1*> \brief \b ZLANHB returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a Hermitian band matrix.
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*> \htmlonly
9*> Download ZLANHB + dependencies
10*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhb.f">
11*> [TGZ]</a>
12*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhb.f">
13*> [ZIP]</a>
14*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhb.f">
15*> [TXT]</a>
16*> \endhtmlonly
17*
18*  Definition:
19*  ===========
20*
21*       DOUBLE PRECISION FUNCTION ZLANHB( NORM, UPLO, N, K, AB, LDAB,
22*                        WORK )
23*
24*       .. Scalar Arguments ..
25*       CHARACTER          NORM, UPLO
26*       INTEGER            K, LDAB, N
27*       ..
28*       .. Array Arguments ..
29*       DOUBLE PRECISION   WORK( * )
30*       COMPLEX*16         AB( LDAB, * )
31*       ..
32*
33*
34*> \par Purpose:
35*  =============
36*>
37*> \verbatim
38*>
39*> ZLANHB  returns the value of the one norm,  or the Frobenius norm, or
40*> the  infinity norm,  or the element of  largest absolute value  of an
41*> n by n hermitian band matrix A,  with k super-diagonals.
42*> \endverbatim
43*>
44*> \return ZLANHB
45*> \verbatim
46*>
47*>    ZLANHB = ( max(abs(A(i,j))), NORM = 'M' or 'm'
48*>             (
49*>             ( norm1(A),         NORM = '1', 'O' or 'o'
50*>             (
51*>             ( normI(A),         NORM = 'I' or 'i'
52*>             (
53*>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
54*>
55*> where  norm1  denotes the  one norm of a matrix (maximum column sum),
56*> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
57*> normF  denotes the  Frobenius norm of a matrix (square root of sum of
58*> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
59*> \endverbatim
60*
61*  Arguments:
62*  ==========
63*
64*> \param[in] NORM
65*> \verbatim
66*>          NORM is CHARACTER*1
67*>          Specifies the value to be returned in ZLANHB as described
68*>          above.
69*> \endverbatim
70*>
71*> \param[in] UPLO
72*> \verbatim
73*>          UPLO is CHARACTER*1
74*>          Specifies whether the upper or lower triangular part of the
75*>          band matrix A is supplied.
76*>          = 'U':  Upper triangular
77*>          = 'L':  Lower triangular
78*> \endverbatim
79*>
80*> \param[in] N
81*> \verbatim
82*>          N is INTEGER
83*>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHB is
84*>          set to zero.
85*> \endverbatim
86*>
87*> \param[in] K
88*> \verbatim
89*>          K is INTEGER
90*>          The number of super-diagonals or sub-diagonals of the
91*>          band matrix A.  K >= 0.
92*> \endverbatim
93*>
94*> \param[in] AB
95*> \verbatim
96*>          AB is COMPLEX*16 array, dimension (LDAB,N)
97*>          The upper or lower triangle of the hermitian band matrix A,
98*>          stored in the first K+1 rows of AB.  The j-th column of A is
99*>          stored in the j-th column of the array AB as follows:
100*>          if UPLO = 'U', AB(k+1+i-j,j) = A(i,j) for max(1,j-k)<=i<=j;
101*>          if UPLO = 'L', AB(1+i-j,j)   = A(i,j) for j<=i<=min(n,j+k).
102*>          Note that the imaginary parts of the diagonal elements need
103*>          not be set and are assumed to be zero.
104*> \endverbatim
105*>
106*> \param[in] LDAB
107*> \verbatim
108*>          LDAB is INTEGER
109*>          The leading dimension of the array AB.  LDAB >= K+1.
110*> \endverbatim
111*>
112*> \param[out] WORK
113*> \verbatim
114*>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
115*>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
116*>          WORK is not referenced.
117*> \endverbatim
118*
119*  Authors:
120*  ========
121*
122*> \author Univ. of Tennessee
123*> \author Univ. of California Berkeley
124*> \author Univ. of Colorado Denver
125*> \author NAG Ltd.
126*
127*> \ingroup complex16OTHERauxiliary
128*
129*  =====================================================================
130      DOUBLE PRECISION FUNCTION ZLANHB( NORM, UPLO, N, K, AB, LDAB,
131     $                 WORK )
132*
133*  -- LAPACK auxiliary routine --
134*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
135*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
136*
137      IMPLICIT NONE
138*     .. Scalar Arguments ..
139      CHARACTER          NORM, UPLO
140      INTEGER            K, LDAB, N
141*     ..
142*     .. Array Arguments ..
143      DOUBLE PRECISION   WORK( * )
144      COMPLEX*16         AB( LDAB, * )
145*     ..
146*
147* =====================================================================
148*
149*     .. Parameters ..
150      DOUBLE PRECISION   ONE, ZERO
151      PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
152*     ..
153*     .. Local Scalars ..
154      INTEGER            I, J, L
155      DOUBLE PRECISION   ABSA, SUM, VALUE
156*     ..
157*     .. Local Arrays ..
158      DOUBLE PRECISION   SSQ( 2 ), COLSSQ( 2 )
159*     ..
160*     .. External Functions ..
161      LOGICAL            LSAME, DISNAN
162      EXTERNAL           LSAME, DISNAN
163*     ..
