1*> \brief \b ZGECON
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZGECON + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgecon.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgecon.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgecon.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
22*                          INFO )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          NORM
26*       INTEGER            INFO, LDA, N
27*       DOUBLE PRECISION   ANORM, RCOND
28*       ..
29*       .. Array Arguments ..
30*       DOUBLE PRECISION   RWORK( * )
31*       COMPLEX*16         A( LDA, * ), WORK( * )
32*       ..
33*
34*
35*> \par Purpose:
36*  =============
37*>
38*> \verbatim
39*>
40*> ZGECON estimates the reciprocal of the condition number of a general
41*> complex matrix A, in either the 1-norm or the infinity-norm, using
42*> the LU factorization computed by ZGETRF.
43*>
44*> An estimate is obtained for norm(inv(A)), and the reciprocal of the
45*> condition number is computed as
46*>    RCOND = 1 / ( norm(A) * norm(inv(A)) ).
47*> \endverbatim
48*
49*  Arguments:
50*  ==========
51*
52*> \param[in] NORM
53*> \verbatim
54*>          NORM is CHARACTER*1
55*>          Specifies whether the 1-norm condition number or the
56*>          infinity-norm condition number is required:
57*>          = '1' or 'O':  1-norm;
58*>          = 'I':         Infinity-norm.
59*> \endverbatim
60*>
61*> \param[in] N
62*> \verbatim
63*>          N is INTEGER
64*>          The order of the matrix A.  N >= 0.
65*> \endverbatim
66*>
67*> \param[in] A
68*> \verbatim
69*>          A is COMPLEX*16 array, dimension (LDA,N)
70*>          The factors L and U from the factorization A = P*L*U
71*>          as computed by ZGETRF.
72*> \endverbatim
73*>
74*> \param[in] LDA
75*> \verbatim
76*>          LDA is INTEGER
77*>          The leading dimension of the array A.  LDA >= max(1,N).
78*> \endverbatim
79*>
80*> \param[in] ANORM
81*> \verbatim
82*>          ANORM is DOUBLE PRECISION
83*>          If NORM = '1' or 'O', the 1-norm of the original matrix A.
84*>          If NORM = 'I', the infinity-norm of the original matrix A.
85*> \endverbatim
86*>
87*> \param[out] RCOND
88*> \verbatim
89*>          RCOND is DOUBLE PRECISION
90*>          The reciprocal of the condition number of the matrix A,
91*>          computed as RCOND = 1/(norm(A) * norm(inv(A))).
92*> \endverbatim
93*>
94*> \param[out] WORK
95*> \verbatim
96*>          WORK is COMPLEX*16 array, dimension (2*N)
97*> \endverbatim
98*>
99*> \param[out] RWORK
100*> \verbatim
101*>          RWORK is DOUBLE PRECISION array, dimension (2*N)
102*> \endverbatim
103*>
104*> \param[out] INFO
105*> \verbatim
106*>          INFO is INTEGER
107*>          = 0:  successful exit
108*>          < 0:  if INFO = -i, the i-th argument had an illegal value
109*> \endverbatim
110*
111*  Authors:
112*  ========
113*
114*> \author Univ. of Tennessee
115*> \author Univ. of California Berkeley
116*> \author Univ. of Colorado Denver
117*> \author NAG Ltd.
118*
119*> \ingroup complex16GEcomputational
120*
121*  =====================================================================
122      SUBROUTINE ZGECON( NORM, N, A, LDA, ANORM, RCOND, WORK, RWORK,
123     $                   INFO )
124*
125*  -- LAPACK computational routine --
126*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
127*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
128*
129*     .. Scalar Arguments ..
130      CHARACTER          NORM
131      INTEGER            INFO, LDA, N
132      DOUBLE PRECISION   ANORM, RCOND
133*     ..
134*     .. Array Arguments ..
135      DOUBLE PRECISION   RWORK( * )
136      COMPLEX*16         A( LDA, * ), WORK( * )
137*     ..
138*
139*  =====================================================================
140*
141*     .. Parameters ..
142      DOUBLE PRECISION   ONE, ZERO
143      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
144*     ..
145*     .. Local Scalars ..
146      LOGICAL            ONENRM
147      CHARACTER          NORMIN
148      INTEGER            IX, KASE, KASE1
149      DOUBLE PRECISION   AINVNM, SCALE, SL, SMLNUM, SU
150      COMPLEX*16         ZDUM
151*     ..
