1*> \brief \b DLAHQR computes the eigenvalues and Schur factorization of an upper Hessenberg matrix, using the double-shift/single-shift QR algorithm.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DLAHQR + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlahqr.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlahqr.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlahqr.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
22*                          ILOZ, IHIZ, Z, LDZ, INFO )
23*
24*       .. Scalar Arguments ..
25*       INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
26*       LOGICAL            WANTT, WANTZ
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*>    DLAHQR is an auxiliary routine called by DHSEQR to update the
39*>    eigenvalues and Schur decomposition already computed by DHSEQR, by
40*>    dealing with the Hessenberg submatrix in rows and columns ILO to
41*>    IHI.
42*> \endverbatim
43*
44*  Arguments:
45*  ==========
46*
47*> \param[in] WANTT
48*> \verbatim
49*>          WANTT is LOGICAL
50*>          = .TRUE. : the full Schur form T is required;
51*>          = .FALSE.: only eigenvalues are required.
52*> \endverbatim
53*>
54*> \param[in] WANTZ
55*> \verbatim
56*>          WANTZ is LOGICAL
57*>          = .TRUE. : the matrix of Schur vectors Z is required;
58*>          = .FALSE.: Schur vectors are not required.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*>          N is INTEGER
64*>          The order of the matrix H.  N >= 0.
65*> \endverbatim
66*>
67*> \param[in] ILO
68*> \verbatim
69*>          ILO is INTEGER
70*> \endverbatim
71*>
72*> \param[in] IHI
73*> \verbatim
74*>          IHI is INTEGER
75*>          It is assumed that H is already upper quasi-triangular in
76*>          rows and columns IHI+1:N, and that H(ILO,ILO-1) = 0 (unless
77*>          ILO = 1). DLAHQR works primarily with the Hessenberg
78*>          submatrix in rows and columns ILO to IHI, but applies
79*>          transformations to all of H if WANTT is .TRUE..
80*>          1 <= ILO <= max(1,IHI); IHI <= N.
81*> \endverbatim
82*>
83*> \param[in,out] H
84*> \verbatim
85*>          H is DOUBLE PRECISION array, dimension (LDH,N)
86*>          On entry, the upper Hessenberg matrix H.
87*>          On exit, if INFO is zero and if WANTT is .TRUE., H is upper
88*>          quasi-triangular in rows and columns ILO:IHI, with any
89*>          2-by-2 diagonal blocks in standard form. If INFO is zero
90*>          and WANTT is .FALSE., the contents of H are unspecified on
91*>          exit.  The output state of H if INFO is nonzero is given
92*>          below under the description of INFO.
93*> \endverbatim
94*>
95*> \param[in] LDH
96*> \verbatim
97*>          LDH is INTEGER
98*>          The leading dimension of the array H. LDH >= max(1,N).
99*> \endverbatim
100*>
101*> \param[out] WR
102*> \verbatim
103*>          WR is DOUBLE PRECISION array, dimension (N)
104*> \endverbatim
105*>
106*> \param[out] WI
107*> \verbatim
108*>          WI is DOUBLE PRECISION array, dimension (N)
109*>          The real and imaginary parts, respectively, of the computed
110*>          eigenvalues ILO to IHI are stored in the corresponding
111*>          elements of WR and WI. If two eigenvalues are computed as a
112*>          complex conjugate pair, they are stored in consecutive
113*>          elements of WR and WI, say the i-th and (i+1)th, with
114*>          WI(i) > 0 and WI(i+1) < 0. If WANTT is .TRUE., the
115*>          eigenvalues are stored in the same order as on the diagonal
116*>          of the Schur form returned in H, with WR(i) = H(i,i), and, if
117*>          H(i:i+1,i:i+1) is a 2-by-2 diagonal block,
118*>          WI(i) = sqrt(H(i+1,i)*H(i,i+1)) and WI(i+1) = -WI(i).
