> \endverbatim
120*>
121*> \param[in] LDB
122*> \verbatim
123*>          LDB is INTEGER
124*>          The leading dimension of the array B.  LDB >= N+1.
125*> \endverbatim
126*>
127*> \param[out] WORK
128*> \verbatim
129*>          WORK is DOUBLE PRECISION array, dimension (N)
130*> \endverbatim
131*>
132*> \param[in] EPS3
133*> \verbatim
134*>          EPS3 is DOUBLE PRECISION
135*>          A small machine-dependent value which is used to perturb
136*>          close eigenvalues, and to replace zero pivots.
137*> \endverbatim
138*>
139*> \param[in] SMLNUM
140*> \verbatim
141*>          SMLNUM is DOUBLE PRECISION
142*>          A machine-dependent value close to the underflow threshold.
143*> \endverbatim
144*>
145*> \param[in] BIGNUM
146*> \verbatim
147*>          BIGNUM is DOUBLE PRECISION
148*>          A machine-dependent value close to the overflow threshold.
149*> \endverbatim
150*>
151*> \param[out] INFO
152*> \verbatim
153*>          INFO is INTEGER
154*>          = 0:  successful exit
155*>          = 1:  inverse iteration did not converge; VR is set to the
156*>                last iterate, and so is VI if WI.ne.0.0.
157*> \endverbatim
158*
159*  Authors:
160*  ========
161*
162*> \author Univ. of Tennessee
163*> \author Univ. of California Berkeley
164*> \author Univ. of Colorado Denver
165*> \author NAG Ltd.
166*
167*> \ingroup doubleOTHERauxiliary
168*
169*  =====================================================================
170      SUBROUTINE DLAEIN( RIGHTV, NOINIT, N, H, LDH, WR, WI, VR, VI, B,
171     $                   LDB, WORK, EPS3, SMLNUM, BIGNUM, INFO )
172*
173*  -- LAPACK auxiliary routine --
174*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
175*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
176*
177*     .. Scalar Arguments ..
178      LOGICAL            NOINIT, RIGHTV
179      INTEGER            INFO, LDB, LDH, N
180      DOUBLE PRECISION   BIGNUM, EPS3, SMLNUM, WI, WR
181*     ..
182*     .. Array Arguments ..
183      DOUBLE PRECISION   B( LDB, * ), H( LDH, * ), VI( * ), VR( * ),
184     $                   WORK( * )
185*     ..
186*
187*  =====================================================================
188*
189*     .. Parameters ..
190      DOUBLE PRECISION   ZERO, ONE, TENTH
191      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0, TENTH = 1.0D-1 )
192*     ..
193*     .. Local Scalars ..
194      CHARACTER          NORMIN, TRANS
195      INTEGER            I, I1, I2, I3, IERR, ITS, J
196      DOUBLE PRECISION   ABSBII, ABSBJJ, EI, EJ, GROWTO, NORM, NRMSML,
197     $                   REC, ROOTN, SCALE, TEMP, VCRIT, VMAX, VNORM, W,
198     $                   W1, X, XI, XR, Y
199*     ..
200*     .. External Functions ..
201      INTEGER            IDAMAX
202      DOUBLE PRECISION   DASUM, DLAPY2, DNRM2
203      EXTERNAL           IDAMAX, DASUM, DLAPY2, DNRM2
204*     ..
205*     .. External Subroutines ..
206      EXTERNAL           DLADIV, DLATRS, DSCAL
207*     ..
208*     .. Intrinsic Functions ..
209      INTRINSIC          ABS, DBLE, MAX, SQRT
210*     ..
211*     .. Executable Statements ..
212*
213      INFO = 0
214*
215*     GROWTO is the threshold used in the acceptance test for an
216*     eigenvector.