152*     .. Local Arrays ..
153      INTEGER            ISAVE( 3 )
154*     ..
155*     .. External Functions ..
156      LOGICAL            LSAME
157      INTEGER            IZAMAX
158      DOUBLE PRECISION   DLAMCH
159      EXTERNAL           LSAME, IZAMAX, DLAMCH
160*     ..
161*     .. External Subroutines ..
162      EXTERNAL           XERBLA, ZDRSCL, ZLACN2, ZLATRS
163*     ..
164*     .. Intrinsic Functions ..
165      INTRINSIC          ABS, DBLE, DIMAG, MAX
166*     ..
167*     .. Statement Functions ..
168      DOUBLE PRECISION   CABS1
169*     ..
170*     .. Statement Function definitions ..
171      CABS1( ZDUM ) = ABS( DBLE( ZDUM ) ) + ABS( DIMAG( ZDUM ) )
172*     ..
173*     .. Executable Statements ..
174*
175*     Test the input parameters.
176*
177      INFO = 0
178      ONENRM = NORM.EQ.'1' .OR. LSAME( NORM, 'O' )
179      IF( .NOT.ONENRM .AND. .NOT.LSAME( NORM, 'I' ) ) THEN
180         INFO = -1
181      ELSE IF( N.LT.0 ) THEN
182         INFO = -2
183      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
184         INFO = -4
185      ELSE IF( ANORM.LT.ZERO ) THEN
186         INFO = -5
187      END IF
188      IF( INFO.NE.0 ) THEN
189         CALL XERBLA( 'ZGECON', -INFO )
190         RETURN
191      END IF
192*
193*     Quick return if possible
194*
195      RCOND = ZERO
196      IF( N.EQ.0 ) THEN
197         RCOND = ONE
198         RETURN
199      ELSE IF( ANORM.EQ.ZERO ) THEN
200         RETURN
201      END IF
202*
203      SMLNUM = DLAMCH( 'Safe minimum' )
204*
205*     Estimate the norm of inv(A).
206*
207      AINVNM = ZERO
208      NORMIN = 'N'
209      IF( ONENRM ) THEN
210         KASE1 = 1
211      ELSE
212         KASE1 = 2
213      END IF
214      KASE = 0
215   10 CONTINUE
216      CALL ZLACN2( N, WORK( N+1 ), WORK, AINVNM, KASE, ISAVE )
217      IF( KASE.NE.0 ) THEN
218         IF( KASE.EQ.KASE1 ) THEN
219*
220*           Multiply by inv(L).
221*
222            CALL ZLATRS( 'Lower', 'No transpose', 'Unit', NORMIN, N, A,
223     $                   LDA, WORK, SL, RWORK, INFO )
224*
225*           Multiply by inv(U).
226*
227            CALL ZLATRS( 'Upper', 'No transpose', 'Non-unit', NORMIN, N,
228     $                   A, LDA, WORK, SU, RWORK( N+1 ), INFO )
229         ELSE
230*
231*           Multiply by inv(U**H).
232*
233            CALL ZLATRS( 'Upper', 'Conjugate transpose', 'Non-unit',
234     $                   NORMIN, N, A, LDA, WORK, SU, RWORK( N+1 ),
235     $                   INFO )
236*
237*           Multiply by inv(L**H).
238*
239            CALL ZLATRS( 'Lower', 'Conjugate transpose', 'Unit', NORMIN,
240     $                   N, A, LDA, WORK, SL, RWORK, INFO )
241         END IF
242*
243*        Divide X by 1/(SL*SU) if doing so will not cause overflow.
244*
245         SCALE = SL*SU
246         NORMIN = 'Y'
247         IF( SCALE.NE.ONE ) THEN
248            IX = IZAMAX( N, WORK, 1 )
249            IF( SCALE.LT.CABS1( WORK( IX ) )*SMLNUM .OR. SCALE.EQ.ZERO )
250     $         GO TO 20
251            CALL ZDRSCL( N, SCALE, WORK, 1 )
252         END IF
253         GO TO 10
254      END IF
255*
256*     Compute the estimate of the reciprocal condition number.
257*
258      IF( AINVNM.NE.ZERO )
259     $   RCOND = ( ONE / AINVNM ) / ANORM
260*
261   20 CONTINUE
262      RETURN
263*
264*     End of ZGECON
265*
266      END
267