119*> \endverbatim
120*>
121*> \param[in] ILOZ
122*> \verbatim
123*>          ILOZ is INTEGER
124*> \endverbatim
125*>
126*> \param[in] IHIZ
127*> \verbatim
128*>          IHIZ is INTEGER
129*>          Specify the rows of Z to which transformations must be
130*>          applied if WANTZ is .TRUE..
131*>          1 <= ILOZ <= ILO; IHI <= IHIZ <= N.
132*> \endverbatim
133*>
134*> \param[in,out] Z
135*> \verbatim
136*>          Z is DOUBLE PRECISION array, dimension (LDZ,N)
137*>          If WANTZ is .TRUE., on entry Z must contain the current
138*>          matrix Z of transformations accumulated by DHSEQR, and on
139*>          exit Z has been updated; transformations are applied only to
140*>          the submatrix Z(ILOZ:IHIZ,ILO:IHI).
141*>          If WANTZ is .FALSE., Z is not referenced.
142*> \endverbatim
143*>
144*> \param[in] LDZ
145*> \verbatim
146*>          LDZ is INTEGER
147*>          The leading dimension of the array Z. LDZ >= max(1,N).
148*> \endverbatim
149*>
150*> \param[out] INFO
151*> \verbatim
152*>          INFO is INTEGER
153*>           = 0:  successful exit
154*>           > 0:  If INFO = i, DLAHQR failed to compute all the
155*>                  eigenvalues ILO to IHI in a total of 30 iterations
156*>                  per eigenvalue; elements i+1:ihi of WR and WI
157*>                  contain those eigenvalues which have been
158*>                  successfully computed.
159*>
160*>                  If INFO > 0 and WANTT is .FALSE., then on exit,
161*>                  the remaining unconverged eigenvalues are the
162*>                  eigenvalues of the upper Hessenberg matrix rows
163*>                  and columns ILO through INFO of the final, output
164*>                  value of H.
165*>
166*>                  If INFO > 0 and WANTT is .TRUE., then on exit
167*>          (*)       (initial value of H)*U  = U*(final value of H)
168*>                  where U is an orthogonal matrix.    The final
169*>                  value of H is upper Hessenberg and triangular in
170*>                  rows and columns INFO+1 through IHI.
171*>
172*>                  If INFO > 0 and WANTZ is .TRUE., then on exit
173*>                      (final value of Z)  = (initial value of Z)*U
174*>                  where U is the orthogonal matrix in (*)
175*>                  (regardless of the value of WANTT.)
176*> \endverbatim
177*
178*  Authors:
179*  ========
180*
181*> \author Univ. of Tennessee
182*> \author Univ. of California Berkeley
183*> \author Univ. of Colorado Denver
184*> \author NAG Ltd.
185*
186*> \ingroup doubleOTHERauxiliary
187*
188*> \par Further Details:
189*  =====================
190*>
191*> \verbatim
192*>
193*>     02-96 Based on modifications by
194*>     David Day, Sandia National Laboratory, USA
195*>
196*>     12-04 Further modifications by
197*>     Ralph Byers, University of Kansas, USA
198*>     This is a modified version of DLAHQR from LAPACK version 3.0.
199*>     It is (1) more robust against overflow and underflow and
200*>     (2) adopts the more conservative Ahues & Tisseur stopping
201*>     criterion (LAWN 122, 1997).
202*> \endverbatim
203*>
204*  =====================================================================
205      SUBROUTINE DLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI,
206     $                   ILOZ, IHIZ, Z, LDZ, INFO )
207      IMPLICIT NONE
208*
209*  -- LAPACK auxiliary routine --
210*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
211*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
212*
213*     .. Scalar Arguments ..
214      INTEGER            IHI, IHIZ, ILO, ILOZ, INFO, LDH, LDZ, N
215      LOGICAL            WANTT, WANTZ
216*     ..
217*     .. Array Arguments ..
218      DOUBLE PRECISION   H( LDH, * ), WI( * ), WR( * ), Z( LDZ, * )
219*     ..
220*
221*  =========================================================
222*
223*     .. Parameters ..
