1*> \brief \b SLASQ2 computes all the eigenvalues of the symmetric positive definite tridiagonal matrix associated with the qd Array Z to high relative accuracy. Used by sbdsqr and sstegr.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SLASQ2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SLASQ2( N, Z, INFO )
22*
23*       .. Scalar Arguments ..
24*       INTEGER            INFO, N
25*       ..
26*       .. Array Arguments ..
27*       REAL               Z( * )
28*       ..
29*
30*
31*> \par Purpose:
32*  =============
33*>
34*> \verbatim
35*>
36*> SLASQ2 computes all the eigenvalues of the symmetric positive
37*> definite tridiagonal matrix associated with the qd array Z to high
38*> relative accuracy are computed to high relative accuracy, in the
39*> absence of denormalization, underflow and overflow.
40*>
41*> To see the relation of Z to the tridiagonal matrix, let L be a
42*> unit lower bidiagonal matrix with subdiagonals Z(2,4,6,,..) and
43*> let U be an upper bidiagonal matrix with 1's above and diagonal
44*> Z(1,3,5,,..). The tridiagonal is L*U or, if you prefer, the
45*> symmetric tridiagonal to which it is similar.
46*>
47*> Note : SLASQ2 defines a logical variable, IEEE, which is true
48*> on machines which follow ieee-754 floating-point standard in their
49*> handling of infinities and NaNs, and false otherwise. This variable
50*> is passed to SLASQ3.
51*> \endverbatim
52*
53*  Arguments:
54*  ==========
55*
56*> \param[in] N
57*> \verbatim
58*>          N is INTEGER
59*>        The number of rows and columns in the matrix. N >= 0.
60*> \endverbatim
61*>
62*> \param[in,out] Z
63*> \verbatim
64*>          Z is REAL array, dimension ( 4*N )
65*>        On entry Z holds the qd array. On exit, entries 1 to N hold
66*>        the eigenvalues in decreasing order, Z( 2*N+1 ) holds the
67*>        trace, and Z( 2*N+2 ) holds the sum of the eigenvalues. If
68*>        N > 2, then Z( 2*N+3 ) holds the iteration count, Z( 2*N+4 )
69*>        holds NDIVS/NIN^2, and Z( 2*N+5 ) holds the percentage of
70*>        shifts that failed.
71*> \endverbatim
72*>
73*> \param[out] INFO
74*> \verbatim
75*>          INFO is INTEGER
76*>        = 0: successful exit
77*>        < 0: if the i-th argument is a scalar and had an illegal
78*>             value, then INFO = -i, if the i-th argument is an
79*>             array and the j-entry had an illegal value, then
80*>             INFO = -(i*100+j)
81*>        > 0: the algorithm failed
82*>              = 1, a split was marked by a positive value in E
83*>              = 2, current block of Z not diagonalized after 100*N
84*>                   iterations (in inner while loop).  On exit Z holds
85*>                   a qd array with the same eigenvalues as the given Z.
86*>              = 3, termination criterion of outer while loop not met
87*>                   (program created more than N unreduced blocks)
88*> \endverbatim
89*
90*  Authors:
91*  ========
92*
93*> \author Univ. of Tennessee
94*> \author Univ. of California Berkeley
95*> \author Univ. of Colorado Denver
96*> \author NAG Ltd.
97*
98*> \ingroup auxOTHERcomputational
99*
100*> \par Further Details:
101*  =====================
102*>
103*> \verbatim
104*>
105*>  Local Variables: I0:N0 defines a current unreduced segment of Z.
106*>  The shifts are accumulated in SIGMA. Iteration count is in ITER.
107*>  Ping-pong is controlled by PP (alternates between 0 and 1).
108*> \endverbatim
109*>
110*  =====================================================================
111      SUBROUTINE SLASQ2( N, Z, INFO )
112*
113*  -- LAPACK computational routine --
114*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
115*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
116*
117*     .. Scalar Arguments ..
