1*> \brief <b> ZGBSVX computes the solution to system of linear equations A * X = B for GB matrices</b>
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGBSVX + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbsvx.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbsvx.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbsvx.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
22*                          LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
23*                          RCOND, FERR, BERR, WORK, RWORK, INFO )
24*
25*       .. Scalar Arguments ..
26*       CHARACTER          EQUED, FACT, TRANS
27*       INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
28*       DOUBLE PRECISION   RCOND
29*       ..
30*       .. Array Arguments ..
31*       INTEGER            IPIV( * )
32*       DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
33*      $                   RWORK( * )
34*       COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
35*      $                   WORK( * ), X( LDX, * )
36*       ..
37*
38*
39*> \par Purpose:
40*  =============
41*>
42*> \verbatim
43*>
44*> ZGBSVX uses the LU factorization to compute the solution to a complex
45*> system of linear equations A * X = B, A**T * X = B, or A**H * X = B,
46*> where A is a band matrix of order N with KL subdiagonals and KU
47*> superdiagonals, and X and B are N-by-NRHS matrices.
48*>
49*> Error bounds on the solution and a condition estimate are also
50*> provided.
51*> \endverbatim
52*
53*> \par Description:
54*  =================
55*>
56*> \verbatim
57*>
58*> The following steps are performed by this subroutine:
59*>
60*> 1. If FACT = 'E', real scaling factors are computed to equilibrate
61*>    the system:
62*>       TRANS = 'N':  diag(R)*A*diag(C)     *inv(diag(C))*X = diag(R)*B
63*>       TRANS = 'T': (diag(R)*A*diag(C))**T *inv(diag(R))*X = diag(C)*B
64*>       TRANS = 'C': (diag(R)*A*diag(C))**H *inv(diag(R))*X = diag(C)*B
65*>    Whether or not the system will be equilibrated depends on the
66*>    scaling of the matrix A, but if equilibration is used, A is
67*>    overwritten by diag(R)*A*diag(C) and B by diag(R)*B (if TRANS='N')
68*>    or diag(C)*B (if TRANS = 'T' or 'C').
69*>
70*> 2. If FACT = 'N' or 'E', the LU decomposition is used to factor the
71*>    matrix A (after equilibration if FACT = 'E') as
72*>       A = L * U,
73*>    where L is a product of permutation and unit lower triangular
74*>    matrices with KL subdiagonals, and U is upper triangular with
75*>    KL+KU superdiagonals.
76*>
77*> 3. If some U(i,i)=0, so that U is exactly singular, then the routine
78*>    returns with INFO = i. Otherwise, the factored form of A is used
79*>    to estimate the condition number of the matrix A.  If the
80*>    reciprocal of the condition number is less than machine precision,
81*>    INFO = N+1 is returned as a warning, but the routine still goes on
82*>    to solve for X and compute error bounds as described below.
83*>
84*> 4. The system of equations is solved for X using the factored form
85*>    of A.
86*>
87*> 5. Iterative refinement is applied to improve the computed solution
88*>    matrix and calculate error bounds and backward error estimates
89*>    for it.
90*>
91*> 6. If equilibration was used, the matrix X is premultiplied by
92*>    diag(C) (if TRANS = 'N') or diag(R) (if TRANS = 'T' or 'C') so
93*>    that it solves the original system before equilibration.
94*> \endverbatim
95*
96*  Arguments:
97*  ==========
98*
99*> \param[in] FACT
100*> \verbatim
101*>          FACT is CHARACTER*1
102*>          Specifies whether or not the factored form of the matrix A is
103*>          supplied on entry, and if not, whether the matrix A should be
104*>          equilibrated before it is factored.
105*>          = 'F':  On entry, AFB and IPIV contain the factored form of
106*>                  A.  If EQUED is not 'N', the matrix A has been
107*>                  equilibrated with scaling factors given by R and C.
108*>                  AB, AFB, and IPIV are not modified.
109*>          = 'N':  The matrix A will be copied to AFB and factored.
110*>          = 'E':  The matrix A will be equilibrated if necessary, then
111*>                  copied to AFB and factored.
112*> \endverbatim
113*>
114*> \param[in] TRANS
115*> \verbatim
116*>          TRANS is CHARACTER*1
117*>          Specifies the form of the system of equations.
