1 /*
2  * Copyright (c) 2000-2014 Chih-Chung Chang and Chih-Jen Lin
3  * All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *
9  * 1. Redistributions of source code must retain the above copyright
10  * notice, this list of conditions and the following disclaimer.
11  *
12  * 2. Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  *
16  * 3. Neither name of copyright holders nor the names of its contributors
17  * may be used to endorse or promote products derived from this software
18  * without specific prior written permission.
19  *
20  *
21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
22  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
23  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
24  * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR
25  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
27  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
28  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
29  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
30  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
31  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
32  */
33 
34 #ifndef _LIBSVM_H
35 #define _LIBSVM_H
36 
37 #include <cstdlib>
38 
39 #define LIBSVM_VERSION 314
40 
41 #ifdef __cplusplus
42 extern "C" {
43 #endif
44 
45   extern int libsvm_version;
46 
47   struct svm_node
48   {
49 	int index;
50 	double value;
51   };
52 
53   struct svm_problem
54   {
55 	int l;
56 	double *y;
57 	struct svm_node **x;
58 	double *W; /* instance weight */
59   };
60 
61   enum { C_SVC, NU_SVC, ONE_CLASS, EPSILON_SVR, NU_SVR };	/* svm_type */
62   enum { LINEAR, POLY, RBF, SIGMOID, PRECOMPUTED }; /* kernel_type */
63 
64   struct svm_parameter
65   {
66 	int svm_type;
67 	int kernel_type;
68 	int degree;	/* for poly */
69 	double gamma;	/* for poly/rbf/sigmoid */
70 	double coef0;	/* for poly/sigmoid */
71 
72 	/* these are for training only */
73 	double cache_size; /* in MB */
74 	double eps;	/* stopping criteria */
75 	double C;	/* for C_SVC, EPSILON_SVR and NU_SVR */
76 	int nr_weight;		/* for C_SVC */
77 	int *weight_label;	/* for C_SVC */
78 	double* weight;		/* for C_SVC */
79 	double nu;	/* for NU_SVC, ONE_CLASS, and NU_SVR */
80 	double p;	/* for EPSILON_SVR */
81 	int shrinking;	/* use the shrinking heuristics */
82 	int probability; /* do probability estimates */
83   };
84 
85   //
86   // svm_model
87   //
88   struct svm_model
89   {
90 	struct svm_parameter param;	/* parameter */
91 	int nr_class;		/* number of classes, = 2 in regression/one class svm */
92 	int l;			/* total #SV */
93 	struct svm_node **SV;		/* SVs (SV[l]) */
94 	double **sv_coef;	/* coefficients for SVs in decision functions (sv_coef[k-1][l]) */
95 	double *rho;		/* constants in decision functions (rho[k*(k-1)/2]) */
96 	double *probA;		/* pairwise probability information */
97 	double *probB;
98 	int *sv_indices;        /* sv_indices[0,...,nSV-1] are values in [1,...,num_traning_data] to indicate SVs in the training set */
99 
100 
101 	/* for classification only */
102 
103 	int *label;		/* label of each class (label[k]) */
104 	int *nSV;		/* number of SVs for each class (nSV[k]) */
105     /* nSV[0] + nSV[1] + ... + nSV[k-1] = l */
106 	/* XXX */
107 	int free_sv;		/* 1 if svm_model is created by svm_load_model*/
108     /* 0 if svm_model is created by svm_train */
109   };
110 
111   struct svm_model *svm_train(const struct svm_problem *prob, const struct svm_parameter *param);
112   void svm_cross_validation(const struct svm_problem *prob, const struct svm_parameter *param, int nr_fold, double *target);
113 
114   int svm_save_model(const char *model_file_name, const struct svm_model *model);
115   struct svm_model *svm_load_model(const char *model_file_name);
116 
117   int svm_get_svm_type(const struct svm_model *model);
118   int svm_get_nr_class(const struct svm_model *model);
119   void svm_get_labels(const struct svm_model *model, int *label);
120   void svm_get_sv_indices(const struct svm_model *model, int *sv_indices);
121   int svm_get_nr_sv(const struct svm_model *model);
122   double svm_get_svr_probability(const struct svm_model *model);
123 
124   double svm_predict_values(const struct svm_model *model, const struct svm_node *x, double* dec_values);
125   double svm_predict(const struct svm_model *model, const struct svm_node *x);
126   double svm_predict_probability(const struct svm_model *model, const struct svm_node *x, double* prob_estimates);
127 
128   double svm_predict_values_twoclass(const struct svm_model* model, const struct svm_node* x);
129   double svm_hyper_w_normsqr_twoclass(const struct svm_model* model);
130 
131 
132   double k_function(const svm_node* x, const svm_node* y, const svm_parameter& param);
133 
134 
135   void svm_free_model_content(struct svm_model *model_ptr);
136   void svm_free_and_destroy_model(struct svm_model **model_ptr_ptr);
137   void svm_destroy_param(struct svm_parameter *param);
138 
139   const char *svm_check_parameter(const struct svm_problem *prob, const struct svm_parameter *param);
140   int svm_check_probability_model(const struct svm_model *model);
141 
142   void svm_set_print_string_function(void (*print_func)(const char *));
143 
144 #ifdef __cplusplus
145 }
146 #endif
147 
148 #endif /* _LIBSVM_H */
149