118      INTEGER            INFO, N
119*     ..
120*     .. Array Arguments ..
121      REAL               Z( * )
122*     ..
123*
124*  =====================================================================
125*
126*     .. Parameters ..
127      REAL               CBIAS
128      PARAMETER          ( CBIAS = 1.50E0 )
129      REAL               ZERO, HALF, ONE, TWO, FOUR, HUNDRD
130      PARAMETER          ( ZERO = 0.0E0, HALF = 0.5E0, ONE = 1.0E0,
131     $                     TWO = 2.0E0, FOUR = 4.0E0, HUNDRD = 100.0E0 )
132*     ..
133*     .. Local Scalars ..
134      LOGICAL            IEEE
135      INTEGER            I0, I4, IINFO, IPN4, ITER, IWHILA, IWHILB, K,
136     $                   KMIN, N0, NBIG, NDIV, NFAIL, PP, SPLT, TTYPE,
137     $                   I1, N1
138      REAL               D, DEE, DEEMIN, DESIG, DMIN, DMIN1, DMIN2, DN,
139     $                   DN1, DN2, E, EMAX, EMIN, EPS, G, OLDEMN, QMAX,
140     $                   QMIN, S, SAFMIN, SIGMA, T, TAU, TEMP, TOL,
141     $                   TOL2, TRACE, ZMAX, TEMPE, TEMPQ
142*     ..
143*     .. External Subroutines ..
144      EXTERNAL           SLASQ3, SLASRT, XERBLA
145*     ..
146*     .. External Functions ..
147      REAL               SLAMCH
148      EXTERNAL           SLAMCH
149*     ..
150*     .. Intrinsic Functions ..
151      INTRINSIC          ABS, MAX, MIN, REAL, SQRT
152*     ..
153*     .. Executable Statements ..
154*
155*     Test the input arguments.
156*     (in case SLASQ2 is not called by SLASQ1)
157*
158      INFO = 0
159      EPS = SLAMCH( 'Precision' )
160      SAFMIN = SLAMCH( 'Safe minimum' )
161      TOL = EPS*HUNDRD
162      TOL2 = TOL**2
163*
164      IF( N.LT.0 ) THEN
165         INFO = -1
166         CALL XERBLA( 'SLASQ2', 1 )
167         RETURN
168      ELSE IF( N.EQ.0 ) THEN
169         RETURN
170      ELSE IF( N.EQ.1 ) THEN
171*
172*        1-by-1 case.
173*
174         IF( Z( 1 ).LT.ZERO ) THEN
175            INFO = -201
176            CALL XERBLA( 'SLASQ2', 2 )
177         END IF
178         RETURN
179      ELSE IF( N.EQ.2 ) THEN
180*
181*        2-by-2 case.
182*
183         IF( Z( 1 ).LT.ZERO ) THEN
184            INFO = -201
185            CALL XERBLA( 'SLASQ2', 2 )
186            RETURN
187         ELSE IF( Z( 2 ).LT.ZERO ) THEN
188            INFO = -202
189            CALL XERBLA( 'SLASQ2', 2 )
190            RETURN
191         ELSE IF( Z( 3 ).LT.ZERO ) THEN
192           INFO = -203
193           CALL XERBLA( 'SLASQ2', 2 )
194           RETURN
195         ELSE IF( Z( 3 ).GT.Z( 1 ) ) THEN
196            D = Z( 3 )
197            Z( 3 ) = Z( 1 )
198            Z( 1 ) = D
199         END IF
200         Z( 5 ) = Z( 1 ) + Z( 2 ) + Z( 3 )
201         IF( Z( 2 ).GT.Z( 3 )*TOL2 ) THEN
202            T = HALF*( ( Z( 1 )-Z( 3 ) )+Z( 2 ) )
203            S = Z( 3 )*( Z( 2 ) / T )
204            IF( S.LE.T ) THEN
205               S = Z( 3 )*( Z( 2 ) / ( T*( ONE+SQRT( ONE+S / T ) ) ) )
206            ELSE
207               S = Z( 3 )*( Z( 2 ) / ( T+SQRT( T )*SQRT( T+S ) ) )
208            END IF
209            T = Z( 1 ) + ( S+Z( 2 ) )
210            Z( 3 ) = Z( 3 )*( Z( 1 ) / T )
211            Z( 1 ) = T
212         END IF
213         Z( 2 ) = Z( 3 )
214         Z( 6 ) = Z( 2 ) + Z( 1 )
215         RETURN
216      END IF
217*
218*     Check for negative data and compute sums of q's and e's.
