1*> \brief \b DSYGVD
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download DSYGVD + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dsygvd.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dsygvd.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dsygvd.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
22*                          LWORK, IWORK, LIWORK, INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          JOBZ, UPLO
26*       INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
27*       ..
28*       .. Array Arguments ..
29*       INTEGER            IWORK( * )
30*       DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> DSYGVD computes all the eigenvalues, and optionally, the eigenvectors
40*> of a real generalized symmetric-definite eigenproblem, of the form
41*> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
42*> B are assumed to be symmetric and B is also positive definite.
43*> If eigenvectors are desired, it uses a divide and conquer algorithm.
44*>
45*> The divide and conquer algorithm makes very mild assumptions about
46*> floating point arithmetic. It will work on machines with a guard
47*> digit in add/subtract, or on those binary machines without guard
48*> digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or
49*> Cray-2. It could conceivably fail on hexadecimal or decimal machines
50*> without guard digits, but we know of none.
51*> \endverbatim
52*
53*  Arguments:
54*  ==========
55*
56*> \param[in] ITYPE
57*> \verbatim
58*>          ITYPE is INTEGER
59*>          Specifies the problem type to be solved:
60*>          = 1:  A*x = (lambda)*B*x
61*>          = 2:  A*B*x = (lambda)*x
62*>          = 3:  B*A*x = (lambda)*x
63*> \endverbatim
64*>
65*> \param[in] JOBZ
66*> \verbatim
67*>          JOBZ is CHARACTER*1
68*>          = 'N':  Compute eigenvalues only;
69*>          = 'V':  Compute eigenvalues and eigenvectors.
70*> \endverbatim
71*>
72*> \param[in] UPLO
73*> \verbatim
74*>          UPLO is CHARACTER*1
75*>          = 'U':  Upper triangles of A and B are stored;
76*>          = 'L':  Lower triangles of A and B are stored.
77*> \endverbatim
78*>
79*> \param[in] N
80*> \verbatim
81*>          N is INTEGER
82*>          The order of the matrices A and B.  N >= 0.
83*> \endverbatim
84*>
85*> \param[in,out] A
86*> \verbatim
87*>          A is DOUBLE PRECISION array, dimension (LDA, N)
88*>          On entry, the symmetric matrix A.  If UPLO = 'U', the
89*>          leading N-by-N upper triangular part of A contains the
90*>          upper triangular part of the matrix A.  If UPLO = 'L',
91*>          the leading N-by-N lower triangular part of A contains
92*>          the lower triangular part of the matrix A.
93*>
94*>          On exit, if JOBZ = 'V', then if INFO = 0, A contains the
95*>          matrix Z of eigenvectors.  The eigenvectors are normalized
96*>          as follows:
97*>          if ITYPE = 1 or 2, Z**T*B*Z = I;
98*>          if ITYPE = 3, Z**T*inv(B)*Z = I.
99*>          If JOBZ = 'N', then on exit the upper triangle (if UPLO='U')
100*>          or the lower triangle (if UPLO='L') of A, including the
101*>          diagonal, is destroyed.
102*> \endverbatim
103*>
104*> \param[in] LDA
105*> \verbatim
106*>          LDA is INTEGER
107*>          The leading dimension of the array A.  LDA >= max(1,N).
108*> \endverbatim
109*>
110*> \param[in,out] B
111*> \verbatim
112*>          B is DOUBLE PRECISION array, dimension (LDB, N)
113*>          On entry, the symmetric matrix B.  If UPLO = 'U', the
114*>          leading N-by-N upper triangular part of B contains the
115*>          upper triangular part of the matrix B.  If UPLO = 'L',
116*>          the leading N-by-N lower triangular part of B contains
117*>          the lower triangular part of the matrix B.
118*>
119*>          On exit, if INFO <= N, the part of B containing the matrix is
120*>          overwritten by the triangular factor U or L from the Cholesky
121*>          factorization B = U**T*U or B = L*L**T.
122*> \endverbatim
123*>
124*> \param[in] LDB
125*> \verbatim
126*>          LDB is INTEGER
127*>          The leading dimension of the array B.  LDB >= max(1,N).
