1*> \brief \b DSYT21
2*
3*  =========== DOCUMENTATION ===========
4*
5* Online html documentation available at
6*            http://www.netlib.org/lapack/explore-html/
7*
8*  Definition:
9*  ===========
10*
11*       SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
12*                          LDV, TAU, WORK, RESULT )
13*
14*       .. Scalar Arguments ..
15*       CHARACTER          UPLO
16*       INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
17*       ..
18*       .. Array Arguments ..
19*       DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
20*      $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
21*       ..
22*
23*
24*> \par Purpose:
25*  =============
26*>
27*> \verbatim
28*>
29*> DSYT21 generally checks a decomposition of the form
30*>
31*>    A = U S U**T
32*>
33*> where **T means transpose, A is symmetric, U is orthogonal, and S is
34*> diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1).
35*>
36*> If ITYPE=1, then U is represented as a dense matrix; otherwise U is
37*> expressed as a product of Householder transformations, whose vectors
38*> are stored in the array "V" and whose scaling constants are in "TAU".
39*> We shall use the letter "V" to refer to the product of Householder
40*> transformations (which should be equal to U).
41*>
42*> Specifically, if ITYPE=1, then:
43*>
44*>    RESULT(1) = | A - U S U**T | / ( |A| n ulp ) and
45*>    RESULT(2) = | I - U U**T | / ( n ulp )
46*>
47*> If ITYPE=2, then:
48*>
49*>    RESULT(1) = | A - V S V**T | / ( |A| n ulp )
50*>
51*> If ITYPE=3, then:
52*>
53*>    RESULT(1) = | I - V U**T | / ( n ulp )
54*>
55*> For ITYPE > 1, the transformation U is expressed as a product
56*> V = H(1)...H(n-2),  where H(j) = I  -  tau(j) v(j) v(j)**T and each
57*> vector v(j) has its first j elements 0 and the remaining n-j elements
58*> stored in V(j+1:n,j).
59*> \endverbatim
60*
61*  Arguments:
62*  ==========
63*
64*> \param[in] ITYPE
65*> \verbatim
66*>          ITYPE is INTEGER
67*>          Specifies the type of tests to be performed.
68*>          1: U expressed as a dense orthogonal matrix:
69*>             RESULT(1) = | A - U S U**T | / ( |A| n ulp )  and
70*>             RESULT(2) = | I - U U**T | / ( n ulp )
71*>
72*>          2: U expressed as a product V of Housholder transformations:
73*>             RESULT(1) = | A - V S V**T | / ( |A| n ulp )
74*>
75*>          3: U expressed both as a dense orthogonal matrix and
76*>             as a product of Housholder transformations:
77*>             RESULT(1) = | I - V U**T | / ( n ulp )
78*> \endverbatim
79*>
80*> \param[in] UPLO
81*> \verbatim
82*>          UPLO is CHARACTER
83*>          If UPLO='U', the upper triangle of A and V will be used and
84*>          the (strictly) lower triangle will not be referenced.
85*>          If UPLO='L', the lower triangle of A and V will be used and
86*>          the (strictly) upper triangle will not be referenced.
87*> \endverbatim
88*>
89*> \param[in] N
90*> \verbatim
91*>          N is INTEGER
92*>          The size of the matrix.  If it is zero, DSYT21 does nothing.
93*>          It must be at least zero.
94*> \endverbatim
95*>
96*> \param[in] KBAND
97*> \verbatim
98*>          KBAND is INTEGER
99*>          The bandwidth of the matrix.  It may only be zero or one.
100*>          If zero, then S is diagonal, and E is not referenced.  If
101*>          one, then S is symmetric tri-diagonal.
102*> \endverbatim
103*>
104*> \param[in] A
105*> \verbatim
106*>          A is DOUBLE PRECISION array, dimension (LDA, N)
107*>          The original (unfactored) matrix.  It is assumed to be
108*>          symmetric, and only the upper (UPLO='U') or only the lower
109*>          (UPLO='L') will be referenced.
110*> \endverbatim
111*>
112*> \param[in] LDA
113*> \verbatim
114*>          LDA is INTEGER
115*>          The leading dimension of A.  It must be at least 1
116*>          and at least N.
117*> \endverbatim
118*>
119*> \param[in] D
120*> \verbatim
121*>          D is DOUBLE PRECISION array, dimension (N)
122*>          The diagonal of the (symmetric tri-) diagonal matrix.
123*> \endverbatim
124*>
125*> \param[in] E
126*> \verbatim
127*>          E is DOUBLE PRECISION array, dimension (N-1)
128*>          The off-diagonal of the (symmetric tri-) diagonal matrix.
129*>          E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
130*>          (3,2) element, etc.
131*>          Not referenced if KBAND=0.
132*> \endverbatim
133*>
134*> \param[in] U
135*> \verbatim
136*>          U is DOUBLE PRECISION array, dimension (LDU, N)
137*>          If ITYPE=1 or 3, this contains the orthogonal matrix in
138*>          the decomposition, expressed as a dense matrix.  If ITYPE=2,
139*>          then it is not referenced.
