1*> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZHETD2 + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
22*
23*       .. Scalar Arguments ..
24*       CHARACTER          UPLO
25*       INTEGER            INFO, LDA, N
26*       ..
27*       .. Array Arguments ..
28*       DOUBLE PRECISION   D( * ), E( * )
29*       COMPLEX*16         A( LDA, * ), TAU( * )
30*       ..
31*
32*
33*> \par Purpose:
34*  =============
35*>
36*> \verbatim
37*>
38*> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
39*> tridiagonal form T by a unitary similarity transformation:
40*> Q**H * A * Q = T.
41*> \endverbatim
42*
43*  Arguments:
44*  ==========
45*
46*> \param[in] UPLO
47*> \verbatim
48*>          UPLO is CHARACTER*1
49*>          Specifies whether the upper or lower triangular part of the
50*>          Hermitian matrix A is stored:
51*>          = 'U':  Upper triangular
52*>          = 'L':  Lower triangular
53*> \endverbatim
54*>
55*> \param[in] N
56*> \verbatim
57*>          N is INTEGER
58*>          The order of the matrix A.  N >= 0.
59*> \endverbatim
60*>
61*> \param[in,out] A
62*> \verbatim
63*>          A is COMPLEX*16 array, dimension (LDA,N)
64*>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
65*>          n-by-n upper triangular part of A contains the upper
66*>          triangular part of the matrix A, and the strictly lower
67*>          triangular part of A is not referenced.  If UPLO = 'L', the
68*>          leading n-by-n lower triangular part of A contains the lower
69*>          triangular part of the matrix A, and the strictly upper
70*>          triangular part of A is not referenced.
71*>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
72*>          of A are overwritten by the corresponding elements of the
73*>          tridiagonal matrix T, and the elements above the first
74*>          superdiagonal, with the array TAU, represent the unitary
75*>          matrix Q as a product of elementary reflectors; if UPLO
76*>          = 'L', the diagonal and first subdiagonal of A are over-
77*>          written by the corresponding elements of the tridiagonal
78*>          matrix T, and the elements below the first subdiagonal, with
79*>          the array TAU, represent the unitary matrix Q as a product
80*>          of elementary reflectors. See Further Details.
81*> \endverbatim
82*>
83*> \param[in] LDA
84*> \verbatim
85*>          LDA is INTEGER
86*>          The leading dimension of the array A.  LDA >= max(1,N).
87*> \endverbatim
88*>
89*> \param[out] D
90*> \verbatim
91*>          D is DOUBLE PRECISION array, dimension (N)
92*>          The diagonal elements of the tridiagonal matrix T:
93*>          D(i) = A(i,i).
94*> \endverbatim
95*>
96*> \param[out] E
97*> \verbatim
98*>          E is DOUBLE PRECISION array, dimension (N-1)
99*>          The off-diagonal elements of the tridiagonal matrix T:
100*>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
101*> \endverbatim
102*>
103*> \param[out] TAU
104*> \verbatim
105*>          TAU is COMPLEX*16 array, dimension (N-1)
106*>          The scalar factors of the elementary reflectors (see Further
107*>          Details).
108*> \endverbatim
109*>
110*> \param[out] INFO
111*> \verbatim
112*>          INFO is INTEGER
113*>          = 0:  successful exit
114*>          < 0:  if INFO = -i, the i-th argument had an illegal value.
115*> \endverbatim
116*
117*  Authors:
118*  ========
119*
120*> \author Univ. of Tennessee
121*> \author Univ. of California Berkeley
122*> \author Univ. of Colorado Denver
123*> \author NAG Ltd.
124*
125*> \ingroup complex16HEcomputational
126*
127*> \par Further Details:
128*  =====================
129*>
130*> \verbatim
131*>
132*>  If UPLO = 'U', the matrix Q is represented as a product of elementary
133*>  reflectors
134*>
135*>     Q = H(n-1) . . . H(2) H(1).
136*>
137*>  Each H(i) has the form
138*>
139*>     H(i) = I - tau * v * v**H
140*>
141*>  where tau is a complex scalar, and v is a complex vector with
142*>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
143*>  A(1:i-1,i+1), and tau in TAU(i).
144*>
145*>  If UPLO = 'L', the matrix Q is represented as a product of elementary
146*>  reflectors
147*>
148*>     Q = H(1) H(2) . . . H(n-1).
149*>
150*>  Each H(i) has the form
151*>
152*>     H(i) = I - tau * v * v**H
153*>
154*>  where tau is a complex scalar, and v is a complex vector with
155*>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
156*>  and tau in TAU(i).
157*>
158*>  The contents of A on exit are illustrated by the following examples
159*>  with n = 5:
160*>
161*>  if UPLO = 'U':                       if UPLO = 'L':
162*>
163*>    (  d   e   v2  v3  v4 )              (  d                  )
164*>    (      d   e   v3  v4 )              (  e   d              )
165*>    (          d   e   v4 )              (  v1  e   d          )
166*>    (              d   e  )              (  v1  v2  e   d      )
167*>    (                  d  )              (  v1  v2  v3  e   d  )
168*>
169*>  where d and e denote diagonal and off-diagonal elements of T, and vi
170*>  denotes an element of the vector defining H(i).