224      DOUBLE PRECISION   ZERO, ONE, TWO
225      PARAMETER          ( ZERO = 0.0d0, ONE = 1.0d0, TWO = 2.0d0 )
226      DOUBLE PRECISION   DAT1, DAT2
227      PARAMETER          ( DAT1 = 3.0d0 / 4.0d0, DAT2 = -0.4375d0 )
228      INTEGER            KEXSH
229      PARAMETER          ( KEXSH = 10 )
230*     ..
231*     .. Local Scalars ..
232      DOUBLE PRECISION   AA, AB, BA, BB, CS, DET, H11, H12, H21, H21S,
233     $                   H22, RT1I, RT1R, RT2I, RT2R, RTDISC, S, SAFMAX,
234     $                   SAFMIN, SMLNUM, SN, SUM, T1, T2, T3, TR, TST,
235     $                   ULP, V2, V3
236      INTEGER            I, I1, I2, ITS, ITMAX, J, K, L, M, NH, NR, NZ,
237     $                   KDEFL
238*     ..
239*     .. Local Arrays ..
240      DOUBLE PRECISION   V( 3 )
241*     ..
242*     .. External Functions ..
243      DOUBLE PRECISION   DLAMCH
244      EXTERNAL           DLAMCH
245*     ..
246*     .. External Subroutines ..
247      EXTERNAL           DCOPY, DLABAD, DLANV2, DLARFG, DROT
248*     ..
249*     .. Intrinsic Functions ..
250      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
251*     ..
252*     .. Executable Statements ..
253*
254      INFO = 0
255*
256*     Quick return if possible
257*
258      IF( N.EQ.0 )
259     $   RETURN
260      IF( ILO.EQ.IHI ) THEN
261         WR( ILO ) = H( ILO, ILO )
262         WI( ILO ) = ZERO
263         RETURN
264      END IF
265*
266*     ==== clear out the trash ====
267      DO 10 J = ILO, IHI - 3
268         H( J+2, J ) = ZERO
269         H( J+3, J ) = ZERO
270   10 CONTINUE
271      IF( ILO.LE.IHI-2 )
272     $   H( IHI, IHI-2 ) = ZERO
273*
274      NH = IHI - ILO + 1
275      NZ = IHIZ - ILOZ + 1
276*
277*     Set machine-dependent constants for the stopping criterion.
278*
279      SAFMIN = DLAMCH( 'SAFE MINIMUM' )
280      SAFMAX = ONE / SAFMIN
281      CALL DLABAD( SAFMIN, SAFMAX )
282      ULP = DLAMCH( 'PRECISION' )
283      SMLNUM = SAFMIN*( DBLE( NH ) / ULP )
284*
285*     I1 and I2 are the indices of the first row and last column of H
286*     to which transformations must be applied. If eigenvalues only are
287*     being computed, I1 and I2 are set inside the main loop.
288*
289      IF( WANTT ) THEN
290         I1 = 1
291         I2 = N
292      END IF
293*
294*     ITMAX is the total number of QR iterations allowed.
295*
296      ITMAX = 30 * MAX( 10, NH )
297*
298*     KDEFL counts the number of iterations since a deflation
299*
300      KDEFL = 0
301*
302*     The main loop begins here. I is the loop index and decreases from
303*     IHI to ILO in steps of 1 or 2. Each iteration of the loop works
304*     with the active submatrix in rows and columns L to I.
305*     Eigenvalues I+1 to IHI have already converged. Either L = ILO or
306*     H(L,L-1) is negligible so that the matrix splits.
307*
308      I = IHI
309   20 CONTINUE
310      L = ILO
311      IF( I.LT.ILO )
312     $   GO TO 160
313*
314*     Perform QR iterations on rows and columns ILO to I until a
315*     submatrix of order 1 or 2 splits off at the bottom because a
316*     subdiagonal element has become negligible.
317*
318      DO 140 ITS = 0, ITMAX
319*
320*        Look for a single small subdiagonal element.