118*>          = 'N':  A * X = B     (No transpose)
119*>          = 'T':  A**T * X = B  (Transpose)
120*>          = 'C':  A**H * X = B  (Conjugate transpose)
121*> \endverbatim
122*>
123*> \param[in] N
124*> \verbatim
125*>          N is INTEGER
126*>          The number of linear equations, i.e., the order of the
127*>          matrix A.  N >= 0.
128*> \endverbatim
129*>
130*> \param[in] KL
131*> \verbatim
132*>          KL is INTEGER
133*>          The number of subdiagonals within the band of A.  KL >= 0.
134*> \endverbatim
135*>
136*> \param[in] KU
137*> \verbatim
138*>          KU is INTEGER
139*>          The number of superdiagonals within the band of A.  KU >= 0.
140*> \endverbatim
141*>
142*> \param[in] NRHS
143*> \verbatim
144*>          NRHS is INTEGER
145*>          The number of right hand sides, i.e., the number of columns
146*>          of the matrices B and X.  NRHS >= 0.
147*> \endverbatim
148*>
149*> \param[in,out] AB
150*> \verbatim
151*>          AB is COMPLEX*16 array, dimension (LDAB,N)
152*>          On entry, the matrix A in band storage, in rows 1 to KL+KU+1.
153*>          The j-th column of A is stored in the j-th column of the
154*>          array AB as follows:
155*>          AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)
156*>
157*>          If FACT = 'F' and EQUED is not 'N', then A must have been
158*>          equilibrated by the scaling factors in R and/or C.  AB is not
159*>          modified if FACT = 'F' or 'N', or if FACT = 'E' and
160*>          EQUED = 'N' on exit.
161*>
162*>          On exit, if EQUED .ne. 'N', A is scaled as follows:
163*>          EQUED = 'R':  A := diag(R) * A
164*>          EQUED = 'C':  A := A * diag(C)
165*>          EQUED = 'B':  A := diag(R) * A * diag(C).
166*> \endverbatim
167*>
168*> \param[in] LDAB
169*> \verbatim
170*>          LDAB is INTEGER
171*>          The leading dimension of the array AB.  LDAB >= KL+KU+1.
172*> \endverbatim
173*>
174*> \param[in,out] AFB
175*> \verbatim
176*>          AFB is COMPLEX*16 array, dimension (LDAFB,N)
177*>          If FACT = 'F', then AFB is an input argument and on entry
178*>          contains details of the LU factorization of the band matrix
179*>          A, as computed by ZGBTRF.  U is stored as an upper triangular
180*>          band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1,
181*>          and the multipliers used during the factorization are stored
182*>          in rows KL+KU+2 to 2*KL+KU+1.  If EQUED .ne. 'N', then AFB is
183*>          the factored form of the equilibrated matrix A.
184*>
185*>          If FACT = 'N', then AFB is an output argument and on exit
186*>          returns details of the LU factorization of A.
187*>
188*>          If FACT = 'E', then AFB is an output argument and on exit
189*>          returns details of the LU factorization of the equilibrated
190*>          matrix A (see the description of AB for the form of the
191*>          equilibrated matrix).
192*> \endverbatim
193*>
194*> \param[in] LDAFB
195*> \verbatim
196*>          LDAFB is INTEGER
197*>          The leading dimension of the array AFB.  LDAFB >= 2*KL+KU+1.
198*> \endverbatim
199*>
200*> \param[in,out] IPIV
201*> \verbatim
202*>          IPIV is INTEGER array, dimension (N)
203*>          If FACT = 'F', then IPIV is an input argument and on entry
204*>          contains the pivot indices from the factorization A = L*U
205*>          as computed by ZGBTRF; row i of the matrix was interchanged
206*>          with row IPIV(i).
207*>
208*>          If FACT = 'N', then IPIV is an output argument and on exit
209*>          contains the pivot indices from the factorization A = L*U
210*>          of the original matrix A.
211*>
212*>          If FACT = 'E', then IPIV is an output argument and on exit
213*>          contains the pivot indices from the factorization A = L*U
214*>          of the equilibrated matrix A.
215*> \endverbatim
216*>
217*> \param[in,out] EQUED
218*> \verbatim
219*>          EQUED is CHARACTER*1
220*>          Specifies the form of equilibration that was done.
221*>          = 'N':  No equilibration (always true if FACT = 'N').
222*>          = 'R':  Row equilibration, i.e., A has been premultiplied by
223*>                  diag(R).
