1<br>
2
3<i>This program was contributed by Jean-Paul Pelteret and Andrew McBride.
4<br>
5This material is based upon work supported by  the German Science Foundation (Deutsche
6Forschungsgemeinschaft, DFG), grant STE 544/39-1,  and the National Research Foundation of South Africa.
7</i>
8
9@dealiiTutorialDOI{10.5281/zenodo.439772,https://zenodo.org/badge/DOI/10.5281/zenodo.439772.svg}
10
11<a name="Intro"></a>
12<h1>Introduction</h1>
13
14The subject of this tutorial is nonlinear solid mechanics.
15Classical single-field approaches (see e.g. step-18) can not correctly describe the response of quasi-incompressible materials.
16The response is overly stiff; a phenomenon known as locking.
17Locking problems can be circumvented using a variety of alternative strategies.
18One such strategy is the  three-field formulation.
19It is used here  to model the three-dimensional, fully-nonlinear (geometrical and material) response of an isotropic continuum body.
20The material response is approximated as hyperelastic.
21Additionally, the three-field formulation employed is valid for quasi-incompressible as well as compressible materials.
22
23The objective of this presentation is to provide a basis for using deal.II for problems in nonlinear solid mechanics.
24The linear problem was addressed in step-8.
25A non-standard, hypoelastic-type form of the geometrically nonlinear problem was partially considered in step-18: a rate form of the linearised constitutive relations is used and the problem domain evolves with the motion.
26Important concepts surrounding the nonlinear kinematics are absent in the theory and implementation.
27Step-18 does, however, describe many of the key concepts to implement elasticity within the framework of deal.II.
28
29We begin with a crash-course in nonlinear kinematics.
30For the sake of simplicity, we restrict our attention to the quasi-static problem.
31Thereafter, various key stress measures are introduced and the constitutive model described.
32We then describe the three-field formulation in detail prior to explaining the structure of the class used to manage the material.
33The setup of the example problem is then presented.
34
35@note This tutorial has been developed (and is described in the introduction) for the problem of elasticity in three dimensions.
36 While the space dimension could be changed in the main() routine, care needs to be taken.
37 Two-dimensional elasticity problems, in general, exist only as idealizations of three-dimensional ones.
38 That is, they are either plane strain or plane stress.
39 The assumptions that follow either of these choices needs to be consistently imposed.
40 For more information see the note in step-8.
41
42<h3>List of references</h3>
43
44The three-field formulation implemented here was pioneered by Simo et al. (1985) and is known as the mixed Jacobian-pressure formulation.
45Important related contributions include those by Simo and Taylor (1991), and Miehe (1994).
46The notation adopted here draws heavily on the excellent overview of the theoretical aspects of nonlinear solid mechanics by Holzapfel (2001).
47A nice overview of issues pertaining to incompressible elasticity (at small strains) is given in Hughes (2000).
48
49<ol>
50	<li> J.C. Simo, R.L. Taylor and K.S. Pister (1985),
51		Variational and projection methods for the volume constraint in finite deformation elasto-plasticity,
52		<em> Computer Methods in Applied Mechanics and Engineering </em>,
53		<strong> 51 </strong>, 1-3,
54		177-208.
55		DOI: <a href="http://doi.org/10.1016/0045-7825(85)90033-7">10.1016/0045-7825(85)90033-7</a>;
56	<li> J.C. Simo and R.L. Taylor (1991),
57  		Quasi-incompressible finite elasticity in principal stretches. Continuum
58			basis and numerical algorithms,
59		<em> Computer Methods in Applied Mechanics and Engineering </em>,
60		<strong> 85 </strong>, 3,
61		273-310.
62		DOI: <a href="http://doi.org/10.1016/0045-7825(91)90100-K">10.1016/0045-7825(91)90100-K</a>;
63	<li> C. Miehe (1994),
64		Aspects of the formulation and finite element implementation of large strain isotropic elasticity
65		<em> International Journal for Numerical Methods in Engineering </em>
66		<strong> 37 </strong>, 12,
67		1981-2004.
68		DOI: <a href="http://doi.org/10.1002/nme.1620371202">10.1002/nme.1620371202</a>;
69	<li> G.A. Holzapfel (2001),
70		Nonlinear Solid Mechanics. A Continuum Approach for Engineering,
71		John Wiley & Sons.
72		ISBN: 0-471-82304-X;
73	<li> T.J.R. Hughes (2000),
74		The Finite Element Method: Linear Static and Dynamic Finite Element Analysis,
75		Dover.
76		ISBN: 978-0486411811
77</ol>
78
79An example where this three-field formulation is used in a coupled problem is documented in
80<ol>
81	<li> J-P. V. Pelteret, D. Davydov, A. McBride, D. K. Vu, and P. Steinmann (2016),
82		Computational electro- and magneto-elasticity for quasi-incompressible media immersed in free space,
83		<em> International Journal for Numerical Methods in Engineering </em>.
84		DOI: <a href="http://doi.org/10.1002/nme.5254">10.1002/nme.5254</a>
85</ol>
86
87<h3> Notation </h3>
88
89One can think of fourth-order tensors as linear operators mapping second-order
90tensors (matrices) onto themselves in much the same way as matrices map
91vectors onto vectors.
92There are various fourth-order unit tensors that will be required in the forthcoming presentation.
93The fourth-order unit tensors $\mathcal{I}$ and $\overline{\mathcal{I}}$ are defined by
94@f[
95	\mathbf{A} = \mathcal{I}:\mathbf{A}
96		\qquad \text{and} \qquad
97	\mathbf{A}^T = \overline{\mathcal{I}}:\mathbf{A} \, .
98@f]
99Note $\mathcal{I} \neq \overline{\mathcal{I}}^T$.
100Furthermore, we define the symmetric and skew-symmetric fourth-order unit tensors by
101@f[
102	\mathcal{S} \dealcoloneq \dfrac{1}{2}[\mathcal{I} + \overline{\mathcal{I}}]
103		\qquad \text{and} \qquad
104	\mathcal{W} \dealcoloneq \dfrac{1}{2}[\mathcal{I} - \overline{\mathcal{I}}] \, ,
105@f]
106such that
107@f[
108	\dfrac{1}{2}[\mathbf{A} + \mathbf{A}^T] = \mathcal{S}:\mathbf{A}
109		\qquad \text{and} \qquad
110	\dfrac{1}{2}[\mathbf{A} - \mathbf{A}^T] = \mathcal{W}:\mathbf{A} \, .