321*
322         DO 30 K = I, L + 1, -1
323            IF( ABS( H( K, K-1 ) ).LE.SMLNUM )
324     $         GO TO 40
325            TST = ABS( H( K-1, K-1 ) ) + ABS( H( K, K ) )
326            IF( TST.EQ.ZERO ) THEN
327               IF( K-2.GE.ILO )
328     $            TST = TST + ABS( H( K-1, K-2 ) )
329               IF( K+1.LE.IHI )
330     $            TST = TST + ABS( H( K+1, K ) )
331            END IF
332*           ==== The following is a conservative small subdiagonal
333*           .    deflation  criterion due to Ahues & Tisseur (LAWN 122,
334*           .    1997). It has better mathematical foundation and
335*           .    improves accuracy in some cases.  ====
336            IF( ABS( H( K, K-1 ) ).LE.ULP*TST ) THEN
337               AB = MAX( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
338               BA = MIN( ABS( H( K, K-1 ) ), ABS( H( K-1, K ) ) )
339               AA = MAX( ABS( H( K, K ) ),
340     $              ABS( H( K-1, K-1 )-H( K, K ) ) )
341               BB = MIN( ABS( H( K, K ) ),
342     $              ABS( H( K-1, K-1 )-H( K, K ) ) )
343               S = AA + AB
344               IF( BA*( AB / S ).LE.MAX( SMLNUM,
345     $             ULP*( BB*( AA / S ) ) ) )GO TO 40
346            END IF
347   30    CONTINUE
348   40    CONTINUE
349         L = K
350         IF( L.GT.ILO ) THEN
351*
352*           H(L,L-1) is negligible
353*
354            H( L, L-1 ) = ZERO
355         END IF
356*
357*        Exit from loop if a submatrix of order 1 or 2 has split off.
358*
359         IF( L.GE.I-1 )
360     $      GO TO 150
361         KDEFL = KDEFL + 1
362*
363*        Now the active submatrix is in rows and columns L to I. If
364*        eigenvalues only are being computed, only the active submatrix
365*        need be transformed.
366*
367         IF( .NOT.WANTT ) THEN
368            I1 = L
369            I2 = I
370         END IF
371*
372         IF( MOD(KDEFL,2*KEXSH).EQ.0 ) THEN
373*
374*           Exceptional shift.
375*
376            S = ABS( H( I, I-1 ) ) + ABS( H( I-1, I-2 ) )
377            H11 = DAT1*S + H( I, I )
378            H12 = DAT2*S
379            H21 = S
380            H22 = H11
381         ELSE IF( MOD(KDEFL,KEXSH).EQ.0 ) THEN
382*
383*           Exceptional shift.
384*
385            S = ABS( H( L+1, L ) ) + ABS( H( L+2, L+1 ) )
386            H11 = DAT1*S + H( L, L )
387            H12 = DAT2*S
388            H21 = S
389            H22 = H11
390         ELSE
391*
392*           Prepare to use Francis' double shift
393*           (i.e. 2nd degree generalized Rayleigh quotient)
394*
395            H11 = H( I-1, I-1 )
396            H21 = H( I, I-1 )
397            H12 = H( I-1, I )
398            H22 = H( I, I )
399         END IF
400         S = ABS( H11 ) + ABS( H12 ) + ABS( H21 ) + ABS( H22 )
401         IF( S.EQ.ZERO ) THEN
402            RT1R = ZERO
403            RT1I = ZERO
404            RT2R = ZERO
405            RT2I = ZERO
406         ELSE
407            H11 = H11 / S
408            H21 = H21 / S
409            H12 = H12 / S
410            H22 = H22 / S
411            TR = ( H11+H22 ) / TWO
412            DET = ( H11-TR )*( H22-TR ) - H12*H21
413            RTDISC = SQRT( ABS( DET ) )
414            IF( DET.GE.ZERO ) THEN
415*
416*              ==== complex conjugate shifts ====
417*
418               RT1R = TR*S
419               RT2R = RT1R
420               RT1I = RTDISC*S
421               RT2I = -RT1I
422            ELSE
423*
424*              ==== real shifts (use only one of them)  ====
425*
426               RT1R = TR + RTDISC
427               RT2R = TR - RTDISC
428               IF( ABS( RT1R-H22 ).LE.ABS( RT2R-H22 ) ) THEN
429                  RT1R = RT1R*S
430                  RT2R = RT1R
431               ELSE
432                  RT2R = RT2R*S
433                  RT1R = RT2R
434               END IF
435               RT1I = ZERO
436               RT2I = ZERO
437            END IF
438         END IF
439*
440*        Look for two consecutive small subdiagonal elements.