128*> \endverbatim
129*>
130*> \param[out] W
131*> \verbatim
132*>          W is DOUBLE PRECISION array, dimension (N)
133*>          If INFO = 0, the eigenvalues in ascending order.
134*> \endverbatim
135*>
136*> \param[out] WORK
137*> \verbatim
138*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
139*>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
140*> \endverbatim
141*>
142*> \param[in] LWORK
143*> \verbatim
144*>          LWORK is INTEGER
145*>          The dimension of the array WORK.
146*>          If N <= 1,               LWORK >= 1.
147*>          If JOBZ = 'N' and N > 1, LWORK >= 2*N+1.
148*>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
149*>
150*>          If LWORK = -1, then a workspace query is assumed; the routine
151*>          only calculates the optimal sizes of the WORK and IWORK
152*>          arrays, returns these values as the first entries of the WORK
153*>          and IWORK arrays, and no error message related to LWORK or
154*>          LIWORK is issued by XERBLA.
155*> \endverbatim
156*>
157*> \param[out] IWORK
158*> \verbatim
159*>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
160*>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
161*> \endverbatim
162*>
163*> \param[in] LIWORK
164*> \verbatim
165*>          LIWORK is INTEGER
166*>          The dimension of the array IWORK.
167*>          If N <= 1,                LIWORK >= 1.
168*>          If JOBZ  = 'N' and N > 1, LIWORK >= 1.
169*>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
170*>
171*>          If LIWORK = -1, then a workspace query is assumed; the
172*>          routine only calculates the optimal sizes of the WORK and
173*>          IWORK arrays, returns these values as the first entries of
174*>          the WORK and IWORK arrays, and no error message related to
175*>          LWORK or LIWORK is issued by XERBLA.
176*> \endverbatim
177*>
178*> \param[out] INFO
179*> \verbatim
180*>          INFO is INTEGER
181*>          = 0:  successful exit
182*>          < 0:  if INFO = -i, the i-th argument had an illegal value
183*>          > 0:  DPOTRF or DSYEVD returned an error code:
184*>             <= N:  if INFO = i and JOBZ = 'N', then the algorithm
185*>                    failed to converge; i off-diagonal elements of an
186*>                    intermediate tridiagonal form did not converge to
187*>                    zero;
188*>                    if INFO = i and JOBZ = 'V', then the algorithm
189*>                    failed to compute an eigenvalue while working on
190*>                    the submatrix lying in rows and columns INFO/(N+1)
191*>                    through mod(INFO,N+1);
192*>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
193*>                    minor of order i of B is not positive definite.
194*>                    The factorization of B could not be completed and
195*>                    no eigenvalues or eigenvectors were computed.
196*> \endverbatim
197*
198*  Authors:
199*  ========
200*
201*> \author Univ. of Tennessee
202*> \author Univ. of California Berkeley
203*> \author Univ. of Colorado Denver
204*> \author NAG Ltd.
205*
206*> \ingroup doubleSYeigen
207*
208*> \par Further Details:
209*  =====================
210*>
211*> \verbatim
212*>
213*>  Modified so that no backsubstitution is performed if DSYEVD fails to
214*>  converge (NEIG in old code could be greater than N causing out of
215*>  bounds reference to A - reported by Ralf Meyer).  Also corrected the
216*>  description of INFO and the test on ITYPE. Sven, 16 Feb 05.
217*> \endverbatim
218*
219*> \par Contributors:
220*  ==================
221*>
222*>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
223*>
224*  =====================================================================
225      SUBROUTINE DSYGVD( ITYPE, JOBZ, UPLO, N, A, LDA, B, LDB, W, WORK,
226     $                   LWORK, IWORK, LIWORK, INFO )
227*
228*  -- LAPACK driver routine --
229*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
230*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
231*
232*     .. Scalar Arguments ..
233      CHARACTER          JOBZ, UPLO
234      INTEGER            INFO, ITYPE, LDA, LDB, LIWORK, LWORK, N
235*     ..
236*     .. Array Arguments ..
237      INTEGER            IWORK( * )
238      DOUBLE PRECISION   A( LDA, * ), B( LDB, * ), W( * ), WORK( * )
239*     ..
240*
241*  =====================================================================
242*
243*     .. Parameters ..