111@f]
112The fourth-order <code>SymmetricTensor</code> returned by identity_tensor() is $\mathcal{S}$.
113
114
115<h3>Kinematics</h3>
116
117Let the time domain be denoted $\mathbb{T} = [0,T_{\textrm{end}}]$, where $t \in \mathbb{T}$ and $T_{\textrm{end}}$ is the total problem duration.
118Consider a continuum body that occupies the reference configuration $\Omega_0$ at time $t=0$.
119%Particles in the reference configuration are identified by the position vector $\mathbf{X}$.
120The configuration of the body at a later time $t>0$ is termed the current configuration, denoted $\Omega$, with particles identified by the vector $\mathbf{x}$.
121The nonlinear map between the reference and current configurations, denoted $\boldsymbol{\varphi}$, acts as follows:
122@f[
123	\mathbf{x} = \boldsymbol{\varphi}(\mathbf{X},t) \, .
124@f]
125The material description of the displacement of a particle is defined by
126@f[
127	\mathbf{U}(\mathbf{X},t) = \mathbf{x}(\mathbf{X},t) - \mathbf{X} \, .
128@f]
129
130The deformation gradient $\mathbf{F}$ is defined as the material gradient of the motion:
131@f[
132	\mathbf{F}(\mathbf{X},t)
133		\dealcoloneq \dfrac{\partial \boldsymbol{\varphi}(\mathbf{X},t)}{\partial \mathbf{X}}
134		= \textrm{Grad}\ \mathbf{x}(\mathbf{X},t)
135		= \mathbf{I} + \textrm{Grad}\ \mathbf{U} \, .
136@f]
137The determinant of the of the deformation gradient
138$J(\mathbf{X},t) \dealcoloneq \textrm{det}\ \mathbf{F}(\mathbf{X},t) > 0$
139maps corresponding volume elements in the reference and current configurations, denoted
140$\textrm{d}V$ and $\textrm{d}v$,
141respectively, as
142@f[
143	\textrm{d}v = J(\mathbf{X},t)\; \textrm{d}V \, .
144@f]
145
146Two important measures of the deformation in terms of the spatial and material coordinates are the left and right Cauchy-Green tensors, respectively,
147and denoted $\mathbf{b} \dealcoloneq \mathbf{F}\mathbf{F}^T$ and $\mathbf{C} \dealcoloneq \mathbf{F}^T\mathbf{F}$.
148They are both symmetric and positive definite.
149
150The Green-Lagrange strain tensor is defined by
151@f[
152	\mathbf{E} \dealcoloneq \frac{1}{2}[\mathbf{C} - \mathbf{I} ]
153		= \underbrace{\frac{1}{2}[\textrm{Grad}^T \mathbf{U} +	\textrm{Grad}\mathbf{U}]}_{\boldsymbol{\varepsilon}}
154			+ \frac{1}{2}[\textrm{Grad}^T\ \mathbf{U}][\textrm{Grad}\ \mathbf{U}] \, .
155@f]
156If the assumption of infinitesimal deformations is made, then the second term
157on the right can be neglected, and $\boldsymbol{\varepsilon}$ (the linearised
158strain tensor) is the only component of the strain tensor.
159This assumption is, looking at the setup of the problem, not valid in step-18,
160making the use of the linearized $\boldsymbol{\varepsilon}$ as the strain
161measure in that tutorial program questionable.
162
163In order to handle the different response that materials exhibit when subjected to bulk and shear type deformations we consider the following decomposition of the deformation gradient $\mathbf{F}$  and the left Cauchy-Green tensor $\mathbf{b}$ into volume-changing (volumetric) and volume-preserving (isochoric) parts:
164@f[
165	\mathbf{F}
166		= (J^{1/3}\mathbf{I})\overline{\mathbf{F}}
167	\qquad \text{and} \qquad
168	\mathbf{b}
169        = (J^{2/3}\mathbf{I})\overline{\mathbf{F}}\,\overline{\mathbf{F}}^T
170		=  (J^{2/3}\mathbf{I})\overline{\mathbf{b}} \, .
171@f]
172Clearly, $\textrm{det}\ \mathbf{F} = \textrm{det}\ (J^{1/3}\mathbf{I}) = J$.
173
174The spatial velocity field is denoted $\mathbf{v}(\mathbf{x},t)$.
175The derivative of the spatial velocity field with respect to the spatial coordinates gives the spatial velocity gradient $\mathbf{l}(\mathbf{x},t)$, that is
176@f[
177	\mathbf{l}(\mathbf{x},t)
178		\dealcoloneq \dfrac{\partial \mathbf{v}(\mathbf{x},t)}{\partial \mathbf{x}}
179		= \textrm{grad}\ \mathbf{v}(\mathbf{x},t) \, ,
180@f]
181where $\textrm{grad} \{\bullet \}
182= \frac{\partial \{ \bullet \} }{ \partial \mathbf{x}}
183= \frac{\partial \{ \bullet \} }{ \partial \mathbf{X}}\frac{\partial \mathbf{X} }{ \partial \mathbf{x}}
184= \textrm{Grad} \{ \bullet \} \mathbf{F}^{-1}$.
185
186
187<h3>Kinetics</h3>
188
189Cauchy's stress theorem equates the Cauchy traction $\mathbf{t}$ acting on an infinitesimal surface element in the current configuration $\mathrm{d}a$ to the product of the Cauchy stress tensor $\boldsymbol{\sigma}$ (a spatial quantity)  and the outward unit normal to the surface $\mathbf{n}$ as
190@f[
191	\mathbf{t}(\mathbf{x},t, \mathbf{n}) = \boldsymbol{\sigma}\mathbf{n} \, .
192@f]
193The Cauchy stress is symmetric.