171*> \endverbatim
172*>
173*  =====================================================================
174      SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
175*
176*  -- LAPACK computational routine --
177*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
178*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
179*
180*     .. Scalar Arguments ..
181      CHARACTER          UPLO
182      INTEGER            INFO, LDA, N
183*     ..
184*     .. Array Arguments ..
185      DOUBLE PRECISION   D( * ), E( * )
186      COMPLEX*16         A( LDA, * ), TAU( * )
187*     ..
188*
189*  =====================================================================
190*
191*     .. Parameters ..
192      COMPLEX*16         ONE, ZERO, HALF
193      PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
194     $                   ZERO = ( 0.0D+0, 0.0D+0 ),
195     $                   HALF = ( 0.5D+0, 0.0D+0 ) )
196*     ..
197*     .. Local Scalars ..
198      LOGICAL            UPPER
199      INTEGER            I
200      COMPLEX*16         ALPHA, TAUI
201*     ..
202*     .. External Subroutines ..
203      EXTERNAL           XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
204*     ..
205*     .. External Functions ..
206      LOGICAL            LSAME
207      COMPLEX*16         ZDOTC
208      EXTERNAL           LSAME, ZDOTC
209*     ..
210*     .. Intrinsic Functions ..
211      INTRINSIC          DBLE, MAX, MIN
212*     ..
213*     .. Executable Statements ..
214*
215*     Test the input parameters
216*
217      INFO = 0
218      UPPER = LSAME( UPLO, 'U')
219      IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
220         INFO = -1
221      ELSE IF( N.LT.0 ) THEN
222         INFO = -2
223      ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
224         INFO = -4
225      END IF
226      IF( INFO.NE.0 ) THEN
227         CALL XERBLA( 'ZHETD2', -INFO )
228         RETURN
229      END IF
230*
231*     Quick return if possible
232*
233      IF( N.LE.0 )
234     $   RETURN
235*
236      IF( UPPER ) THEN
237*
238*        Reduce the upper triangle of A
239*
240         A( N, N ) = DBLE( A( N, N ) )
241         DO 10 I = N - 1, 1, -1
242*
243*           Generate elementary reflector H(i) = I - tau * v * v**H
244*           to annihilate A(1:i-1,i+1)
245*
246            ALPHA = A( I, I+1 )
247            CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
248            E( I ) = DBLE( ALPHA )
249*
250            IF( TAUI.NE.ZERO ) THEN
251*
252*              Apply H(i) from both sides to A(1:i,1:i)
253*
254               A( I, I+1 ) = ONE
255*
256*              Compute  x := tau * A * v  storing x in TAU(1:i)
257*
258               CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
259     $                     TAU, 1 )
260*
261*              Compute  w := x - 1/2 * tau * (x**H * v) * v
262*
263               ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
264               CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
265*
266*              Apply the transformation as a rank-2 update:
267*                 A := A - v * w**H - w * v**H
268*
269               CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
270     $                     LDA )
271*
272            ELSE
273               A( I, I ) = DBLE( A( I, I ) )
274            END IF
275            A( I, I+1 ) = E( I )
276            D( I+1 ) = DBLE( A( I+1, I+1 ) )
277            TAU( I ) = TAUI
278   10    CONTINUE
279         D( 1 ) = DBLE( A( 1, 1 ) )
280      ELSE
281*
282*        Reduce the lower triangle of A
283*
284         A( 1, 1 ) = DBLE( A( 1, 1 ) )
285         DO 20 I = 1, N - 1
286*
287*           Generate elementary reflector H(i) = I - tau * v * v**H
288*           to annihilate A(i+2:n,i)
289*
290            ALPHA = A( I+1, I )
291            CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
292            E( I ) = DBLE( ALPHA )
293*
294            IF( TAUI.NE.ZERO ) THEN
295*
296*              Apply H(i) from both sides to A(i+1:n,i+1:n)
297*
298               A( I+1, I ) = ONE
299*
300*              Compute  x := tau * A * v  storing y in TAU(i:n-1)
301*
302               CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
303     $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
304*
305*              Compute  w := x - 1/2 * tau * (x**H * v) * v
306*
307               ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
308     $                 1 )
309               CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
310*
311*              Apply the transformation as a rank-2 update:
312*                 A := A - v * w**H - w * v**H
313*
314               CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
315     $                     A( I+1, I+1 ), LDA )
316*
317            ELSE
318               A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
319            END IF
320            A( I+1, I ) = E( I )
321            D( I ) = DBLE( A( I, I ) )
322            TAU( I ) = TAUI
323   20    CONTINUE
324         D( N ) = DBLE( A( N, N ) )
325      END IF
326*
327      RETURN
328*
329*     End of ZHETD2
330*
331      END
332