217*
218      ROOTN = SQRT( DBLE( N ) )
219      GROWTO = TENTH / ROOTN
220      NRMSML = MAX( ONE, EPS3*ROOTN )*SMLNUM
221*
222*     Form B = H - (WR,WI)*I (except that the subdiagonal elements and
223*     the imaginary parts of the diagonal elements are not stored).
224*
225      DO 20 J = 1, N
226         DO 10 I = 1, J - 1
227            B( I, J ) = H( I, J )
228   10    CONTINUE
229         B( J, J ) = H( J, J ) - WR
230   20 CONTINUE
231*
232      IF( WI.EQ.ZERO ) THEN
233*
234*        Real eigenvalue.
235*
236         IF( NOINIT ) THEN
237*
238*           Set initial vector.
239*
240            DO 30 I = 1, N
241               VR( I ) = EPS3
242   30       CONTINUE
243         ELSE
244*
245*           Scale supplied initial vector.
246*
247            VNORM = DNRM2( N, VR, 1 )
248            CALL DSCAL( N, ( EPS3*ROOTN ) / MAX( VNORM, NRMSML ), VR,
249     $                  1 )
250         END IF
251*
252         IF( RIGHTV ) THEN
253*
254*           LU decomposition with partial pivoting of B, replacing zero
255*           pivots by EPS3.
256*
257            DO 60 I = 1, N - 1
258               EI = H( I+1, I )
259               IF( ABS( B( I, I ) ).LT.ABS( EI ) ) THEN
260*
261*                 Interchange rows and eliminate.
262*
263                  X = B( I, I ) / EI
264                  B( I, I ) = EI
265                  DO 40 J = I + 1, N
266                     TEMP = B( I+1, J )
267                     B( I+1, J ) = B( I, J ) - X*TEMP
268                     B( I, J ) = TEMP
269   40             CONTINUE
270               ELSE
271*
272*                 Eliminate without interchange.
273*
274                  IF( B( I, I ).EQ.ZERO )
275     $               B( I, I ) = EPS3
276                  X = EI / B( I, I )
277                  IF( X.NE.ZERO ) THEN
278                     DO 50 J = I + 1, N
279                        B( I+1, J ) = B( I+1, J ) - X*B( I, J )
280   50                CONTINUE
281                  END IF
282               END IF
283   60       CONTINUE
284            IF( B( N, N ).EQ.ZERO )
285     $         B( N, N ) = EPS3
286*
287            TRANS = 'N'
288*
289         ELSE
290*
291*           UL decomposition with partial pivoting of B, replacing zero
292*           pivots by EPS3.
293*
294            DO 90 J = N, 2, -1
295               EJ = H( J, J-1 )
296               IF( ABS( B( J, J ) ).LT.ABS( EJ ) ) THEN
297*
298*                 Interchange columns and eliminate.
299*
300                  X = B( J, J ) / EJ
301                  B( J, J ) = EJ
302                  DO 70 I = 1, J - 1
303                     TEMP = B( I, J-1 )
304                     B( I, J-1 ) = B( I, J ) - X*TEMP
305                     B( I, J ) = TEMP
306   70             CONTINUE
307               ELSE
308*
309*                 Eliminate without interchange.
310*
311                  IF( B( J, J ).EQ.ZERO )
312     $               B( J, J ) = EPS3
313                  X = EJ / B( J, J )
314                  IF( X.NE.ZERO ) THEN
315                     DO 80 I = 1, J - 1
316                        B( I, J-1 ) = B( I, J-1 ) - X*B( I, J )
317   80                CONTINUE
318                  END IF
319               END IF
320   90       CONTINUE
321            IF( B( 1, 1 ).EQ.ZERO )
322     $         B( 1, 1 ) = EPS3
323*
324            TRANS = 'T'
325*
326         END IF
327*
328         NORMIN = 'N'
329         DO 110 ITS = 1, N
330*
331*           Solve U*x = scale*v for a right eigenvector
332*             or U**T*x = scale*v for a left eigenvector,
333*           overwriting x on v.