224*>          = 'C':  Column equilibration, i.e., A has been postmultiplied
225*>                  by diag(C).
226*>          = 'B':  Both row and column equilibration, i.e., A has been
227*>                  replaced by diag(R) * A * diag(C).
228*>          EQUED is an input argument if FACT = 'F'; otherwise, it is an
229*>          output argument.
230*> \endverbatim
231*>
232*> \param[in,out] R
233*> \verbatim
234*>          R is DOUBLE PRECISION array, dimension (N)
235*>          The row scale factors for A.  If EQUED = 'R' or 'B', A is
236*>          multiplied on the left by diag(R); if EQUED = 'N' or 'C', R
237*>          is not accessed.  R is an input argument if FACT = 'F';
238*>          otherwise, R is an output argument.  If FACT = 'F' and
239*>          EQUED = 'R' or 'B', each element of R must be positive.
240*> \endverbatim
241*>
242*> \param[in,out] C
243*> \verbatim
244*>          C is DOUBLE PRECISION array, dimension (N)
245*>          The column scale factors for A.  If EQUED = 'C' or 'B', A is
246*>          multiplied on the right by diag(C); if EQUED = 'N' or 'R', C
247*>          is not accessed.  C is an input argument if FACT = 'F';
248*>          otherwise, C is an output argument.  If FACT = 'F' and
249*>          EQUED = 'C' or 'B', each element of C must be positive.
250*> \endverbatim
251*>
252*> \param[in,out] B
253*> \verbatim
254*>          B is COMPLEX*16 array, dimension (LDB,NRHS)
255*>          On entry, the right hand side matrix B.
256*>          On exit,
257*>          if EQUED = 'N', B is not modified;
258*>          if TRANS = 'N' and EQUED = 'R' or 'B', B is overwritten by
259*>          diag(R)*B;
260*>          if TRANS = 'T' or 'C' and EQUED = 'C' or 'B', B is
261*>          overwritten by diag(C)*B.
262*> \endverbatim
263*>
264*> \param[in] LDB
265*> \verbatim
266*>          LDB is INTEGER
267*>          The leading dimension of the array B.  LDB >= max(1,N).
268*> \endverbatim
269*>
270*> \param[out] X
271*> \verbatim
272*>          X is COMPLEX*16 array, dimension (LDX,NRHS)
273*>          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X
274*>          to the original system of equations.  Note that A and B are
275*>          modified on exit if EQUED .ne. 'N', and the solution to the
276*>          equilibrated system is inv(diag(C))*X if TRANS = 'N' and
277*>          EQUED = 'C' or 'B', or inv(diag(R))*X if TRANS = 'T' or 'C'
278*>          and EQUED = 'R' or 'B'.
279*> \endverbatim
280*>
281*> \param[in] LDX
282*> \verbatim
283*>          LDX is INTEGER
284*>          The leading dimension of the array X.  LDX >= max(1,N).
285*> \endverbatim
286*>
287*> \param[out] RCOND
288*> \verbatim
289*>          RCOND is DOUBLE PRECISION
290*>          The estimate of the reciprocal condition number of the matrix
291*>          A after equilibration (if done).  If RCOND is less than the
292*>          machine precision (in particular, if RCOND = 0), the matrix
293*>          is singular to working precision.  This condition is
294*>          indicated by a return code of INFO > 0.
295*> \endverbatim
296*>
297*> \param[out] FERR
298*> \verbatim
299*>          FERR is DOUBLE PRECISION array, dimension (NRHS)
300*>          The estimated forward error bound for each solution vector
301*>          X(j) (the j-th column of the solution matrix X).
302*>          If XTRUE is the true solution corresponding to X(j), FERR(j)
303*>          is an estimated upper bound for the magnitude of the largest
304*>          element in (X(j) - XTRUE) divided by the magnitude of the
305*>          largest element in X(j).  The estimate is as reliable as
306*>          the estimate for RCOND, and is almost always a slight
307*>          overestimate of the true error.
308*> \endverbatim
309*>
310*> \param[out] BERR
311*> \verbatim
312*>          BERR is DOUBLE PRECISION array, dimension (NRHS)
313*>          The componentwise relative backward error of each solution
314*>          vector X(j) (i.e., the smallest relative change in
315*>          any element of A or B that makes X(j) an exact solution).