219*
220      Z( 2*N ) = ZERO
221      EMIN = Z( 2 )
222      QMAX = ZERO
223      ZMAX = ZERO
224      D = ZERO
225      E = ZERO
226*
227      DO 10 K = 1, 2*( N-1 ), 2
228         IF( Z( K ).LT.ZERO ) THEN
229            INFO = -( 200+K )
230            CALL XERBLA( 'SLASQ2', 2 )
231            RETURN
232         ELSE IF( Z( K+1 ).LT.ZERO ) THEN
233            INFO = -( 200+K+1 )
234            CALL XERBLA( 'SLASQ2', 2 )
235            RETURN
236         END IF
237         D = D + Z( K )
238         E = E + Z( K+1 )
239         QMAX = MAX( QMAX, Z( K ) )
240         EMIN = MIN( EMIN, Z( K+1 ) )
241         ZMAX = MAX( QMAX, ZMAX, Z( K+1 ) )
242   10 CONTINUE
243      IF( Z( 2*N-1 ).LT.ZERO ) THEN
244         INFO = -( 200+2*N-1 )
245         CALL XERBLA( 'SLASQ2', 2 )
246         RETURN
247      END IF
248      D = D + Z( 2*N-1 )
249      QMAX = MAX( QMAX, Z( 2*N-1 ) )
250      ZMAX = MAX( QMAX, ZMAX )
251*
252*     Check for diagonality.
253*
254      IF( E.EQ.ZERO ) THEN
255         DO 20 K = 2, N
256            Z( K ) = Z( 2*K-1 )
257   20    CONTINUE
258         CALL SLASRT( 'D', N, Z, IINFO )
259         Z( 2*N-1 ) = D
260         RETURN
261      END IF
262*
263      TRACE = D + E
264*
265*     Check for zero data.
266*
267      IF( TRACE.EQ.ZERO ) THEN
268         Z( 2*N-1 ) = ZERO
269         RETURN
270      END IF
271*
272*     Check whether the machine is IEEE conformable.
273*
274*     IEEE = ( ILAENV( 10, 'SLASQ2', 'N', 1, 2, 3, 4 ).EQ.1 )
275*
276*     [11/15/2008] The case IEEE=.TRUE. has a problem in single precision with
277*     some the test matrices of type 16. The double precision code is fine.
278*
279      IEEE = .FALSE.
280*
281*     Rearrange data for locality: Z=(q1,qq1,e1,ee1,q2,qq2,e2,ee2,...).
282*
283      DO 30 K = 2*N, 2, -2
284         Z( 2*K ) = ZERO
285         Z( 2*K-1 ) = Z( K )
286         Z( 2*K-2 ) = ZERO
287         Z( 2*K-3 ) = Z( K-1 )
288   30 CONTINUE
289*
290      I0 = 1
291      N0 = N
292*
293*     Reverse the qd-array, if warranted.
294*
295      IF( CBIAS*Z( 4*I0-3 ).LT.Z( 4*N0-3 ) ) THEN
296         IPN4 = 4*( I0+N0 )
297         DO 40 I4 = 4*I0, 2*( I0+N0-1 ), 4
298            TEMP = Z( I4-3 )
299            Z( I4-3 ) = Z( IPN4-I4-3 )
300            Z( IPN4-I4-3 ) = TEMP
301            TEMP = Z( I4-1 )
302            Z( I4-1 ) = Z( IPN4-I4-5 )
303            Z( IPN4-I4-5 ) = TEMP
304   40    CONTINUE
305      END IF
306*
307*     Initial split checking via dqd and Li's test.