334*
335            CALL DLATRS( 'Upper', TRANS, 'Nonunit', NORMIN, N, B, LDB,
336     $                   VR, SCALE, WORK, IERR )
337            NORMIN = 'Y'
338*
339*           Test for sufficient growth in the norm of v.
340*
341            VNORM = DASUM( N, VR, 1 )
342            IF( VNORM.GE.GROWTO*SCALE )
343     $         GO TO 120
344*
345*           Choose new orthogonal starting vector and try again.
346*
347            TEMP = EPS3 / ( ROOTN+ONE )
348            VR( 1 ) = EPS3
349            DO 100 I = 2, N
350               VR( I ) = TEMP
351  100       CONTINUE
352            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
353  110    CONTINUE
354*
355*        Failure to find eigenvector in N iterations.
356*
357         INFO = 1
358*
359  120    CONTINUE
360*
361*        Normalize eigenvector.
362*
363         I = IDAMAX( N, VR, 1 )
364         CALL DSCAL( N, ONE / ABS( VR( I ) ), VR, 1 )
365      ELSE
366*
367*        Complex eigenvalue.
368*
369         IF( NOINIT ) THEN
370*
371*           Set initial vector.
372*
373            DO 130 I = 1, N
374               VR( I ) = EPS3
375               VI( I ) = ZERO
376  130       CONTINUE
377         ELSE
378*
379*           Scale supplied initial vector.
380*
381            NORM = DLAPY2( DNRM2( N, VR, 1 ), DNRM2( N, VI, 1 ) )
382            REC = ( EPS3*ROOTN ) / MAX( NORM, NRMSML )
383            CALL DSCAL( N, REC, VR, 1 )
384            CALL DSCAL( N, REC, VI, 1 )
385         END IF
386*
387         IF( RIGHTV ) THEN
388*
389*           LU decomposition with partial pivoting of B, replacing zero
390*           pivots by EPS3.
391*
392*           The imaginary part of the (i,j)-th element of U is stored in
393*           B(j+1,i).
394*
395            B( 2, 1 ) = -WI
396            DO 140 I = 2, N
397               B( I+1, 1 ) = ZERO
398  140       CONTINUE
399*
400            DO 170 I = 1, N - 1
401               ABSBII = DLAPY2( B( I, I ), B( I+1, I ) )
402               EI = H( I+1, I )
403               IF( ABSBII.LT.ABS( EI ) ) THEN
404*
405*                 Interchange rows and eliminate.
406*
407                  XR = B( I, I ) / EI
408                  XI = B( I+1, I ) / EI
409                  B( I, I ) = EI
410                  B( I+1, I ) = ZERO
411                  DO 150 J = I + 1, N
412                     TEMP = B( I+1, J )
413                     B( I+1, J ) = B( I, J ) - XR*TEMP
414                     B( J+1, I+1 ) = B( J+1, I ) - XI*TEMP
415                     B( I, J ) = TEMP
416                     B( J+1, I ) = ZERO
417  150             CONTINUE
418                  B( I+2, I ) = -WI
419                  B( I+1, I+1 ) = B( I+1, I+1 ) - XI*WI
420                  B( I+2, I+1 ) = B( I+2, I+1 ) + XR*WI
421               ELSE
422*
423*                 Eliminate without interchanging rows.
424*
425                  IF( ABSBII.EQ.ZERO ) THEN
426                     B( I, I ) = EPS3
427                     B( I+1, I ) = ZERO
428                     ABSBII = EPS3
429                  END IF
430                  EI = ( EI / ABSBII ) / ABSBII
431                  XR = B( I, I )*EI
432                  XI = -B( I+1, I )*EI
433                  DO 160 J = I + 1, N
434                     B( I+1, J ) = B( I+1, J ) - XR*B( I, J ) +
435     $                             XI*B( J+1, I )
436                     B( J+1, I+1 ) = -XR*B( J+1, I ) - XI*B( I, J )
437  160             CONTINUE
438                  B( I+2, I+1 ) = B( I+2, I+1 ) - WI
439               END IF
440*
441*              Compute 1-norm of offdiagonal elements of i-th row.