244      DOUBLE PRECISION   ONE
245      PARAMETER          ( ONE = 1.0D+0 )
246*     ..
247*     .. Local Scalars ..
248      LOGICAL            LQUERY, UPPER, WANTZ
249      CHARACTER          TRANS
250      INTEGER            LIOPT, LIWMIN, LOPT, LWMIN
251*     ..
252*     .. External Functions ..
253      LOGICAL            LSAME
254      EXTERNAL           LSAME
255*     ..
256*     .. External Subroutines ..
257      EXTERNAL           DPOTRF, DSYEVD, DSYGST, DTRMM, DTRSM, XERBLA
258*     ..
259*     .. Intrinsic Functions ..
260      INTRINSIC          DBLE, MAX
261*     ..
262*     .. Executable Statements ..
263*
264*     Test the input parameters.
265*
266      WANTZ = LSAME( JOBZ, 'V' )
267      UPPER = LSAME( UPLO, 'U' )
268      LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
269*
270      INFO = 0
271      IF( N.LE.1 ) THEN
272         LIWMIN = 1
273         LWMIN = 1
274      ELSE IF( WANTZ ) THEN
275         LIWMIN = 3 + 5*N
276         LWMIN = 1 + 6*N + 2*N**2
277      ELSE
278         LIWMIN = 1
279         LWMIN = 2*N + 1
280      END IF
281      LOPT = LWMIN
282      LIOPT = LIWMIN
283      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
284         INFO = -1
285      ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
286         INFO = -2
287      ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
288         INFO = -3
289      ELSE IF( N.LT.0 ) THEN
290         INFO = -4
291      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
292         INFO = -6
293      ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
294         INFO = -8
295      END IF
296*
297      IF( INFO.EQ.0 ) THEN
298         WORK( 1 ) = LOPT
299         IWORK( 1 ) = LIOPT
300*
301         IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
302            INFO = -11
303         ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
304            INFO = -13
305         END IF
306      END IF
307*
308      IF( INFO.NE.0 ) THEN
309         CALL XERBLA( 'DSYGVD', -INFO )
310         RETURN
311      ELSE IF( LQUERY ) THEN
312         RETURN
313      END IF
314*
315*     Quick return if possible
316*
317      IF( N.EQ.0 )
318     $   RETURN
319*
320*     Form a Cholesky factorization of B.
321*
322      CALL DPOTRF( UPLO, N, B, LDB, INFO )
323      IF( INFO.NE.0 ) THEN
324         INFO = N + INFO
325         RETURN
326      END IF
327*
328*     Transform problem to standard eigenvalue problem and solve.
329*
330      CALL DSYGST( ITYPE, UPLO, N, A, LDA, B, LDB, INFO )
331      CALL DSYEVD( JOBZ, UPLO, N, A, LDA, W, WORK, LWORK, IWORK, LIWORK,
332     $             INFO )
333      LOPT = MAX( DBLE( LOPT ), DBLE( WORK( 1 ) ) )
334      LIOPT = MAX( DBLE( LIOPT ), DBLE( IWORK( 1 ) ) )
335*
336      IF( WANTZ .AND. INFO.EQ.0 ) THEN
337*
338*        Backtransform eigenvectors to the original problem.
339*
340         IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
341*
342*           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
343*           backtransform eigenvectors: x = inv(L)**T*y or inv(U)*y
344*
345            IF( UPPER ) THEN
346               TRANS = 'N'
347            ELSE
348               TRANS = 'T'
349            END IF
350*
351            CALL DTRSM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
352     $                  B, LDB, A, LDA )
353*
354         ELSE IF( ITYPE.EQ.3 ) THEN
355*
356*           For B*A*x=(lambda)*x;
357*           backtransform eigenvectors: x = L*y or U**T*y
358*
359            IF( UPPER ) THEN
360               TRANS = 'T'
361            ELSE
362               TRANS = 'N'
363            END IF
364*
365            CALL DTRMM( 'Left', UPLO, TRANS, 'Non-unit', N, N, ONE,
366     $                  B, LDB, A, LDA )
367         END IF
368      END IF
369*
370      WORK( 1 ) = LOPT
371      IWORK( 1 ) = LIOPT
372*
373      RETURN
374*
375*     End of DSYGVD
376*
377      END
378