140*> \endverbatim
141*>
142*> \param[in] LDU
143*> \verbatim
144*>          LDU is INTEGER
145*>          The leading dimension of U.  LDU must be at least N and
146*>          at least 1.
147*> \endverbatim
148*>
149*> \param[in] V
150*> \verbatim
151*>          V is DOUBLE PRECISION array, dimension (LDV, N)
152*>          If ITYPE=2 or 3, the columns of this array contain the
153*>          Householder vectors used to describe the orthogonal matrix
154*>          in the decomposition.  If UPLO='L', then the vectors are in
155*>          the lower triangle, if UPLO='U', then in the upper
156*>          triangle.
157*>          *NOTE* If ITYPE=2 or 3, V is modified and restored.  The
158*>          subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
159*>          is set to one, and later reset to its original value, during
160*>          the course of the calculation.
161*>          If ITYPE=1, then it is neither referenced nor modified.
162*> \endverbatim
163*>
164*> \param[in] LDV
165*> \verbatim
166*>          LDV is INTEGER
167*>          The leading dimension of V.  LDV must be at least N and
168*>          at least 1.
169*> \endverbatim
170*>
171*> \param[in] TAU
172*> \verbatim
173*>          TAU is DOUBLE PRECISION array, dimension (N)
174*>          If ITYPE >= 2, then TAU(j) is the scalar factor of
175*>          v(j) v(j)**T in the Householder transformation H(j) of
176*>          the product  U = H(1)...H(n-2)
177*>          If ITYPE < 2, then TAU is not referenced.
178*> \endverbatim
179*>
180*> \param[out] WORK
181*> \verbatim
182*>          WORK is DOUBLE PRECISION array, dimension (2*N**2)
183*> \endverbatim
184*>
185*> \param[out] RESULT
186*> \verbatim
187*>          RESULT is DOUBLE PRECISION array, dimension (2)
188*>          The values computed by the two tests described above.  The
189*>          values are currently limited to 1/ulp, to avoid overflow.
190*>          RESULT(1) is always modified.  RESULT(2) is modified only
191*>          if ITYPE=1.
192*> \endverbatim
193*
194*  Authors:
195*  ========
196*
197*> \author Univ. of Tennessee
198*> \author Univ. of California Berkeley
199*> \author Univ. of Colorado Denver
200*> \author NAG Ltd.
201*
202*> \ingroup double_eig
203*
204*  =====================================================================
205      SUBROUTINE DSYT21( ITYPE, UPLO, N, KBAND, A, LDA, D, E, U, LDU, V,
206     $                   LDV, TAU, WORK, RESULT )
207*
208*  -- LAPACK test routine --
209*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
210*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
211*
212*     .. Scalar Arguments ..
213      CHARACTER          UPLO
214      INTEGER            ITYPE, KBAND, LDA, LDU, LDV, N
215*     ..
216*     .. Array Arguments ..
217      DOUBLE PRECISION   A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
218     $                   TAU( * ), U( LDU, * ), V( LDV, * ), WORK( * )
219*     ..
220*
221*  =====================================================================
222*
223*     .. Parameters ..
224      DOUBLE PRECISION   ZERO, ONE, TEN
225      PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
226*     ..
227*     .. Local Scalars ..
228      LOGICAL            LOWER
229      CHARACTER          CUPLO
230      INTEGER            IINFO, J, JCOL, JR, JROW
231      DOUBLE PRECISION   ANORM, ULP, UNFL, VSAVE, WNORM
232*     ..
233*     .. External Functions ..
234      LOGICAL            LSAME
235      DOUBLE PRECISION   DLAMCH, DLANGE, DLANSY
236      EXTERNAL           LSAME, DLAMCH, DLANGE, DLANSY
237*     ..
238*     .. External Subroutines ..
239      EXTERNAL           DGEMM, DLACPY, DLARFY, DLASET, DORM2L, DORM2R,
240     $                   DSYR, DSYR2
241*     ..
242*     .. Intrinsic Functions ..
243      INTRINSIC          DBLE, MAX, MIN
244*     ..
245*     .. Executable Statements ..