194Similarly,  the first Piola-Kirchhoff traction $\mathbf{T}$ which acts on an infinitesimal surface element in the reference configuration $\mathrm{d}A$ is the product of the first Piola-Kirchhoff stress tensor $\mathbf{P}$ (a two-point tensor)  and the outward unit normal to the surface $\mathbf{N}$ as
195@f[
196	\mathbf{T}(\mathbf{X},t, \mathbf{N}) = \mathbf{P}\mathbf{N} \, .
197@f]
198The Cauchy traction $\mathbf{t}$ and the first Piola-Kirchhoff traction $\mathbf{T}$ are related as
199@f[
200	\mathbf{t}\mathrm{d}a = \mathbf{T}\mathrm{d}A \, .
201@f]
202This can be demonstrated using <a href="http://en.wikipedia.org/wiki/Finite_strain_theory">Nanson's formula</a>.
203
204The first Piola-Kirchhoff stress tensor is related to the Cauchy stress as
205@f[
206	\mathbf{P} = J \boldsymbol{\sigma}\mathbf{F}^{-T} \, .
207@f]
208Further important stress measures are the (spatial) Kirchhoff stress  $\boldsymbol{\tau} = J \boldsymbol{\sigma}$
209and the (referential) second Piola-Kirchhoff stress
210$\mathbf{S} = {\mathbf{F}}^{-1} \boldsymbol{\tau} {\mathbf{F}}^{-T}$.
211
212
213<h3> Push-forward and pull-back operators </h3>
214
215Push-forward and pull-back operators allow one to transform various measures between the material and spatial settings.
216The stress measures used here are contravariant, while the strain measures are covariant.
217
218The push-forward and-pull back operations for second-order covariant tensors $(\bullet)^{\text{cov}}$ are respectively given by:
219@f[
220	\chi_{*}(\bullet)^{\text{cov}} \dealcoloneq \mathbf{F}^{-T} (\bullet)^{\text{cov}} \mathbf{F}^{-1}
221	\qquad \text{and} \qquad
222	\chi^{-1}_{*}(\bullet)^{\text{cov}} \dealcoloneq \mathbf{F}^{T} (\bullet)^{\text{cov}} \mathbf{F} \, .
223@f]
224
225The push-forward and pull back operations for second-order contravariant tensors $(\bullet)^{\text{con}}$ are respectively given by:
226@f[
227	\chi_{*}(\bullet)^{\text{con}} \dealcoloneq \mathbf{F} (\bullet)^{\text{con}} \mathbf{F}^T
228	\qquad \text{and} \qquad
229	\chi^{-1}_{*}(\bullet)^{\text{con}} \dealcoloneq \mathbf{F}^{-1} (\bullet)^{\text{con}} \mathbf{F}^{-T} \, .
230@f]
231For example $\boldsymbol{\tau} = \chi_{*}(\mathbf{S})$.
232
233
234<h3>Hyperelastic materials</h3>
235
236A hyperelastic material response is governed by a Helmholtz free energy function $\Psi = \Psi(\mathbf{F}) = \Psi(\mathbf{C}) = \Psi(\mathbf{b})$ which serves as a potential for the stress.
237For example, if the Helmholtz free energy depends on the right Cauchy-Green tensor $\mathbf{C}$ then the isotropic hyperelastic response is
238@f[
239	\mathbf{S}
240		= 2 \dfrac{\partial \Psi(\mathbf{C})}{\partial \mathbf{C}} \, .
241@f]
242If the Helmholtz free energy depends on the left Cauchy-Green tensor $\mathbf{b}$ then the isotropic hyperelastic response is
243@f[
244	\boldsymbol{\tau}
245		= 2 \dfrac{\partial \Psi(\mathbf{b})}{\partial \mathbf{b}} \mathbf{b}
246		=  2 \mathbf{b} \dfrac{\partial \Psi(\mathbf{b})}{\partial \mathbf{b}} \, .
247@f]
248
249Following the multiplicative decomposition of the deformation gradient, the Helmholtz free energy can be decomposed as
250@f[
251	\Psi(\mathbf{b}) = \Psi_{\text{vol}}(J) + \Psi_{\text{iso}}(\overline{\mathbf{b}}) \, .
252@f]
253Similarly, the Kirchhoff stress can be decomposed into volumetric and isochoric parts as $\boldsymbol{\tau} = \boldsymbol{\tau}_{\text{vol}} + \boldsymbol{\tau}_{\text{iso}}$ where:
254@f{align*}
255	\boldsymbol{\tau}_{\text{vol}} &=
256		2 \mathbf{b} \dfrac{\partial \Psi_{\textrm{vol}}(J)}{\partial \mathbf{b}}
257		\\
258		&= p J\mathbf{I} \, ,
259		\\
260	\boldsymbol{\tau}_{\text{iso}} &=
261		2 \mathbf{b} \dfrac{\partial \Psi_{\textrm{iso}} (\overline{\mathbf{b}})}{\partial \mathbf{b}}
262		\\
263		&= \underbrace{( \mathcal{I} - \dfrac{1}{3} \mathbf{I} \otimes \mathbf{I})}_{\mathbb{P}} : \overline{\boldsymbol{\tau}} \, ,
264@f}
265where
266$p \dealcoloneq \dfrac{\partial \Psi_{\text{vol}}(J)}{\partial J}$ is the pressure response.
267$\mathbb{P}$ is the projection tensor which provides the deviatoric operator in the Eulerian setting.
268The fictitious Kirchhoff stress tensor $\overline{\boldsymbol{\tau}}$ is defined by
269@f[
270	\overline{\boldsymbol{\tau}}
271		\dealcoloneq 2 \overline{\mathbf{b}} \dfrac{\partial \Psi_{\textrm{iso}}(\overline{\mathbf{b}})}{\partial \overline{\mathbf{b}}} \, .
272@f]
273
274
275@note The pressure response as defined above differs from the widely-used definition of the
276pressure in solid mechanics as
277$p = - 1/3 \textrm{tr} \boldsymbol{\sigma} = - 1/3 J^{-1} \textrm{tr} \boldsymbol{\tau}$.
278Here $p$ is the hydrostatic pressure.
279We make use of the pressure response throughout this tutorial (although we refer to it as the pressure).