441*
442         DO 50 M = I - 2, L, -1
443*           Determine the effect of starting the double-shift QR
444*           iteration at row M, and see if this would make H(M,M-1)
445*           negligible.  (The following uses scaling to avoid
446*           overflows and most underflows.)
447*
448            H21S = H( M+1, M )
449            S = ABS( H( M, M )-RT2R ) + ABS( RT2I ) + ABS( H21S )
450            H21S = H( M+1, M ) / S
451            V( 1 ) = H21S*H( M, M+1 ) + ( H( M, M )-RT1R )*
452     $               ( ( H( M, M )-RT2R ) / S ) - RT1I*( RT2I / S )
453            V( 2 ) = H21S*( H( M, M )+H( M+1, M+1 )-RT1R-RT2R )
454            V( 3 ) = H21S*H( M+2, M+1 )
455            S = ABS( V( 1 ) ) + ABS( V( 2 ) ) + ABS( V( 3 ) )
456            V( 1 ) = V( 1 ) / S
457            V( 2 ) = V( 2 ) / S
458            V( 3 ) = V( 3 ) / S
459            IF( M.EQ.L )
460     $         GO TO 60
461            IF( ABS( H( M, M-1 ) )*( ABS( V( 2 ) )+ABS( V( 3 ) ) ).LE.
462     $          ULP*ABS( V( 1 ) )*( ABS( H( M-1, M-1 ) )+ABS( H( M,
463     $          M ) )+ABS( H( M+1, M+1 ) ) ) )GO TO 60
464   50    CONTINUE
465   60    CONTINUE
466*
467*        Double-shift QR step
468*
469         DO 130 K = M, I - 1
470*
471*           The first iteration of this loop determines a reflection G
472*           from the vector V and applies it from left and right to H,
473*           thus creating a nonzero bulge below the subdiagonal.
474*
475*           Each subsequent iteration determines a reflection G to
476*           restore the Hessenberg form in the (K-1)th column, and thus
477*           chases the bulge one step toward the bottom of the active
478*           submatrix. NR is the order of G.
479*
480            NR = MIN( 3, I-K+1 )
481            IF( K.GT.M )
482     $         CALL DCOPY( NR, H( K, K-1 ), 1, V, 1 )
483            CALL DLARFG( NR, V( 1 ), V( 2 ), 1, T1 )
484            IF( K.GT.M ) THEN
485               H( K, K-1 ) = V( 1 )
486               H( K+1, K-1 ) = ZERO
487               IF( K.LT.I-1 )
488     $            H( K+2, K-1 ) = ZERO
489            ELSE IF( M.GT.L ) THEN
490*               ==== Use the following instead of
491*               .    H( K, K-1 ) = -H( K, K-1 ) to
492*               .    avoid a bug when v(2) and v(3)
493*               .    underflow. ====
494               H( K, K-1 ) = H( K, K-1 )*( ONE-T1 )
495            END IF
496            V2 = V( 2 )
497            T2 = T1*V2
498            IF( NR.EQ.3 ) THEN
499               V3 = V( 3 )
500               T3 = T1*V3
501*
502*              Apply G from the left to transform the rows of the matrix
503*              in columns K to I2.
504*
505               DO 70 J = K, I2
506                  SUM = H( K, J ) + V2*H( K+1, J ) + V3*H( K+2, J )
507                  H( K, J ) = H( K, J ) - SUM*T1
508                  H( K+1, J ) = H( K+1, J ) - SUM*T2
509                  H( K+2, J ) = H( K+2, J ) - SUM*T3
510   70          CONTINUE
511*
512*              Apply G from the right to transform the columns of the
513*              matrix in rows I1 to min(K+3,I).