316*> \endverbatim
317*>
318*> \param[out] WORK
319*> \verbatim
320*>          WORK is COMPLEX*16 array, dimension (2*N)
321*> \endverbatim
322*>
323*> \param[out] RWORK
324*> \verbatim
325*>          RWORK is DOUBLE PRECISION array, dimension (N)
326*>          On exit, RWORK(1) contains the reciprocal pivot growth
327*>          factor norm(A)/norm(U). The "max absolute element" norm is
328*>          used. If RWORK(1) is much less than 1, then the stability
329*>          of the LU factorization of the (equilibrated) matrix A
330*>          could be poor. This also means that the solution X, condition
331*>          estimator RCOND, and forward error bound FERR could be
332*>          unreliable. If factorization fails with 0<INFO<=N, then
333*>          RWORK(1) contains the reciprocal pivot growth factor for the
334*>          leading INFO columns of A.
335*> \endverbatim
336*>
337*> \param[out] INFO
338*> \verbatim
339*>          INFO is INTEGER
340*>          = 0:  successful exit
341*>          < 0:  if INFO = -i, the i-th argument had an illegal value
342*>          > 0:  if INFO = i, and i is
343*>                <= N:  U(i,i) is exactly zero.  The factorization
344*>                       has been completed, but the factor U is exactly
345*>                       singular, so the solution and error bounds
346*>                       could not be computed. RCOND = 0 is returned.
347*>                = N+1: U is nonsingular, but RCOND is less than machine
348*>                       precision, meaning that the matrix is singular
349*>                       to working precision.  Nevertheless, the
350*>                       solution and error bounds are computed because
351*>                       there are a number of situations where the
352*>                       computed solution can be more accurate than the
353*>                       value of RCOND would suggest.
354*> \endverbatim
355*
356*  Authors:
357*  ========
358*
359*> \author Univ. of Tennessee
360*> \author Univ. of California Berkeley
361*> \author Univ. of Colorado Denver
362*> \author NAG Ltd.
363*
364*> \ingroup complex16GBsolve
365*
366*  =====================================================================
367      SUBROUTINE ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, AB, LDAB, AFB,
368     $                   LDAFB, IPIV, EQUED, R, C, B, LDB, X, LDX,
369     $                   RCOND, FERR, BERR, WORK, RWORK, INFO )
370*
371*  -- LAPACK driver routine --
372*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
373*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
374*
375*     .. Scalar Arguments ..
376      CHARACTER          EQUED, FACT, TRANS
377      INTEGER            INFO, KL, KU, LDAB, LDAFB, LDB, LDX, N, NRHS
378      DOUBLE PRECISION   RCOND
379*     ..
380*     .. Array Arguments ..
381      INTEGER            IPIV( * )
382      DOUBLE PRECISION   BERR( * ), C( * ), FERR( * ), R( * ),
383     $                   RWORK( * )
384      COMPLEX*16         AB( LDAB, * ), AFB( LDAFB, * ), B( LDB, * ),
385     $                   WORK( * ), X( LDX, * )
386*     ..
387*
388*  =====================================================================
389*  Moved setting of INFO = N+1 so INFO does not subsequently get
390*  overwritten.  Sven, 17 Mar 05.
391*  =====================================================================
392*
393*     .. Parameters ..
394      DOUBLE PRECISION   ZERO, ONE
395      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
396*     ..
397*     .. Local Scalars ..
398      LOGICAL            COLEQU, EQUIL, NOFACT, NOTRAN, ROWEQU
399      CHARACTER          NORM
400      INTEGER            I, INFEQU, J, J1, J2
401      DOUBLE PRECISION   AMAX, ANORM, BIGNUM, COLCND, RCMAX, RCMIN,
402     $                   ROWCND, RPVGRW, SMLNUM
403*     ..
404*     .. External Functions ..
405      LOGICAL            LSAME
406      DOUBLE PRECISION   DLAMCH, ZLANGB, ZLANTB
407      EXTERNAL           LSAME, DLAMCH, ZLANGB, ZLANTB
408*     ..
409*     .. External Subroutines ..
410      EXTERNAL           XERBLA, ZCOPY, ZGBCON, ZGBEQU, ZGBRFS, ZGBTRF,
411     $                   ZGBTRS, ZLACPY, ZLAQGB
412*     ..
413*     .. Intrinsic Functions ..
414      INTRINSIC          ABS, MAX, MIN
415*     ..
416*     .. Executable Statements ..