280
281<h4> Neo-Hookean materials </h4>
282
283The Helmholtz free energy corresponding to a compressible <a href="http://en.wikipedia.org/wiki/Neo-Hookean_solid">neo-Hookean material</a> is given by
284@f[
285    \Psi \equiv
286        \underbrace{\kappa [ \mathcal{G}(J) ] }_{\Psi_{\textrm{vol}}(J)}
287        + \underbrace{\bigl[c_1 [ \overline{I}_1 - 3] \bigr]}_{\Psi_{\text{iso}}(\overline{\mathbf{b}})} \, ,
288@f]
289where $\kappa \dealcoloneq \lambda + 2/3 \mu$ is the bulk modulus ($\lambda$ and $\mu$ are the Lam&eacute; parameters)
290and $\overline{I}_1 \dealcoloneq \textrm{tr}\ \overline{\mathbf{b}}$.
291The function $\mathcal{G}(J)$ is required to be strictly convex and satisfy the condition $\mathcal{G}(1) = 0$,
292among others, see Holzapfel (2001) for further details.
293In this work $\mathcal{G} \dealcoloneq \frac{1}{4} [ J^2 - 1 - 2\textrm{ln}J ]$.
294
295Incompressibility imposes the isochoric constraint that $J=1$ for all motions $\boldsymbol{\varphi}$.
296The Helmholtz free energy corresponding to an incompressible neo-Hookean material is given by
297@f[
298    \Psi \equiv
299        \underbrace{\bigl[ c_1 [ I_1 - 3] \bigr] }_{\Psi_{\textrm{iso}}(\mathbf{b})} \, ,
300@f]
301where $ I_1 \dealcoloneq \textrm{tr}\mathbf{b} $.
302Thus, the incompressible response is obtained by removing the volumetric component from the compressible free energy and enforcing $J=1$.
303
304
305<h3>Elasticity tensors</h3>
306
307We will use a Newton-Raphson strategy to solve the nonlinear boundary value problem.
308Thus, we will need to linearise the constitutive relations.
309
310The fourth-order elasticity tensor in the material description is defined by
311@f[
312	\mathfrak{C}
313		= 2\dfrac{\partial \mathbf{S}(\mathbf{C})}{\partial \mathbf{C}}
314		= 4\dfrac{\partial^2 \Psi(\mathbf{C})}{\partial \mathbf{C} \partial \mathbf{C}} \, .
315@f]
316The fourth-order elasticity tensor in the spatial description $\mathfrak{c}$ is obtained from the push-forward of $\mathfrak{C}$ as
317@f[
318	\mathfrak{c} = J^{-1} \chi_{*}(\mathfrak{C})
319		\qquad \text{and thus} \qquad
320	J\mathfrak{c} = 4 \mathbf{b} \dfrac{\partial^2 \Psi(\mathbf{b})} {\partial \mathbf{b} \partial \mathbf{b}} \mathbf{b}	\, .
321@f]
322The fourth-order elasticity tensors (for hyperelastic materials) possess both major and minor symmetries.
323
324The fourth-order spatial elasticity tensor can be written in the following decoupled form:
325@f[
326	\mathfrak{c} = \mathfrak{c}_{\text{vol}} + \mathfrak{c}_{\text{iso}} \, ,
327@f]
328where
329@f{align*}
330	J \mathfrak{c}_{\text{vol}}
331		&= 4 \mathbf{b} \dfrac{\partial^2 \Psi_{\text{vol}}(J)} {\partial \mathbf{b} \partial \mathbf{b}} \mathbf{b}
332		\\
333		&= J[\widehat{p}\, \mathbf{I} \otimes \mathbf{I} - 2p \mathcal{I}]
334			\qquad \text{where} \qquad
335		\widehat{p} \dealcoloneq p + \dfrac{\textrm{d} p}{\textrm{d}J} \, ,
336		\\
337	J \mathfrak{c}_{\text{iso}}
338		&=  4 \mathbf{b} \dfrac{\partial^2 \Psi_{\text{iso}}(\overline{\mathbf{b}})} {\partial \mathbf{b} \partial \mathbf{b}} \mathbf{b}
339		\\
340		&= \mathbb{P} : \mathfrak{\overline{c}} : \mathbb{P}
341			+ \dfrac{2}{3}[\overline{\boldsymbol{\tau}}:\mathbf{I}]\mathbb{P}
342			- \dfrac{2}{3}[ \mathbf{I}\otimes\boldsymbol{\tau}_{\text{iso}}
343				+ \boldsymbol{\tau}_{\text{iso}} \otimes \mathbf{I} ] \, ,
344@f}
345where the fictitious elasticity tensor $\overline{\mathfrak{c}}$ in the spatial description is defined by
346@f[
347	\overline{\mathfrak{c}}
348		= 4 \overline{\mathbf{b}} \dfrac{ \partial^2 \Psi_{\textrm{iso}}(\overline{\mathbf{b}})} {\partial \overline{\mathbf{b}} \partial \overline{\mathbf{b}}} \overline{\mathbf{b}} \, .
349@f]
350
351<h3>Principle of stationary potential energy and the three-field formulation</h3>
352
353The total potential energy of the system $\Pi$ is the sum of the internal and external potential energies, denoted $\Pi_{\textrm{int}}$ and $\Pi_{\textrm{ext}}$, respectively.
354We wish to find the equilibrium configuration by minimising the potential energy.
355
356As mentioned above, we adopt a three-field formulation.
357We denote the set of primary unknowns by
358$\mathbf{\Xi} \dealcoloneq \{ \mathbf{u}, \widetilde{p}, \widetilde{J} \}$.
359The independent kinematic variable $\widetilde{J}$ enters the formulation as a constraint on $J$ enforced by the Lagrange multiplier $\widetilde{p}$ (the pressure, as we shall see).
