1*> \brief \b SSYTD2 reduces a symmetric matrix to real symmetric tridiagonal form by an orthogonal similarity transformation (unblocked algorithm).
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download SSYTD2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytd2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytd2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytd2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, LDA, N
26*       ..
27*       .. Array Arguments ..
28*       REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
29*       ..
30*
31*
32*> \par Purpose:
33*  =============
34*>
35*> \verbatim
36*>
37*> SSYTD2 reduces a real symmetric matrix A to symmetric tridiagonal
38*> form T by an orthogonal similarity transformation: Q**T * A * Q = T.
39*> \endverbatim
40*
41*  Arguments:
42*  ==========
43*
44*> \param[in] UPLO
45*> \verbatim
46*>          UPLO is CHARACTER*1
47*>          Specifies whether the upper or lower triangular part of the
48*>          symmetric matrix A is stored:
49*>          = 'U':  Upper triangular
50*>          = 'L':  Lower triangular
51*> \endverbatim
52*>
53*> \param[in] N
54*> \verbatim
55*>          N is INTEGER
56*>          The order of the matrix A.  N >= 0.
57*> \endverbatim
58*>
59*> \param[in,out] A
60*> \verbatim
61*>          A is REAL array, dimension (LDA,N)
62*>          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
63*>          n-by-n upper triangular part of A contains the upper
64*>          triangular part of the matrix A, and the strictly lower
65*>          triangular part of A is not referenced.  If UPLO = 'L', the
66*>          leading n-by-n lower triangular part of A contains the lower
67*>          triangular part of the matrix A, and the strictly upper
68*>          triangular part of A is not referenced.
69*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
70*>          of A are overwritten by the corresponding elements of the
71*>          tridiagonal matrix T, and the elements above the first
72*>          superdiagonal, with the array TAU, represent the orthogonal
73*>          matrix Q as a product of elementary reflectors; if UPLO
74*>          = 'L', the diagonal and first subdiagonal of A are over-
75*>          written by the corresponding elements of the tridiagonal
76*>          matrix T, and the elements below the first subdiagonal, with
77*>          the array TAU, represent the orthogonal matrix Q as a product
78*>          of elementary reflectors. See Further Details.
79*> \endverbatim
80*>
81*> \param[in] LDA
82*> \verbatim
83*>          LDA is INTEGER
84*>          The leading dimension of the array A.  LDA >= max(1,N).
85*> \endverbatim
86*>
87*> \param[out] D
88*> \verbatim
89*>          D is REAL array, dimension (N)
90*>          The diagonal elements of the tridiagonal matrix T:
91*>          D(i) = A(i,i).
92*> \endverbatim
93*>
94*> \param[out] E
95*> \verbatim
96*>          E is REAL array, dimension (N-1)
97*>          The off-diagonal elements of the tridiagonal matrix T:
98*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
99*> \endverbatim
100*>
101*> \param[out] TAU
102*> \verbatim
103*>          TAU is REAL array, dimension (N-1)
104*>          The scalar factors of the elementary reflectors (see Further
105*>          Details).
106*> \endverbatim
107*>
108*> \param[out] INFO
109*> \verbatim
110*>          INFO is INTEGER
111*>          = 0:  successful exit
112*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
113*> \endverbatim
114*
115*  Authors:
116*  ========
117*
118*> \author Univ. of Tennessee
119*> \author Univ. of California Berkeley
120*> \author Univ. of Colorado Denver
121*> \author NAG Ltd.
122*
123*> \ingroup realSYcomputational
124*
125*> \par Further Details:
126*  =====================
127*>
128*> \verbatim
129*>
130*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
131*>  reflectors
132*>
133*>     Q = H(n-1) . . . H(2) H(1).
134*>
135*>  Each H(i) has the form
136*>
137*>     H(i) = I - tau * v * v**T
138*>
139*>  where tau is a real scalar, and v is a real vector with
140*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
141*>  A(1:i-1,i+1), and tau in TAU(i).
142*>
143*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
144*>  reflectors
145*>
146*>     Q = H(1) H(2) . . . H(n-1).
147*>
148*>  Each H(i) has the form
149*>
150*>     H(i) = I - tau * v * v**T
151*>
152*>  where tau is a real scalar, and v is a real vector with
153*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
154*>  and tau in TAU(i).
155*>
156*>  The contents of A on exit are illustrated by the following examples
157*>  with n = 5:
158*>
159*>  if UPLO = 'U':                       if UPLO = 'L':
160*>
161*>    (  d   e   v2  v3  v4 )              (  d                  )
162*>    (      d   e   v3  v4 )              (  e   d              )
163*>    (          d   e   v4 )              (  v1  e   d          )
164*>    (              d   e  )              (  v1  v2  e   d      )
165*>    (                  d  )              (  v1  v2  v3  e   d  )
166*>
167*>  where d and e denote diagonal and off-diagonal elements of T, and vi
168*>  denotes an element of the vector defining H(i).