246*
247      RESULT( 1 ) = ZERO
248      IF( ITYPE.EQ.1 )
249     $   RESULT( 2 ) = ZERO
250      IF( N.LE.0 )
251     $   RETURN
252*
253      IF( LSAME( UPLO, 'U' ) ) THEN
254         LOWER = .FALSE.
255         CUPLO = 'U'
256      ELSE
257         LOWER = .TRUE.
258         CUPLO = 'L'
259      END IF
260*
261      UNFL = DLAMCH( 'Safe minimum' )
262      ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
263*
264*     Some Error Checks
265*
266      IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
267         RESULT( 1 ) = TEN / ULP
268         RETURN
269      END IF
270*
271*     Do Test 1
272*
273*     Norm of A:
274*
275      IF( ITYPE.EQ.3 ) THEN
276         ANORM = ONE
277      ELSE
278         ANORM = MAX( DLANSY( '1', CUPLO, N, A, LDA, WORK ), UNFL )
279      END IF
280*
281*     Compute error matrix:
282*
283      IF( ITYPE.EQ.1 ) THEN
284*
285*        ITYPE=1: error = A - U S U**T
286*
287         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
288         CALL DLACPY( CUPLO, N, N, A, LDA, WORK, N )
289*
290         DO 10 J = 1, N
291            CALL DSYR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK, N )
292   10    CONTINUE
293*
294         IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
295            DO 20 J = 1, N - 1
296               CALL DSYR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
297     $                     1, WORK, N )
298   20       CONTINUE
299         END IF
300         WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) )
301*
302      ELSE IF( ITYPE.EQ.2 ) THEN
303*
304*        ITYPE=2: error = V S V**T - A
305*
306         CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
307*
308         IF( LOWER ) THEN
309            WORK( N**2 ) = D( N )
310            DO 40 J = N - 1, 1, -1
311               IF( KBAND.EQ.1 ) THEN
312                  WORK( ( N+1 )*( J-1 )+2 ) = ( ONE-TAU( J ) )*E( J )
313                  DO 30 JR = J + 2, N
314                     WORK( ( J-1 )*N+JR ) = -TAU( J )*E( J )*V( JR, J )
315   30             CONTINUE
316               END IF
317*
318               VSAVE = V( J+1, J )
319               V( J+1, J ) = ONE
320               CALL DLARFY( 'L', N-J, V( J+1, J ), 1, TAU( J ),
321     $                      WORK( ( N+1 )*J+1 ), N, WORK( N**2+1 ) )
322               V( J+1, J ) = VSAVE
323               WORK( ( N+1 )*( J-1 )+1 ) = D( J )
324   40       CONTINUE
325         ELSE
326            WORK( 1 ) = D( 1 )
327            DO 60 J = 1, N - 1
328               IF( KBAND.EQ.1 ) THEN
329                  WORK( ( N+1 )*J ) = ( ONE-TAU( J ) )*E( J )
330                  DO 50 JR = 1, J - 1
331                     WORK( J*N+JR ) = -TAU( J )*E( J )*V( JR, J+1 )
332   50             CONTINUE
333               END IF
334*
335               VSAVE = V( J, J+1 )
336               V( J, J+1 ) = ONE
337               CALL DLARFY( 'U', J, V( 1, J+1 ), 1, TAU( J ), WORK, N,
338     $                      WORK( N**2+1 ) )
339               V( J, J+1 ) = VSAVE
340               WORK( ( N+1 )*J+1 ) = D( J+1 )
341   60       CONTINUE
342         END IF
343*
344         DO 90 JCOL = 1, N
345            IF( LOWER ) THEN
346               DO 70 JROW = JCOL, N
347                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
348     $                - A( JROW, JCOL )
349   70          CONTINUE
350            ELSE
351               DO 80 JROW = 1, JCOL
352                  WORK( JROW+N*( JCOL-1 ) ) = WORK( JROW+N*( JCOL-1 ) )
353     $                - A( JROW, JCOL )
354   80          CONTINUE
355            END IF
356   90    CONTINUE
357         WNORM = DLANSY( '1', CUPLO, N, WORK, N, WORK( N**2+1 ) )
358*
359      ELSE IF( ITYPE.EQ.3 ) THEN
360*
361*        ITYPE=3: error = U V**T - I
362*
363         IF( N.LT.2 )
364     $      RETURN
365         CALL DLACPY( ' ', N, N, U, LDU, WORK, N )
366         IF( LOWER ) THEN
367            CALL DORM2R( 'R', 'T', N, N-1, N-1, V( 2, 1 ), LDV, TAU,
368     $                   WORK( N+1 ), N, WORK( N**2+1 ), IINFO )
369         ELSE
370            CALL DORM2L( 'R', 'T', N, N-1, N-1, V( 1, 2 ), LDV, TAU,
371     $                   WORK, N, WORK( N**2+1 ), IINFO )
372         END IF
373         IF( IINFO.NE.0 ) THEN
374            RESULT( 1 ) = TEN / ULP
375            RETURN
376         END IF
377*
378         DO 100 J = 1, N
379            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
380  100    CONTINUE
381*
382         WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
383      END IF
384*
385      IF( ANORM.GT.WNORM ) THEN
386         RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
387      ELSE
388         IF( ANORM.LT.ONE ) THEN
389            RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
390         ELSE
391            RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
392         END IF
393      END IF
394*
395*     Do Test 2
396*
397*     Compute  U U**T - I
398*
399      IF( ITYPE.EQ.1 ) THEN
400         CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
401     $               N )
402*
403         DO 110 J = 1, N
404            WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
405  110    CONTINUE
406*
407         RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N,
408     $                 WORK( N**2+1 ) ), DBLE( N ) ) / ( N*ULP )
409      END IF
410*
411      RETURN
412*
413*     End of DSYT21
414*
415      END
416