360
361The three-field variational principle used here is given by
362@f[
363	\Pi(\mathbf{\Xi}) \dealcoloneq \int_\Omega \bigl[
364		\Psi_{\textrm{vol}}(\widetilde{J})
365		+ \widetilde{p}\,[J(\mathbf{u}) - \widetilde{J}]
366		+ \Psi_{\textrm{iso}}(\overline{\mathbf{b}}(\mathbf{u}))
367		\bigr] \textrm{d}v
368	+ 	\Pi_{\textrm{ext}} \, ,
369@f]
370where the external potential is defined by
371@f[
372	\Pi_{\textrm{ext}}
373		= - \int_\Omega \mathbf{b}^\text{p} \cdot \mathbf{u}~\textrm{d}v
374			- \int_{\partial \Omega_{\sigma}} \mathbf{t}^\text{p} \cdot \mathbf{u}~\textrm{d}a \, .
375@f]
376The boundary of the current configuration  $\partial \Omega$ is composed into two parts as
377$\partial \Omega = \partial \Omega_{\mathbf{u}} \cup \partial \Omega_{\sigma}$,
378where
379$\partial \Omega_{\mathbf{u}} \cap \partial \Omega_{\boldsymbol{\sigma}} = \emptyset$.
380The prescribed Cauchy traction, denoted $\mathbf{t}^\text{p}$, is applied to $ \partial \Omega_{\boldsymbol{\sigma}}$ while the motion is prescribed on the remaining portion of the boundary $\partial \Omega_{\mathbf{u}}$.
381The body force per unit current volume is denoted $\mathbf{b}^\text{p}$.
382
383
384
385The stationarity of the potential follows as
386@f{align*}
387	R(\mathbf\Xi;\delta \mathbf{\Xi})
388		&= D_{\delta \mathbf{\Xi}}\Pi(\mathbf{\Xi})
389		\\
390		&= \dfrac{\partial \Pi(\mathbf{\Xi})}{\partial \mathbf{u}} \cdot \delta \mathbf{u}
391			+ \dfrac{\partial \Pi(\mathbf{\Xi})}{\partial \widetilde{p}} \delta \widetilde{p}
392			+ \dfrac{\partial \Pi(\mathbf{\Xi})}{\partial \widetilde{J}} \delta \tilde{J}
393			\\
394		&= \int_{\Omega_0}  \left[
395			\textrm{grad}\ \delta\mathbf{u} : [ \underbrace{[\widetilde{p} J \mathbf{I}]}_{\equiv \boldsymbol{\tau}_{\textrm{vol}}}
396            +  \boldsymbol{\tau}_{\textrm{iso}}]
397			+ \delta \widetilde{p}\, [ J(\mathbf{u}) - \widetilde{J}]
398			+ \delta \widetilde{J}\left[ \dfrac{\textrm{d} \Psi_{\textrm{vol}}(\widetilde{J})}{\textrm{d} \widetilde{J}}
399            -\widetilde{p}\right]
400			\right]~\textrm{d}V
401			\\
402		&\quad - \int_{\Omega_0} \delta \mathbf{u} \cdot \mathbf{B}^\text{p}~\textrm{d}V
403			- \int_{\partial \Omega_{0,\boldsymbol{\sigma}}} \delta \mathbf{u} \cdot \mathbf{T}^\text{p}~\textrm{d}A
404			\\
405		&=0 \, ,
406@f}
407for all virtual displacements $\delta \mathbf{u} \in H^1(\Omega)$ subject to the constraint that $\delta \mathbf{u} = \mathbf{0}$ on $\partial \Omega_{\mathbf{u}}$, and all virtual pressures $\delta \widetilde{p} \in L^2(\Omega)$ and virtual dilatations $\delta \widetilde{J} \in L^2(\Omega)$.
408
409One should note that the definitions of the volumetric Kirchhoff stress in the three field formulation
410$\boldsymbol{\tau}_{\textrm{vol}} \equiv \widetilde{p} J \mathbf{I}$
411 and the subsequent volumetric tangent differs slightly from the general form given in the section on hyperelastic materials where
412$\boldsymbol{\tau}_{\textrm{vol}} \equiv p J\mathbf{I}$.
413This is because the pressure $\widetilde{p}$ is now a primary field as opposed to a constitutively derived quantity.
414One needs to carefully distinguish between the primary fields and those obtained from the constitutive relations.
415
416@note Although the variables are all expressed in terms of spatial quantities, the domain of integration is the initial configuration.
417This approach is called a <em> total-Lagrangian formulation </em>.
418The approach given in step-18, where the domain of integration is the current configuration, could be called an <em> updated Lagrangian formulation </em>.
419The various merits of these two approaches are discussed widely in the literature.
420It should be noted however that they are equivalent.
421
422
423The Euler-Lagrange equations corresponding to the residual are:
424@f{align*}
425	&\textrm{div}\ \boldsymbol{\sigma} + \mathbf{b}^\text{p} = \mathbf{0} && \textrm{[equilibrium]}
426		\\
427	&J(\mathbf{u}) = \widetilde{J} 		&& \textrm{[dilatation]}
428		\\
429	&\widetilde{p} = \dfrac{\textrm{d} \Psi_{\textrm{vol}}(\widetilde{J})}{\textrm{d} \widetilde{J}} && \textrm{[pressure]} \, .
430@f}
431The first equation is the (quasi-static) equilibrium equation in the spatial setting.
432The second is the constraint that $J(\mathbf{u}) = \widetilde{J}$.
433The third is the definition of the pressure $\widetilde{p}$.