308*
309      PP = 0
310*
311      DO 80 K = 1, 2
312*
313         D = Z( 4*N0+PP-3 )
314         DO 50 I4 = 4*( N0-1 ) + PP, 4*I0 + PP, -4
315            IF( Z( I4-1 ).LE.TOL2*D ) THEN
316               Z( I4-1 ) = -ZERO
317               D = Z( I4-3 )
318            ELSE
319               D = Z( I4-3 )*( D / ( D+Z( I4-1 ) ) )
320            END IF
321   50    CONTINUE
322*
323*        dqd maps Z to ZZ plus Li's test.
324*
325         EMIN = Z( 4*I0+PP+1 )
326         D = Z( 4*I0+PP-3 )
327         DO 60 I4 = 4*I0 + PP, 4*( N0-1 ) + PP, 4
328            Z( I4-2*PP-2 ) = D + Z( I4-1 )
329            IF( Z( I4-1 ).LE.TOL2*D ) THEN
330               Z( I4-1 ) = -ZERO
331               Z( I4-2*PP-2 ) = D
332               Z( I4-2*PP ) = ZERO
333               D = Z( I4+1 )
334            ELSE IF( SAFMIN*Z( I4+1 ).LT.Z( I4-2*PP-2 ) .AND.
335     $               SAFMIN*Z( I4-2*PP-2 ).LT.Z( I4+1 ) ) THEN
336               TEMP = Z( I4+1 ) / Z( I4-2*PP-2 )
337               Z( I4-2*PP ) = Z( I4-1 )*TEMP
338               D = D*TEMP
339            ELSE
340               Z( I4-2*PP ) = Z( I4+1 )*( Z( I4-1 ) / Z( I4-2*PP-2 ) )
341               D = Z( I4+1 )*( D / Z( I4-2*PP-2 ) )
342            END IF
343            EMIN = MIN( EMIN, Z( I4-2*PP ) )
344   60    CONTINUE
345         Z( 4*N0-PP-2 ) = D
346*
347*        Now find qmax.
348*
349         QMAX = Z( 4*I0-PP-2 )
350         DO 70 I4 = 4*I0 - PP + 2, 4*N0 - PP - 2, 4
351            QMAX = MAX( QMAX, Z( I4 ) )
352   70    CONTINUE
353*
354*        Prepare for the next iteration on K.
355*
356         PP = 1 - PP
357   80 CONTINUE
358*
359*     Initialise variables to pass to SLASQ3.
360*
361      TTYPE = 0
362      DMIN1 = ZERO
363      DMIN2 = ZERO
364      DN    = ZERO
365      DN1   = ZERO
366      DN2   = ZERO
367      G     = ZERO
368      TAU   = ZERO
369*
370      ITER = 2
371      NFAIL = 0
372      NDIV = 2*( N0-I0 )
373*
374      DO 160 IWHILA = 1, N + 1
375         IF( N0.LT.1 )
376     $      GO TO 170
377*
378*        While array unfinished do
379*
380*        E(N0) holds the value of SIGMA when submatrix in I0:N0
381*        splits from the rest of the array, but is negated.
382*
383         DESIG = ZERO
384         IF( N0.EQ.N ) THEN
385            SIGMA = ZERO
386         ELSE
387            SIGMA = -Z( 4*N0-1 )
388         END IF
389         IF( SIGMA.LT.ZERO ) THEN
390            INFO = 1
391            RETURN
392         END IF
393*
394*        Find last unreduced submatrix's top index I0, find QMAX and
395*        EMIN. Find Gershgorin-type bound if Q's much greater than E's.