442*
443               WORK( I ) = DASUM( N-I, B( I, I+1 ), LDB ) +
444     $                     DASUM( N-I, B( I+2, I ), 1 )
445  170       CONTINUE
446            IF( B( N, N ).EQ.ZERO .AND. B( N+1, N ).EQ.ZERO )
447     $         B( N, N ) = EPS3
448            WORK( N ) = ZERO
449*
450            I1 = N
451            I2 = 1
452            I3 = -1
453         ELSE
454*
455*           UL decomposition with partial pivoting of conjg(B),
456*           replacing zero pivots by EPS3.
457*
458*           The imaginary part of the (i,j)-th element of U is stored in
459*           B(j+1,i).
460*
461            B( N+1, N ) = WI
462            DO 180 J = 1, N - 1
463               B( N+1, J ) = ZERO
464  180       CONTINUE
465*
466            DO 210 J = N, 2, -1
467               EJ = H( J, J-1 )
468               ABSBJJ = DLAPY2( B( J, J ), B( J+1, J ) )
469               IF( ABSBJJ.LT.ABS( EJ ) ) THEN
470*
471*                 Interchange columns and eliminate
472*
473                  XR = B( J, J ) / EJ
474                  XI = B( J+1, J ) / EJ
475                  B( J, J ) = EJ
476                  B( J+1, J ) = ZERO
477                  DO 190 I = 1, J - 1
478                     TEMP = B( I, J-1 )
479                     B( I, J-1 ) = B( I, J ) - XR*TEMP
480                     B( J, I ) = B( J+1, I ) - XI*TEMP
481                     B( I, J ) = TEMP
482                     B( J+1, I ) = ZERO
483  190             CONTINUE
484                  B( J+1, J-1 ) = WI
485                  B( J-1, J-1 ) = B( J-1, J-1 ) + XI*WI
486                  B( J, J-1 ) = B( J, J-1 ) - XR*WI
487               ELSE
488*
489*                 Eliminate without interchange.
490*
491                  IF( ABSBJJ.EQ.ZERO ) THEN
492                     B( J, J ) = EPS3
493                     B( J+1, J ) = ZERO
494                     ABSBJJ = EPS3
495                  END IF
496                  EJ = ( EJ / ABSBJJ ) / ABSBJJ
497                  XR = B( J, J )*EJ
498                  XI = -B( J+1, J )*EJ
499                  DO 200 I = 1, J - 1
500                     B( I, J-1 ) = B( I, J-1 ) - XR*B( I, J ) +
501     $                             XI*B( J+1, I )
502                     B( J, I ) = -XR*B( J+1, I ) - XI*B( I, J )
503  200             CONTINUE
504                  B( J, J-1 ) = B( J, J-1 ) + WI
505               END IF
506*
507*              Compute 1-norm of offdiagonal elements of j-th column.
508*
509               WORK( J ) = DASUM( J-1, B( 1, J ), 1 ) +
510     $                     DASUM( J-1, B( J+1, 1 ), LDB )
511  210       CONTINUE
512            IF( B( 1, 1 ).EQ.ZERO .AND. B( 2, 1 ).EQ.ZERO )
513     $         B( 1, 1 ) = EPS3
514            WORK( 1 ) = ZERO
515*
516            I1 = 1
517            I2 = N
518            I3 = 1
519         END IF
520*
521         DO 270 ITS = 1, N
522            SCALE = ONE
523            VMAX = ONE
524            VCRIT = BIGNUM
525*
526*           Solve U*(xr,xi) = scale*(vr,vi) for a right eigenvector,
527*             or U**T*(xr,xi) = scale*(vr,vi) for a left eigenvector,
528*           overwriting (xr,xi) on (vr,vi).