417*
418      INFO = 0
419      NOFACT = LSAME( FACT, 'N' )
420      EQUIL = LSAME( FACT, 'E' )
421      NOTRAN = LSAME( TRANS, 'N' )
422      IF( NOFACT .OR. EQUIL ) THEN
423         EQUED = 'N'
424         ROWEQU = .FALSE.
425         COLEQU = .FALSE.
426      ELSE
427         ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
428         COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
429         SMLNUM = DLAMCH( 'Safe minimum' )
430         BIGNUM = ONE / SMLNUM
431      END IF
432*
433*     Test the input parameters.
434*
435      IF( .NOT.NOFACT .AND. .NOT.EQUIL .AND. .NOT.LSAME( FACT, 'F' ) )
436     $     THEN
437         INFO = -1
438      ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
439     $         LSAME( TRANS, 'C' ) ) THEN
440         INFO = -2
441      ELSE IF( N.LT.0 ) THEN
442         INFO = -3
443      ELSE IF( KL.LT.0 ) THEN
444         INFO = -4
445      ELSE IF( KU.LT.0 ) THEN
446         INFO = -5
447      ELSE IF( NRHS.LT.0 ) THEN
448         INFO = -6
449      ELSE IF( LDAB.LT.KL+KU+1 ) THEN
450         INFO = -8
451      ELSE IF( LDAFB.LT.2*KL+KU+1 ) THEN
452         INFO = -10
453      ELSE IF( LSAME( FACT, 'F' ) .AND. .NOT.
454     $         ( ROWEQU .OR. COLEQU .OR. LSAME( EQUED, 'N' ) ) ) THEN
455         INFO = -12
456      ELSE
457         IF( ROWEQU ) THEN
458            RCMIN = BIGNUM
459            RCMAX = ZERO
460            DO 10 J = 1, N
461               RCMIN = MIN( RCMIN, R( J ) )
462               RCMAX = MAX( RCMAX, R( J ) )
463   10       CONTINUE
464            IF( RCMIN.LE.ZERO ) THEN
465               INFO = -13
466            ELSE IF( N.GT.0 ) THEN
467               ROWCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
468            ELSE
469               ROWCND = ONE
470            END IF
471         END IF
472         IF( COLEQU .AND. INFO.EQ.0 ) THEN
473            RCMIN = BIGNUM
474            RCMAX = ZERO
475            DO 20 J = 1, N
476               RCMIN = MIN( RCMIN, C( J ) )
477               RCMAX = MAX( RCMAX, C( J ) )
478   20       CONTINUE
479            IF( RCMIN.LE.ZERO ) THEN
480               INFO = -14
481            ELSE IF( N.GT.0 ) THEN
482               COLCND = MAX( RCMIN, SMLNUM ) / MIN( RCMAX, BIGNUM )
483            ELSE
484               COLCND = ONE
485            END IF
486         END IF
487         IF( INFO.EQ.0 ) THEN
488            IF( LDB.LT.MAX( 1, N ) ) THEN
489               INFO = -16
490            ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
491               INFO = -18
492            END IF
493         END IF
494      END IF
495*
496      IF( INFO.NE.0 ) THEN
497         CALL XERBLA( 'ZGBSVX', -INFO )
498         RETURN
499      END IF
500*
501      IF( EQUIL ) THEN
502*
503*        Compute row and column scalings to equilibrate the matrix A.
504*
505         CALL ZGBEQU( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
506     $                AMAX, INFEQU )
507         IF( INFEQU.EQ.0 ) THEN
508*
509*           Equilibrate the matrix.
510*
511            CALL ZLAQGB( N, N, KL, KU, AB, LDAB, R, C, ROWCND, COLCND,
512     $                   AMAX, EQUED )
513            ROWEQU = LSAME( EQUED, 'R' ) .OR. LSAME( EQUED, 'B' )
514            COLEQU = LSAME( EQUED, 'C' ) .OR. LSAME( EQUED, 'B' )
515         END IF
516      END IF
517*
518*     Scale the right hand side.
519*
520      IF( NOTRAN ) THEN
521         IF( ROWEQU ) THEN
522            DO 40 J = 1, NRHS
523               DO 30 I = 1, N
524                  B( I, J ) = R( I )*B( I, J )
525   30          CONTINUE
526   40       CONTINUE
527         END IF
528      ELSE IF( COLEQU ) THEN
529         DO 60 J = 1, NRHS
530            DO 50 I = 1, N
531               B( I, J ) = C( I )*B( I, J )
532   50       CONTINUE
533   60    CONTINUE
534      END IF
535*
536      IF( NOFACT .OR. EQUIL ) THEN
537*
538*        Compute the LU factorization of the band matrix A.