514*
515               DO 80 J = I1, MIN( K+3, I )
516                  SUM = H( J, K ) + V2*H( J, K+1 ) + V3*H( J, K+2 )
517                  H( J, K ) = H( J, K ) - SUM*T1
518                  H( J, K+1 ) = H( J, K+1 ) - SUM*T2
519                  H( J, K+2 ) = H( J, K+2 ) - SUM*T3
520   80          CONTINUE
521*
522               IF( WANTZ ) THEN
523*
524*                 Accumulate transformations in the matrix Z
525*
526                  DO 90 J = ILOZ, IHIZ
527                     SUM = Z( J, K ) + V2*Z( J, K+1 ) + V3*Z( J, K+2 )
528                     Z( J, K ) = Z( J, K ) - SUM*T1
529                     Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
530                     Z( J, K+2 ) = Z( J, K+2 ) - SUM*T3
531   90             CONTINUE
532               END IF
533            ELSE IF( NR.EQ.2 ) THEN
534*
535*              Apply G from the left to transform the rows of the matrix
536*              in columns K to I2.
537*
538               DO 100 J = K, I2
539                  SUM = H( K, J ) + V2*H( K+1, J )
540                  H( K, J ) = H( K, J ) - SUM*T1
541                  H( K+1, J ) = H( K+1, J ) - SUM*T2
542  100          CONTINUE
543*
544*              Apply G from the right to transform the columns of the
545*              matrix in rows I1 to min(K+3,I).
546*
547               DO 110 J = I1, I
548                  SUM = H( J, K ) + V2*H( J, K+1 )
549                  H( J, K ) = H( J, K ) - SUM*T1
550                  H( J, K+1 ) = H( J, K+1 ) - SUM*T2
551  110          CONTINUE
552*
553               IF( WANTZ ) THEN
554*
555*                 Accumulate transformations in the matrix Z
556*
557                  DO 120 J = ILOZ, IHIZ
558                     SUM = Z( J, K ) + V2*Z( J, K+1 )
559                     Z( J, K ) = Z( J, K ) - SUM*T1
560                     Z( J, K+1 ) = Z( J, K+1 ) - SUM*T2
561  120             CONTINUE
562               END IF
563            END IF
564  130    CONTINUE
565*
566  140 CONTINUE
567*
568*     Failure to converge in remaining number of iterations
569*
570      INFO = I
571      RETURN
572*
573  150 CONTINUE
574*
575      IF( L.EQ.I ) THEN
576*
577*        H(I,I-1) is negligible: one eigenvalue has converged.
578*
579         WR( I ) = H( I, I )
580         WI( I ) = ZERO
581      ELSE IF( L.EQ.I-1 ) THEN
582*
583*        H(I-1,I-2) is negligible: a pair of eigenvalues have converged.
584*
585*        Transform the 2-by-2 submatrix to standard Schur form,
586*        and compute and store the eigenvalues.
587*
588         CALL DLANV2( H( I-1, I-1 ), H( I-1, I ), H( I, I-1 ),
589     $                H( I, I ), WR( I-1 ), WI( I-1 ), WR( I ), WI( I ),
590     $                CS, SN )
591*
592         IF( WANTT ) THEN
593*
594*           Apply the transformation to the rest of H.
595*
596            IF( I2.GT.I )
597     $         CALL DROT( I2-I, H( I-1, I+1 ), LDH, H( I, I+1 ), LDH,
598     $                    CS, SN )
599            CALL DROT( I-I1-1, H( I1, I-1 ), 1, H( I1, I ), 1, CS, SN )
600         END IF
601         IF( WANTZ ) THEN
602*
603*           Apply the transformation to Z.
604*
605            CALL DROT( NZ, Z( ILOZ, I-1 ), 1, Z( ILOZ, I ), 1, CS, SN )
606         END IF
607      END IF
608*     reset deflation counter
609      KDEFL = 0
610*
611*     return to start of the main loop with new value of I.
612*
613      I = L - 1
614      GO TO 20
615*
616  160 CONTINUE
617      RETURN
618*
619*     End of DLAHQR
620*
621      END
622