434
435@note The simplified single-field derivation ($\mathbf{u}$ is the only primary variable) below makes it clear how we transform the limits of integration to the reference domain:
436@f{align*}
437\int_{\Omega}\delta \mathbf{u} \cdot [\textrm{div}\ \boldsymbol{\sigma} + \mathbf{b}^\text{p}]~\mathrm{d}v
438&=
439\int_{\Omega} [-\mathrm{grad}\delta \mathbf{u}:\boldsymbol{\sigma} + \delta \mathbf{u} \cdot\mathbf{b}^\text{p}]~\mathrm{d}v
440  + \int_{\partial \Omega} \delta \mathbf{u} \cdot \mathbf{t}^\text{p}~\mathrm{d}a \\
441&=
442- \int_{\Omega_0} \mathrm{grad}\delta \mathbf{u}:\boldsymbol{\tau}~\mathrm{d}V
443+ \int_{\Omega_0} \delta \mathbf{u} \cdot J\mathbf{b}^\text{p}~\mathrm{d}V
444 + \int_{\partial \Omega_0} \delta \mathbf{u} \cdot \mathbf{T}^\text{p}~\mathrm{d}A \\
445&=
446- \int_{\Omega_0} \mathrm{grad}\delta \mathbf{u}:\boldsymbol{\tau}~\mathrm{d}V
447+ \int_{\Omega_0} \delta \mathbf{u} \cdot \mathbf{B}^\text{p}~\mathrm{d}V
448 + \int_{\partial \Omega_{0,\sigma}} \delta \mathbf{u} \cdot \mathbf{T}^\text{p}~\mathrm{d}A \\
449&=
450- \int_{\Omega_0} [\mathrm{grad}\delta\mathbf{u}]^{\text{sym}} :\boldsymbol{\tau}~\mathrm{d}V
451+ \int_{\Omega_0} \delta \mathbf{u} \cdot \mathbf{B}^\text{p}~\mathrm{d}V
452 + \int_{\partial \Omega_{0,\sigma}} \delta \mathbf{u} \cdot \mathbf{T}^\text{p}~\mathrm{d}A \, ,
453@f}
454where
455$[\mathrm{grad}\delta\mathbf{u}]^{\text{sym}} = 1/2[ \mathrm{grad}\delta\mathbf{u} + [\mathrm{grad}\delta\mathbf{u}]^T] $.
456
457We will use an iterative Newton-Raphson method to solve the nonlinear residual equation $R$.
458For the sake of simplicity we assume dead loading, i.e. the loading does not change due to the deformation.
459
460The change in a quantity between the known state at $t_{\textrm{n}-1}$
461and the currently unknown state at $t_{\textrm{n}}$ is denoted
462$\varDelta \{ \bullet \} = { \{ \bullet \} }^{\textrm{n}} - { \{ \bullet \} }^{\textrm{n-1}}$.
463The value of a quantity at the current iteration $\textrm{i}$ is denoted
464${ \{ \bullet \} }^{\textrm{n}}_{\textrm{i}} = { \{ \bullet \} }_{\textrm{i}}$.
465The incremental change between iterations $\textrm{i}$ and $\textrm{i}+1$ is denoted
466$d \{ \bullet \} \dealcoloneq \{ \bullet \}_{\textrm{i}+1} - \{ \bullet \}_{\textrm{i}}$.
467
468Assume that the state of the system is known for some iteration $\textrm{i}$.
469The linearised approximation to nonlinear governing equations to be solved using the  Newton-Raphson method is:
470Find $d \mathbf{\Xi}$ such that
471@f[
472	R(\mathbf{\Xi}_{\mathsf{i}+1}) =
473		R(\mathbf{\Xi}_{\mathsf{i}})
474		+ D^2_{d \mathbf{\Xi}, \delta \mathbf{\Xi}} \Pi(\mathbf{\Xi_{\mathsf{i}}}) \cdot d \mathbf{\Xi} \equiv 0 \, ,
475@f]
476then set
477$\mathbf{\Xi}_{\textrm{i}+1} = \mathbf{\Xi}_{\textrm{i}}
478+ d \mathbf{\Xi}$.
479The tangent is given by
480
481@f[
482	D^2_{d \mathbf{\Xi}, \delta \mathbf{\Xi}} \Pi( \mathbf{\Xi}_{\mathsf{i}} )
483		= D_{d \mathbf{\Xi}} R( \mathbf{\Xi}_{\mathsf{i}}; \delta \mathbf{\Xi})
484		=: K(\mathbf{\Xi}_{\mathsf{i}}; d \mathbf{\Xi}, \delta \mathbf{\Xi}) \, .
485@f]
486Thus,
487@f{align*}
488 	K(\mathbf{\Xi}_{\mathsf{i}}; d \mathbf{\Xi}, \delta \mathbf{\Xi})
489 		&=
490 			D_{d \mathbf{u}} R( \mathbf{\Xi}_{\mathsf{i}}; \delta \mathbf{\Xi}) \cdot d \mathbf{u}
491 			\\
492 				&\quad +
493 			 	D_{d \widetilde{p}} R( \mathbf{\Xi}_{\mathsf{i}}; \delta \mathbf{\Xi})  d \widetilde{p}
494 			 \\
495 			 	&\quad +
496 			  D_{d \widetilde{J}} R( \mathbf{\Xi}_{\mathsf{i}}; \delta \mathbf{\Xi})  d \widetilde{J} \, ,
497@f}
498where
499@f{align*}
500	D_{d \mathbf{u}} R( \mathbf{\Xi}; \delta \mathbf{\Xi})
501 	&=
502 	\int_{\Omega_0} \bigl[ \textrm{grad}\ \delta \mathbf{u} :
503 			\textrm{grad}\ d \mathbf{u} [\boldsymbol{\tau}_{\textrm{iso}} + \boldsymbol{\tau}_{\textrm{vol}}]
504 			+ \textrm{grad}\ \delta \mathbf{u} :[
505             \underbrace{[\widetilde{p}J[\mathbf{I}\otimes\mathbf{I} - 2 \mathcal{I}]}_{\equiv J\mathfrak{c}_{\textrm{vol}}} +
506             J\mathfrak{c}_{\textrm{iso}}] :\textrm{grad} d \mathbf{u}
507 		\bigr]~\textrm{d}V \, ,
508 		\\
509 	&\quad + \int_{\Omega_0} \delta \widetilde{p} J \mathbf{I} : \textrm{grad}\ d \mathbf{u} ~\textrm{d}V
510 	\\
511 	D_{d \widetilde{p}} R( \mathbf{\Xi}; \delta \mathbf{\Xi})
512 	&=
513 	\int_{\Omega_0} \textrm{grad}\ \delta \mathbf{u} : J \mathbf{I} d \widetilde{p} ~\textrm{d}V
514 		-  \int_{\Omega_0} \delta \widetilde{J} d \widetilde{p}  ~\textrm{d}V \, ,
515 	\\
516 	D_{d \widetilde{J}} R( \mathbf{\Xi}; \delta \mathbf{\Xi})
517 	&=  -\int_{\Omega_0} \delta \widetilde{p} d \widetilde{J}~\textrm{d}V
518 	 + \int_{\Omega_0} \delta \widetilde{J}  \dfrac{\textrm{d}^2 \Psi_{\textrm{vol}}(\widetilde{J})}{\textrm{d} \widetilde{J}\textrm{d}\widetilde{J}} d \widetilde{J} ~\textrm{d}V \, .
