1*> \brief \b DLARF applies an elementary reflector to a general rectangular matrix. 2* 3* =========== DOCUMENTATION =========== 4* 5* Online html documentation available at 6* http://www.netlib.org/lapack/explore-html/ 7* 8*> \htmlonly 9*> Download DLARF + dependencies 10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlarf.f"> 11*> [TGZ]</a> 12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlarf.f"> 13*> [ZIP]</a> 14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlarf.f"> 15*> [TXT]</a> 16*> \endhtmlonly 17* 18* Definition: 19* =========== 20* 21* SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 22* 23* .. Scalar Arguments .. 24* CHARACTER SIDE 25* INTEGER INCV, LDC, M, N 26* DOUBLE PRECISION TAU 27* .. 28* .. Array Arguments .. 29* DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) 30* .. 31* 32* 33*> \par Purpose: 34* ============= 35*> 36*> \verbatim 37*> 38*> DLARF applies a real elementary reflector H to a real m by n matrix 39*> C, from either the left or the right. H is represented in the form 40*> 41*> H = I - tau * v * v**T 42*> 43*> where tau is a real scalar and v is a real vector. 44*> 45*> If tau = 0, then H is taken to be the unit matrix. 46*> \endverbatim 47* 48* Arguments: 49* ========== 50* 51*> \param[in] SIDE 52*> \verbatim 53*> SIDE is CHARACTER*1 54*> = 'L': form H * C 55*> = 'R': form C * H 56*> \endverbatim 57*> 58*> \param[in] M 59*> \verbatim 60*> M is INTEGER 61*> The number of rows of the matrix C. 62*> \endverbatim 63*> 64*> \param[in] N 65*> \verbatim 66*> N is INTEGER 67*> The number of columns of the matrix C. 68*> \endverbatim 69*> 70*> \param[in] V 71*> \verbatim 72*> V is DOUBLE PRECISION array, dimension 73*> (1 + (M-1)*abs(INCV)) if SIDE = 'L' 74*> or (1 + (N-1)*abs(INCV)) if SIDE = 'R' 75*> The vector v in the representation of H. V is not used if 76*> TAU = 0. 77*> \endverbatim 78*> 79*> \param[in] INCV 80*> \verbatim 81*> INCV is INTEGER 82*> The increment between elements of v. INCV <> 0. 83*> \endverbatim 84*> 85*> \param[in] TAU 86*> \verbatim 87*> TAU is DOUBLE PRECISION 88*> The value tau in the representation of H. 89*> \endverbatim 90*> 91*> \param[in,out] C 92*> \verbatim 93*> C is DOUBLE PRECISION array, dimension (LDC,N) 94*> On entry, the m by n matrix C. 95*> On exit, C is overwritten by the matrix H * C if SIDE = 'L', 96*> or C * H if SIDE = 'R'. 97*> \endverbatim 98*> 99*> \param[in] LDC 100*> \verbatim 101*> LDC is INTEGER 102*> The leading dimension of the array C. LDC >= max(1,M). 103*> \endverbatim 104*> 105*> \param[out] WORK 106*> \verbatim 107*> WORK is DOUBLE PRECISION array, dimension 108*> (N) if SIDE = 'L' 109*> or (M) if SIDE = 'R' 110*> \endverbatim 111* 112* Authors: 113* ======== 114* 115*> \author Univ. of Tennessee 116*> \author Univ. of California Berkeley 117*> \author Univ. of Colorado Denver 118*> \author NAG Ltd. 119* 120*> \ingroup doubleOTHERauxiliary 121* 122* ===================================================================== 123 SUBROUTINE DLARF( SIDE, M, N, V, INCV, TAU, C, LDC, WORK ) 124* 125* -- LAPACK auxiliary routine -- 126* -- LAPACK is a software package provided by Univ. of Tennessee, -- 127* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- 128* 129* .. Scalar Arguments .. 130 CHARACTER SIDE 131 INTEGER INCV, LDC, M, N 132 DOUBLE PRECISION TAU 133* .. 134* .. Array Arguments .. 135 DOUBLE PRECISION C( LDC, * ), V( * ), WORK( * ) 136* .. 137* 138* ===================================================================== 139* 140* .. Parameters .. 141 DOUBLE PRECISION ONE, ZERO 142 PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 ) 143* .. 144* .. Local Scalars .. 145 LOGICAL APPLYLEFT 146 INTEGER I, LASTV, LASTC 147* .. 148* .. External Subroutines .. 149 EXTERNAL DGEMV, DGER 150* .. 151* .. External Functions .. 152 LOGICAL LSAME 153 INTEGER ILADLR, ILADLC 154 EXTERNAL LSAME, ILADLR, ILADLC 155* .. 156* .. Executable Statements .. 157* 158 APPLYLEFT = LSAME( SIDE, 'L' ) 159 LASTV = 0 160 LASTC = 0 161 IF( TAU.NE.ZERO ) THEN 162! Set up variables for scanning V. LASTV begins pointing to the end 163! of V. 164 IF( APPLYLEFT ) THEN 165 LASTV = M 166 ELSE 167 LASTV = N 168 END IF 169 IF( INCV.GT.0 ) THEN 170 I = 1 + (LASTV-1) * INCV 171 ELSE 172 I = 1 173 END IF 174! Look for the last non-zero row in V. 175 DO WHILE( LASTV.GT.0 .AND. V( I ).EQ.ZERO ) 176 LASTV = LASTV - 1 177 I = I - INCV 178 END DO 179 IF( APPLYLEFT ) THEN 180! Scan for the last non-zero column in C(1:lastv,:). 181 LASTC = ILADLC(LASTV, N, C, LDC) 182 ELSE 183! Scan for the last non-zero row in C(:,1:lastv). 184 LASTC = ILADLR(M, LASTV, C, LDC) 185 END IF 186 END IF 187! Note that lastc.eq.0 renders the BLAS operations null; no special 188! case is needed at this level. 189 IF( APPLYLEFT ) THEN 190* 191* Form H * C 192* 193 IF( LASTV.GT.0 ) THEN 194* 195* w(1:lastc,1) := C(1:lastv,1:lastc)**T * v(1:lastv,1) 196* 197 CALL DGEMV( 'Transpose', LASTV, LASTC, ONE, C, LDC, V, INCV, 198 $ ZERO, WORK, 1 ) 199* 200* C(1:lastv,1:lastc) := C(...) - v(1:lastv,1) * w(1:lastc,1)**T 201* 202 CALL DGER( LASTV, LASTC, -TAU, V, INCV, WORK, 1, C, LDC ) 203 END IF 204 ELSE 205* 206* Form C * H 207* 208 IF( LASTV.GT.0 ) THEN 209* 210* w(1:lastc,1) := C(1:lastc,1:lastv) * v(1:lastv,1) 211* 212 CALL DGEMV( 'No transpose', LASTC, LASTV, ONE, C, LDC, 213 $ V, INCV, ZERO, WORK, 1 ) 214* 215* C(1:lastc,1:lastv) := C(...) - w(1:lastc,1) * v(1:lastv,1)**T 216* 217 CALL DGER( LASTC, LASTV, -TAU, WORK, 1, V, INCV, C, LDC ) 218 END IF 219 END IF 220 RETURN 221* 222* End of DLARF 223* 224 END 225