396*
397         EMAX = ZERO
398         IF( N0.GT.I0 ) THEN
399            EMIN = ABS( Z( 4*N0-5 ) )
400         ELSE
401            EMIN = ZERO
402         END IF
403         QMIN = Z( 4*N0-3 )
404         QMAX = QMIN
405         DO 90 I4 = 4*N0, 8, -4
406            IF( Z( I4-5 ).LE.ZERO )
407     $         GO TO 100
408            IF( QMIN.GE.FOUR*EMAX ) THEN
409               QMIN = MIN( QMIN, Z( I4-3 ) )
410               EMAX = MAX( EMAX, Z( I4-5 ) )
411            END IF
412            QMAX = MAX( QMAX, Z( I4-7 )+Z( I4-5 ) )
413            EMIN = MIN( EMIN, Z( I4-5 ) )
414   90    CONTINUE
415         I4 = 4
416*
417  100    CONTINUE
418         I0 = I4 / 4
419         PP = 0
420*
421         IF( N0-I0.GT.1 ) THEN
422            DEE = Z( 4*I0-3 )
423            DEEMIN = DEE
424            KMIN = I0
425            DO 110 I4 = 4*I0+1, 4*N0-3, 4
426               DEE = Z( I4 )*( DEE /( DEE+Z( I4-2 ) ) )
427               IF( DEE.LE.DEEMIN ) THEN
428                  DEEMIN = DEE
429                  KMIN = ( I4+3 )/4
430               END IF
431  110       CONTINUE
432            IF( (KMIN-I0)*2.LT.N0-KMIN .AND.
433     $         DEEMIN.LE.HALF*Z(4*N0-3) ) THEN
434               IPN4 = 4*( I0+N0 )
435               PP = 2
436               DO 120 I4 = 4*I0, 2*( I0+N0-1 ), 4
437                  TEMP = Z( I4-3 )
438                  Z( I4-3 ) = Z( IPN4-I4-3 )
439                  Z( IPN4-I4-3 ) = TEMP
440                  TEMP = Z( I4-2 )
441                  Z( I4-2 ) = Z( IPN4-I4-2 )
442                  Z( IPN4-I4-2 ) = TEMP
443                  TEMP = Z( I4-1 )
444                  Z( I4-1 ) = Z( IPN4-I4-5 )
445                  Z( IPN4-I4-5 ) = TEMP
446                  TEMP = Z( I4 )
447                  Z( I4 ) = Z( IPN4-I4-4 )
448                  Z( IPN4-I4-4 ) = TEMP
449  120          CONTINUE
450            END IF
451         END IF
452*
453*        Put -(initial shift) into DMIN.
454*
455         DMIN = -MAX( ZERO, QMIN-TWO*SQRT( QMIN )*SQRT( EMAX ) )
456*
457*        Now I0:N0 is unreduced.
458*        PP = 0 for ping, PP = 1 for pong.
459*        PP = 2 indicates that flipping was applied to the Z array and
460*               and that the tests for deflation upon entry in SLASQ3
461*               should not be performed.
462*
463         NBIG = 100*( N0-I0+1 )
464         DO 140 IWHILB = 1, NBIG
465            IF( I0.GT.N0 )
466     $         GO TO 150
467*
468*           While submatrix unfinished take a good dqds step.
469*
470            CALL SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL,
471     $                   ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1,
472     $                   DN2, G, TAU )
473*
474            PP = 1 - PP
475*
476*           When EMIN is very small check for splits.