164*     .. External Subroutines ..
165      EXTERNAL           ZLASSQ, DCOMBSSQ
166*     ..
167*     .. Intrinsic Functions ..
168      INTRINSIC          ABS, DBLE, MAX, MIN, SQRT
169*     ..
170*     .. Executable Statements ..
171*
172      IF( N.EQ.0 ) THEN
173         VALUE = ZERO
174      ELSE IF( LSAME( NORM, 'M' ) ) THEN
175*
176*        Find max(abs(A(i,j))).
177*
178         VALUE = ZERO
179         IF( LSAME( UPLO, 'U' ) ) THEN
180            DO 20 J = 1, N
181               DO 10 I = MAX( K+2-J, 1 ), K
182                  SUM = ABS( AB( I, J ) )
183                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
184   10          CONTINUE
185               SUM = ABS( DBLE( AB( K+1, J ) ) )
186               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
187   20       CONTINUE
188         ELSE
189            DO 40 J = 1, N
190               SUM = ABS( DBLE( AB( 1, J ) ) )
191               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
192               DO 30 I = 2, MIN( N+1-J, K+1 )
193                  SUM = ABS( AB( I, J ) )
194                  IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
195   30          CONTINUE
196   40       CONTINUE
197         END IF
198      ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
199     $         ( NORM.EQ.'1' ) ) THEN
200*
201*        Find normI(A) ( = norm1(A), since A is hermitian).
202*
203         VALUE = ZERO
204         IF( LSAME( UPLO, 'U' ) ) THEN
205            DO 60 J = 1, N
206               SUM = ZERO
207               L = K + 1 - J
208               DO 50 I = MAX( 1, J-K ), J - 1
209                  ABSA = ABS( AB( L+I, J ) )
210                  SUM = SUM + ABSA
211                  WORK( I ) = WORK( I ) + ABSA
212   50          CONTINUE
213               WORK( J ) = SUM + ABS( DBLE( AB( K+1, J ) ) )
214   60       CONTINUE
215            DO 70 I = 1, N
216               SUM = WORK( I )
217               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
218   70       CONTINUE
219         ELSE
220            DO 80 I = 1, N
221               WORK( I ) = ZERO
222   80       CONTINUE
223            DO 100 J = 1, N
224               SUM = WORK( J ) + ABS( DBLE( AB( 1, J ) ) )
225               L = 1 - J
226               DO 90 I = J + 1, MIN( N, J+K )
227                  ABSA = ABS( AB( L+I, J ) )
228                  SUM = SUM + ABSA
229                  WORK( I ) = WORK( I ) + ABSA
230   90          CONTINUE
231               IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
232  100       CONTINUE
233         END IF
234      ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
235*
236*        Find normF(A).
237*        SSQ(1) is scale
238*        SSQ(2) is sum-of-squares
239*        For better accuracy, sum each column separately.
240*
241         SSQ( 1 ) = ZERO
242         SSQ( 2 ) = ONE
243*
244*        Sum off-diagonals
245*
246         IF( K.GT.0 ) THEN
247            IF( LSAME( UPLO, 'U' ) ) THEN
248               DO 110 J = 2, N
249                  COLSSQ( 1 ) = ZERO
250                  COLSSQ( 2 ) = ONE
251                  CALL ZLASSQ( MIN( J-1, K ), AB( MAX( K+2-J, 1 ), J ),
252     $                         1, COLSSQ( 1 ), COLSSQ( 2 ) )
253                  CALL DCOMBSSQ( SSQ, COLSSQ )
254  110          CONTINUE
255               L = K + 1
256            ELSE
257               DO 120 J = 1, N - 1
258                  COLSSQ( 1 ) = ZERO
259                  COLSSQ( 2 ) = ONE
260                  CALL ZLASSQ( MIN( N-J, K ), AB( 2, J ), 1,
261     $                         COLSSQ( 1 ), COLSSQ( 2 ) )
262                  CALL DCOMBSSQ( SSQ, COLSSQ )
263  120          CONTINUE
264               L = 1
265            END IF
266            SSQ( 2 ) = 2*SSQ( 2 )
267         ELSE
268            L = 1
269         END IF
270*
271*        Sum diagonal
272*
273         COLSSQ( 1 ) = ZERO
274         COLSSQ( 2 ) = ONE
275         DO 130 J = 1, N
276            IF( DBLE( AB( L, J ) ).NE.ZERO ) THEN
277               ABSA = ABS( DBLE( AB( L, J ) ) )
278               IF( COLSSQ( 1 ).LT.ABSA ) THEN
279                  COLSSQ( 2 ) = ONE + COLSSQ(2)*( COLSSQ(1) / ABSA )**2
280                  COLSSQ( 1 ) = ABSA
281               ELSE
282                  COLSSQ( 2 ) = COLSSQ( 2 ) + ( ABSA / COLSSQ( 1 ) )**2
283               END IF
284            END IF
285  130    CONTINUE
286         CALL DCOMBSSQ( SSQ, COLSSQ )
287         VALUE = SSQ( 1 )*SQRT( SSQ( 2 ) )
288      END IF
289*
290      ZLANHB = VALUE
291      RETURN
292*
293*     End of ZLANHB
294*
295      END
296