519@f}
520
521Note that the following terms are termed the geometrical stress and  the material contributions to the tangent matrix:
522@f{align*}
523& \int_{\Omega_0} \textrm{grad}\ \delta \mathbf{u} :
524 			\textrm{grad}\ d \mathbf{u} [\boldsymbol{\tau}_{\textrm{iso}} +  \boldsymbol{\tau}_{\textrm{vol}}]~\textrm{d}V
525 			&& \quad {[\textrm{Geometrical stress}]} \, ,
526 		\\
527& \int_{\Omega_0} \textrm{grad} \delta \mathbf{u} :
528 			[J\mathfrak{c}_{\textrm{vol}} + J\mathfrak{c}_{\textrm{iso}}] :\textrm{grad}\ d \mathbf{u}
529 		~\textrm{d}V
530 		&& \quad {[\textrm{Material}]} \, .
531@f}
532
533
534<h3> Discretization of governing equations </h3>
535
536The three-field formulation used here is effective for quasi-incompressible materials,
537that is where $\nu \rightarrow 0.5$ (where $\nu$ is <a
538href="http://en.wikipedia.org/wiki/Poisson's_ratio">Poisson's ratio</a>), subject to a good choice of the interpolation fields
539for $\mathbf{u},~\widetilde{p}$ and $\widetilde{J}$.
540Typically a choice of $Q_n \times DGPM_{n-1} \times DGPM_{n-1}$ is made.
541Here $DGPM$ is the FE_DGPMonomial class.
542A popular choice is $Q_1 \times DGPM_0 \times DGPM_0$ which is known as the mean dilatation method (see Hughes (2000) for an intuitive discussion).
543This code can accommodate a $Q_n \times DGPM_{n-1} \times DGPM_{n-1}$ formulation.
544The discontinuous approximation
545allows $\widetilde{p}$ and $\widetilde{J}$ to be condensed out
546and a classical displacement based method is recovered.
547
548For fully-incompressible materials $\nu = 0.5$ and the three-field formulation will still exhibit
549locking behaviour.
550This can be overcome by introducing an additional constraint into the free energy of the form
551$\int_{\Omega_0} \Lambda [ \widetilde{J} - 1]~\textrm{d}V$.
552Here $\Lambda$ is a Lagrange multiplier to enforce the isochoric constraint.
553For further details see Miehe (1994).
554
555The linearised problem can be written as
556@f[
557	\mathbf{\mathsf{K}}( \mathbf{\Xi}_{\textrm{i}}) d\mathbf{\Xi}
558	=
559	\mathbf{ \mathsf{F}}(\mathbf{\Xi}_{\textrm{i}})
560@f]
561where
562@f{align*}
563		\underbrace{\begin{bmatrix}
564			\mathbf{\mathsf{K}}_{uu}	&	\mathbf{\mathsf{K}}_{u\widetilde{p}}	& \mathbf{0}
565			\\
566			\mathbf{\mathsf{K}}_{\widetilde{p}u}	&	\mathbf{0}	&	\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}
567			\\
568			\mathbf{0}	& 	\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}		& \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
569		\end{bmatrix}}_{\mathbf{\mathsf{K}}(\mathbf{\Xi}_{\textrm{i}})}
570		\underbrace{\begin{bmatrix}
571			d \mathbf{\mathsf{u}}\\
572            d \widetilde{\mathbf{\mathsf{p}}} \\
573            d \widetilde{\mathbf{\mathsf{J}}}
574		\end{bmatrix}}_{d \mathbf{\Xi}}
575        =
576        \underbrace{\begin{bmatrix}
577			-\mathbf{\mathsf{R}}_{u}(\mathbf{u}_{\textrm{i}}) \\
578            -\mathbf{\mathsf{R}}_{\widetilde{p}}(\widetilde{p}_{\textrm{i}}) \\
579           -\mathbf{\mathsf{R}}_{\widetilde{J}}(\widetilde{J}_{\textrm{i}})
580		\end{bmatrix}}_{ -\mathbf{\mathsf{R}}(\mathbf{\Xi}_{\textrm{i}}) }
581=
582        \underbrace{\begin{bmatrix}
583			\mathbf{\mathsf{F}}_{u}(\mathbf{u}_{\textrm{i}}) \\
584            \mathbf{\mathsf{F}}_{\widetilde{p}}(\widetilde{p}_{\textrm{i}}) \\
585           \mathbf{\mathsf{F}}_{\widetilde{J}}(\widetilde{J}_{\textrm{i}})
586		\end{bmatrix}}_{ \mathbf{\mathsf{F}}(\mathbf{\Xi}_{\textrm{i}}) } \, .
587@f}
588
589There are no derivatives of the pressure and dilatation (primary) variables present in the formulation.
590Thus the discontinuous finite element interpolation of the pressure and dilatation yields a block
591diagonal matrix for
592$\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}$,
593$\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}$ and
594$\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}$.
595Therefore we can easily express the fields $\widetilde{p}$ and $\widetilde{J}$ on each cell simply
596by inverting a local matrix and multiplying it by the local right hand
597side. We can then insert the result into the remaining equations and recover
598a classical displacement-based method.