477*
478            IF( PP.EQ.0 .AND. N0-I0.GE.3 ) THEN
479               IF( Z( 4*N0 ).LE.TOL2*QMAX .OR.
480     $             Z( 4*N0-1 ).LE.TOL2*SIGMA ) THEN
481                  SPLT = I0 - 1
482                  QMAX = Z( 4*I0-3 )
483                  EMIN = Z( 4*I0-1 )
484                  OLDEMN = Z( 4*I0 )
485                  DO 130 I4 = 4*I0, 4*( N0-3 ), 4
486                     IF( Z( I4 ).LE.TOL2*Z( I4-3 ) .OR.
487     $                   Z( I4-1 ).LE.TOL2*SIGMA ) THEN
488                        Z( I4-1 ) = -SIGMA
489                        SPLT = I4 / 4
490                        QMAX = ZERO
491                        EMIN = Z( I4+3 )
492                        OLDEMN = Z( I4+4 )
493                     ELSE
494                        QMAX = MAX( QMAX, Z( I4+1 ) )
495                        EMIN = MIN( EMIN, Z( I4-1 ) )
496                        OLDEMN = MIN( OLDEMN, Z( I4 ) )
497                     END IF
498  130             CONTINUE
499                  Z( 4*N0-1 ) = EMIN
500                  Z( 4*N0 ) = OLDEMN
501                  I0 = SPLT + 1
502               END IF
503            END IF
504*
505  140    CONTINUE
506*
507         INFO = 2
508*
509*        Maximum number of iterations exceeded, restore the shift
510*        SIGMA and place the new d's and e's in a qd array.
511*        This might need to be done for several blocks
512*
513         I1 = I0
514         N1 = N0
515 145     CONTINUE
516         TEMPQ = Z( 4*I0-3 )
517         Z( 4*I0-3 ) = Z( 4*I0-3 ) + SIGMA
518         DO K = I0+1, N0
519            TEMPE = Z( 4*K-5 )
520            Z( 4*K-5 ) = Z( 4*K-5 ) * (TEMPQ / Z( 4*K-7 ))
521            TEMPQ = Z( 4*K-3 )
522            Z( 4*K-3 ) = Z( 4*K-3 ) + SIGMA + TEMPE - Z( 4*K-5 )
523         END DO
524*
525*        Prepare to do this on the previous block if there is one
526*
527         IF( I1.GT.1 ) THEN
528            N1 = I1-1
529            DO WHILE( ( I1.GE.2 ) .AND. ( Z(4*I1-5).GE.ZERO ) )
530               I1 = I1 - 1
531            END DO
532            IF( I1.GE.1 ) THEN
533               SIGMA = -Z(4*N1-1)
534               GO TO 145
535            END IF
536         END IF
537
538         DO K = 1, N
539            Z( 2*K-1 ) = Z( 4*K-3 )
540*
541*        Only the block 1..N0 is unfinished.  The rest of the e's
542*        must be essentially zero, although sometimes other data
543*        has been stored in them.
544*
545            IF( K.LT.N0 ) THEN
546               Z( 2*K ) = Z( 4*K-1 )
547            ELSE
548               Z( 2*K ) = 0
549            END IF
550         END DO
551         RETURN
552*
553*        end IWHILB
554*
555  150    CONTINUE
556*
557  160 CONTINUE
558*
559      INFO = 3
560      RETURN
561*
562*     end IWHILA
563*
564  170 CONTINUE
565*
566*     Move q's to the front.
567*
568      DO 180 K = 2, N
569         Z( K ) = Z( 4*K-3 )
570  180 CONTINUE
571*
572*     Sort and compute sum of eigenvalues.
573*
574      CALL SLASRT( 'D', N, Z, IINFO )
575*
576      E = ZERO
577      DO 190 K = N, 1, -1
578         E = E + Z( K )
579  190 CONTINUE
580*
581*     Store trace, sum(eigenvalues) and information on performance.
582*
583      Z( 2*N+1 ) = TRACE
584      Z( 2*N+2 ) = E
585      Z( 2*N+3 ) = REAL( ITER )
586      Z( 2*N+4 ) = REAL( NDIV ) / REAL( N**2 )
587      Z( 2*N+5 ) = HUNDRD*NFAIL / REAL( ITER )
588      RETURN
589*
590*     End of SLASQ2
591*
592      END
593