169*> \endverbatim
170*>
171*  =====================================================================
172      SUBROUTINE SSYTD2( UPLO, N, A, LDA, D, E, TAU, INFO )
173*
174*  -- LAPACK computational routine --
175*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
176*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
177*
178*     .. Scalar Arguments ..
179      CHARACTER          UPLO
180      INTEGER            INFO, LDA, N
181*     ..
182*     .. Array Arguments ..
183      REAL               A( LDA, * ), D( * ), E( * ), TAU( * )
184*     ..
185*
186*  =====================================================================
187*
188*     .. Parameters ..
189      REAL               ONE, ZERO, HALF
190      PARAMETER          ( ONE = 1.0, ZERO = 0.0, HALF = 1.0 / 2.0 )
191*     ..
192*     .. Local Scalars ..
193      LOGICAL            UPPER
194      INTEGER            I
195      REAL               ALPHA, TAUI
196*     ..
197*     .. External Subroutines ..
198      EXTERNAL           SAXPY, SLARFG, SSYMV, SSYR2, XERBLA
199*     ..
200*     .. External Functions ..
201      LOGICAL            LSAME
202      REAL               SDOT
203      EXTERNAL           LSAME, SDOT
204*     ..
205*     .. Intrinsic Functions ..
206      INTRINSIC          MAX, MIN
207*     ..
208*     .. Executable Statements ..
209*
210*     Test the input parameters
211*
212      INFO = 0
213      UPPER = LSAME( UPLO, 'U' )
214      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
215         INFO = -1
216      ELSE IF( N.LT.0 ) THEN
217         INFO = -2
218      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
219         INFO = -4
220      END IF
221      IF( INFO.NE.0 ) THEN
222         CALL XERBLA( 'SSYTD2', -INFO )
223         RETURN
224      END IF
225*
226*     Quick return if possible
227*
228      IF( N.LE.0 )
229     $   RETURN
230*
231      IF( UPPER ) THEN
232*
233*        Reduce the upper triangle of A
234*
235         DO 10 I = N - 1, 1, -1
236*
237*           Generate elementary reflector H(i) = I - tau * v * v**T
238*           to annihilate A(1:i-1,i+1)
239*
240            CALL SLARFG( I, A( I, I+1 ), A( 1, I+1 ), 1, TAUI )
241            E( I ) = A( I, I+1 )
242*
243            IF( TAUI.NE.ZERO ) THEN
244*
245*              Apply H(i) from both sides to A(1:i,1:i)
246*
247               A( I, I+1 ) = ONE
248*
249*              Compute  x := tau * A * v  storing x in TAU(1:i)
250*
251               CALL SSYMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
252     $                     TAU, 1 )
253*
254*              Compute  w := x - 1/2 * tau * (x**T * v) * v
255*
256               ALPHA = -HALF*TAUI*SDOT( I, TAU, 1, A( 1, I+1 ), 1 )
257               CALL SAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
258*
259*              Apply the transformation as a rank-2 update:
260*                 A := A - v * w**T - w * v**T
261*
262               CALL SSYR2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
263     $                     LDA )
264*
265               A( I, I+1 ) = E( I )
266            END IF
267            D( I+1 ) = A( I+1, I+1 )
268            TAU( I ) = TAUI
269   10    CONTINUE
270         D( 1 ) = A( 1, 1 )
271      ELSE
272*
273*        Reduce the lower triangle of A
274*
275         DO 20 I = 1, N - 1
276*
277*           Generate elementary reflector H(i) = I - tau * v * v**T
278*           to annihilate A(i+2:n,i)
279*
280            CALL SLARFG( N-I, A( I+1, I ), A( MIN( I+2, N ), I ), 1,
281     $                   TAUI )
282            E( I ) = A( I+1, I )
283*
284            IF( TAUI.NE.ZERO ) THEN
285*
286*              Apply H(i) from both sides to A(i+1:n,i+1:n)
287*
288               A( I+1, I ) = ONE
289*
290*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
291*
292               CALL SSYMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
293     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
294*
295*              Compute  w := x - 1/2 * tau * (x**T * v) * v
296*
297               ALPHA = -HALF*TAUI*SDOT( N-I, TAU( I ), 1, A( I+1, I ),
298     $                 1 )
299               CALL SAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
300*
301*              Apply the transformation as a rank-2 update:
302*                 A := A - v * w**T - w * v**T
303*
304               CALL SSYR2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
305     $                     A( I+1, I+1 ), LDA )
306*
307               A( I+1, I ) = E( I )
308            END IF
309            D( I ) = A( I, I )
310            TAU( I ) = TAUI
311   20    CONTINUE
312         D( N ) = A( N, N )
313      END IF
314*
315      RETURN
316*
317*     End of SSYTD2
318*
319      END
320