529*
530            DO 250 I = I1, I2, I3
531*
532               IF( WORK( I ).GT.VCRIT ) THEN
533                  REC = ONE / VMAX
534                  CALL DSCAL( N, REC, VR, 1 )
535                  CALL DSCAL( N, REC, VI, 1 )
536                  SCALE = SCALE*REC
537                  VMAX = ONE
538                  VCRIT = BIGNUM
539               END IF
540*
541               XR = VR( I )
542               XI = VI( I )
543               IF( RIGHTV ) THEN
544                  DO 220 J = I + 1, N
545                     XR = XR - B( I, J )*VR( J ) + B( J+1, I )*VI( J )
546                     XI = XI - B( I, J )*VI( J ) - B( J+1, I )*VR( J )
547  220             CONTINUE
548               ELSE
549                  DO 230 J = 1, I - 1
550                     XR = XR - B( J, I )*VR( J ) + B( I+1, J )*VI( J )
551                     XI = XI - B( J, I )*VI( J ) - B( I+1, J )*VR( J )
552  230             CONTINUE
553               END IF
554*
555               W = ABS( B( I, I ) ) + ABS( B( I+1, I ) )
556               IF( W.GT.SMLNUM ) THEN
557                  IF( W.LT.ONE ) THEN
558                     W1 = ABS( XR ) + ABS( XI )
559                     IF( W1.GT.W*BIGNUM ) THEN
560                        REC = ONE / W1
561                        CALL DSCAL( N, REC, VR, 1 )
562                        CALL DSCAL( N, REC, VI, 1 )
563                        XR = VR( I )
564                        XI = VI( I )
565                        SCALE = SCALE*REC
566                        VMAX = VMAX*REC
567                     END IF
568                  END IF
569*
570*                 Divide by diagonal element of B.
571*
572                  CALL DLADIV( XR, XI, B( I, I ), B( I+1, I ), VR( I ),
573     $                         VI( I ) )
574                  VMAX = MAX( ABS( VR( I ) )+ABS( VI( I ) ), VMAX )
575                  VCRIT = BIGNUM / VMAX
576               ELSE
577                  DO 240 J = 1, N
578                     VR( J ) = ZERO
579                     VI( J ) = ZERO
580  240             CONTINUE
581                  VR( I ) = ONE
582                  VI( I ) = ONE
583                  SCALE = ZERO
584                  VMAX = ONE
585                  VCRIT = BIGNUM
586               END IF
587  250       CONTINUE
588*
589*           Test for sufficient growth in the norm of (VR,VI).
590*
591            VNORM = DASUM( N, VR, 1 ) + DASUM( N, VI, 1 )
592            IF( VNORM.GE.GROWTO*SCALE )
593     $         GO TO 280
594*
595*           Choose a new orthogonal starting vector and try again.
596*
597            Y = EPS3 / ( ROOTN+ONE )
598            VR( 1 ) = EPS3
599            VI( 1 ) = ZERO
600*
601            DO 260 I = 2, N
602               VR( I ) = Y
603               VI( I ) = ZERO
604  260       CONTINUE
605            VR( N-ITS+1 ) = VR( N-ITS+1 ) - EPS3*ROOTN
606  270    CONTINUE
607*
608*        Failure to find eigenvector in N iterations
609*
610         INFO = 1
611*
612  280    CONTINUE
613*
614*        Normalize eigenvector.
615*
616         VNORM = ZERO
617         DO 290 I = 1, N
618            VNORM = MAX( VNORM, ABS( VR( I ) )+ABS( VI( I ) ) )
619  290    CONTINUE
620         CALL DSCAL( N, ONE / VNORM, VR, 1 )
621         CALL DSCAL( N, ONE / VNORM, VI, 1 )
622*
623      END IF
624*
625      RETURN
626*
627*     End of DLAEIN
628*
629      END
630