599In order to condense out the pressure and dilatation contributions at the element level we need the following results:
600@f{align*}
601		d \widetilde{\mathbf{\mathsf{p}}}
602		& = \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \bigl[
603			 \mathbf{\mathsf{F}}_{\widetilde{J}}
604			 - \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}} d \widetilde{\mathbf{\mathsf{J}}} \bigr]
605			\\
606		d \widetilde{\mathbf{\mathsf{J}}}
607		& = \mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1} \bigl[
608			\mathbf{\mathsf{F}}_{\widetilde{p}}
609			- \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}}
610			\bigr]
611		\\
612		 \Rightarrow d \widetilde{\mathbf{\mathsf{p}}}
613		&=  \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}}
614		- \underbrace{\bigl[\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
615		\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}\bigr]}_{\overline{\mathbf{\mathsf{K}}}}\bigl[ \mathbf{\mathsf{F}}_{\widetilde{p}}
616 		- \mathbf{\mathsf{K}}_{\widetilde{p}u} d \mathbf{\mathsf{u}} \bigr]
617@f}
618and thus
619@f[
620		\underbrace{\bigl[ \mathbf{\mathsf{K}}_{uu} + \overline{\overline{\mathbf{\mathsf{K}}}}~ \bigr]
621		}_{\mathbf{\mathsf{K}}_{\textrm{con}}} d \mathbf{\mathsf{u}}
622		=
623        \underbrace{
624		\Bigl[
625		\mathbf{\mathsf{F}}_{u}
626			- \mathbf{\mathsf{K}}_{u\widetilde{p}} \bigl[ \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}^{-1} \mathbf{\mathsf{F}}_{\widetilde{J}}
627			- \overline{\mathbf{\mathsf{K}}}\mathbf{\mathsf{F}}_{\widetilde{p}} \bigr]
628		\Bigr]}_{\mathbf{\mathsf{F}}_{\textrm{con}}}
629@f]
630where
631@f[
632		\overline{\overline{\mathbf{\mathsf{K}}}} \dealcoloneq
633			\mathbf{\mathsf{K}}_{u\widetilde{p}} \overline{\mathbf{\mathsf{K}}} \mathbf{\mathsf{K}}_{\widetilde{p}u} \, .
634@f]
635Note that due to the choice of $\widetilde{p}$ and $\widetilde{J}$ as discontinuous at the element level, all matrices that need to be inverted are defined at the element level.
636
637The procedure to construct the various contributions is as follows:
638- Construct $\mathbf{\mathsf{K}}$.
639- Form $\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}$ for element and store where $\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}$ was stored in $\mathbf{\mathsf{K}}$.
640- Form $\overline{\overline{\mathbf{\mathsf{K}}}}$ and add to $\mathbf{\mathsf{K}}_{uu}$ to get $\mathbf{\mathsf{K}}_{\textrm{con}}$
641- The modified system matrix is called ${\mathbf{\mathsf{K}}}_{\textrm{store}}$.
642  That is
643  @f[
644        \mathbf{\mathsf{K}}_{\textrm{store}}
645\dealcoloneq
646        \begin{bmatrix}
647			\mathbf{\mathsf{K}}_{\textrm{con}}	&	\mathbf{\mathsf{K}}_{u\widetilde{p}}	& \mathbf{0}
648			\\
649			\mathbf{\mathsf{K}}_{\widetilde{p}u}	&	\mathbf{0}	&	\mathbf{\mathsf{K}}_{\widetilde{p}\widetilde{J}}^{-1}
650			\\
651			\mathbf{0}	& 	\mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{p}}		& \mathbf{\mathsf{K}}_{\widetilde{J}\widetilde{J}}
652		\end{bmatrix} \, .
653  @f]
654
655
656<h3> The material class </h3>
657
658A good object-oriented design of a Material class would facilitate the extension of this tutorial to a wide range of material types.
659In this tutorial we simply have one Material class named Material_Compressible_Neo_Hook_Three_Field.
660Ideally this class would derive from a class HyperelasticMaterial which would derive from the base class Material.
661The three-field nature of the formulation used here also complicates the matter.
662
663The Helmholtz free energy function for the three field formulation is $\Psi = \Psi_\text{vol}(\widetilde{J}) + \Psi_\text{iso}(\overline{\mathbf{b}})$.
664The isochoric part of the Kirchhoff stress ${\boldsymbol{\tau}}_{\text{iso}}(\overline{\mathbf{b}})$ is identical to that obtained using a one-field formulation for a hyperelastic material.
665However, the volumetric part of the free energy is now a function of the primary variable $\widetilde{J}$.
666Thus, for a three field formulation the constitutive response for the volumetric part of the Kirchhoff stress ${\boldsymbol{\tau}}_{\text{vol}}$ (and the tangent) is not given by the hyperelastic constitutive law as in a one-field formulation.
667One can label the term
668$\boldsymbol{\tau}_{\textrm{vol}} \equiv \widetilde{p} J \mathbf{I}$
669as the volumetric Kirchhoff stress, but the pressure $\widetilde{p}$ is not derived from the free energy; it is a primary field.
670
671In order to have a flexible approach, it was decided that the Material_Compressible_Neo_Hook_Three_Field would still be able to calculate and return a volumetric Kirchhoff stress and tangent.
672In order to do this, we choose to store the interpolated primary fields $\widetilde{p}$ and $\widetilde{J}$ in the Material_Compressible_Neo_Hook_Three_Field class associated with the quadrature point.
673This decision should be revisited at a later stage when the tutorial is extended to account for other materials.
674
675
676<h3> Numerical example </h3>
677
678The numerical example considered here is a nearly-incompressible block under compression.
679This benchmark problem is taken from
680- S. Reese, P. Wriggers, B.D. Reddy (2000),
681  A new locking-free brick element technique for large deformation problems in elasticity,
682  <em> Computers and Structures </em>,
683  <strong> 75 </strong>,
684  291-304.
685  DOI: <a href="http://doi.org/10.1016/S0045-7949(99)00137-6">10.1016/S0045-7949(99)00137-6</a>
686
687 <img src="https://www.dealii.org/images/steps/developer/step-44.setup.png" alt="">
688
689The material is quasi-incompressible neo-Hookean with <a href="http://en.wikipedia.org/wiki/Shear_modulus">shear modulus</a> $\mu = 80.194e6$ and $\nu = 0.4999$.
690For such a choice of material properties a conventional single-field $Q_1$ approach would lock.
691That is, the response would be overly stiff.
692The initial and final configurations are shown in the image above.
693Using symmetry, we solve for only one quarter of the geometry (i.e. a cube with dimension $0.001$).
694The inner-quarter of the upper surface of the domain is subject to a load of $p_0$.
695
696
697