539*
540         DO 70 J = 1, N
541            J1 = MAX( J-KU, 1 )
542            J2 = MIN( J+KL, N )
543            CALL ZCOPY( J2-J1+1, AB( KU+1-J+J1, J ), 1,
544     $                  AFB( KL+KU+1-J+J1, J ), 1 )
545   70    CONTINUE
546*
547         CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IPIV, INFO )
548*
549*        Return if INFO is non-zero.
550*
551         IF( INFO.GT.0 ) THEN
552*
553*           Compute the reciprocal pivot growth factor of the
554*           leading rank-deficient INFO columns of A.
555*
556            ANORM = ZERO
557            DO 90 J = 1, INFO
558               DO 80 I = MAX( KU+2-J, 1 ), MIN( N+KU+1-J, KL+KU+1 )
559                  ANORM = MAX( ANORM, ABS( AB( I, J ) ) )
560   80          CONTINUE
561   90       CONTINUE
562            RPVGRW = ZLANTB( 'M', 'U', 'N', INFO, MIN( INFO-1, KL+KU ),
563     $                       AFB( MAX( 1, KL+KU+2-INFO ), 1 ), LDAFB,
564     $                       RWORK )
565            IF( RPVGRW.EQ.ZERO ) THEN
566               RPVGRW = ONE
567            ELSE
568               RPVGRW = ANORM / RPVGRW
569            END IF
570            RWORK( 1 ) = RPVGRW
571            RCOND = ZERO
572            RETURN
573         END IF
574      END IF
575*
576*     Compute the norm of the matrix A and the
577*     reciprocal pivot growth factor RPVGRW.
578*
579      IF( NOTRAN ) THEN
580         NORM = '1'
581      ELSE
582         NORM = 'I'
583      END IF
584      ANORM = ZLANGB( NORM, N, KL, KU, AB, LDAB, RWORK )
585      RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU, AFB, LDAFB, RWORK )
586      IF( RPVGRW.EQ.ZERO ) THEN
587         RPVGRW = ONE
588      ELSE
589         RPVGRW = ZLANGB( 'M', N, KL, KU, AB, LDAB, RWORK ) / RPVGRW
590      END IF
591*
592*     Compute the reciprocal of the condition number of A.
593*
594      CALL ZGBCON( NORM, N, KL, KU, AFB, LDAFB, IPIV, ANORM, RCOND,
595     $             WORK, RWORK, INFO )
596*
597*     Compute the solution matrix X.
598*
599      CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDX )
600      CALL ZGBTRS( TRANS, N, KL, KU, NRHS, AFB, LDAFB, IPIV, X, LDX,
601     $             INFO )
602*
603*     Use iterative refinement to improve the computed solution and
604*     compute error bounds and backward error estimates for it.
605*
606      CALL ZGBRFS( TRANS, N, KL, KU, NRHS, AB, LDAB, AFB, LDAFB, IPIV,
607     $             B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO )
608*
609*     Transform the solution matrix X to a solution of the original
610*     system.
611*
612      IF( NOTRAN ) THEN
613         IF( COLEQU ) THEN
614            DO 110 J = 1, NRHS
615               DO 100 I = 1, N
616                  X( I, J ) = C( I )*X( I, J )
617  100          CONTINUE
618  110       CONTINUE
619            DO 120 J = 1, NRHS
620               FERR( J ) = FERR( J ) / COLCND
621  120       CONTINUE
622         END IF
623      ELSE IF( ROWEQU ) THEN
624         DO 140 J = 1, NRHS
625            DO 130 I = 1, N
626               X( I, J ) = R( I )*X( I, J )
627  130       CONTINUE
628  140    CONTINUE
629         DO 150 J = 1, NRHS
630            FERR( J ) = FERR( J ) / ROWCND
631  150    CONTINUE
632      END IF
633*
634*     Set INFO = N+1 if the matrix is singular to working precision.
635*
636      IF( RCOND.LT.DLAMCH( 'Epsilon' ) )
637     $   INFO = N + 1
638*
639      RWORK( 1 ) = RPVGRW
640      RETURN
641*
642*     End of ZGBSVX
643*
644      END
645