1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:41 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 13 -name n1fv_13 -include dft/simd/n1f.h */
29 
30 /*
31  * This function contains 88 FP additions, 63 FP multiplications,
32  * (or, 31 additions, 6 multiplications, 57 fused multiply/add),
33  * 63 stack variables, 23 constants, and 26 memory accesses
34  */
35 #include "dft/simd/n1f.h"
36 
n1fv_13(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1fv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP904176221, +0.904176221990848204433795481776887926501523162);
40      DVK(KP575140729, +0.575140729474003121368385547455453388461001608);
41      DVK(KP957805992, +0.957805992594665126462521754605754580515587217);
42      DVK(KP600477271, +0.600477271932665282925769253334763009352012849);
43      DVK(KP516520780, +0.516520780623489722840901288569017135705033622);
44      DVK(KP581704778, +0.581704778510515730456870384989698884939833902);
45      DVK(KP300462606, +0.300462606288665774426601772289207995520941381);
46      DVK(KP503537032, +0.503537032863766627246873853868466977093348562);
47      DVK(KP251768516, +0.251768516431883313623436926934233488546674281);
48      DVK(KP301479260, +0.301479260047709873958013540496673347309208464);
49      DVK(KP083333333, +0.083333333333333333333333333333333333333333333);
50      DVK(KP859542535, +0.859542535098774820163672132761689612766401925);
51      DVK(KP514918778, +0.514918778086315755491789696138117261566051239);
52      DVK(KP522026385, +0.522026385161275033714027226654165028300441940);
53      DVK(KP853480001, +0.853480001859823990758994934970528322872359049);
54      DVK(KP612264650, +0.612264650376756543746494474777125408779395514);
55      DVK(KP038632954, +0.038632954644348171955506895830342264440241080);
56      DVK(KP302775637, +0.302775637731994646559610633735247973125648287);
57      DVK(KP769338817, +0.769338817572980603471413688209101117038278899);
58      DVK(KP686558370, +0.686558370781754340655719594850823015421401653);
59      DVK(KP226109445, +0.226109445035782405468510155372505010481906348);
60      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
61      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
62      {
63 	  INT i;
64 	  const R *xi;
65 	  R *xo;
66 	  xi = ri;
67 	  xo = ro;
68 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) {
69 	       V T1, TX, TY, To, TH, TR, TU, TB, TE, Tw, TF, TM, TT;
70 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
71 	       {
72 		    V Tf, TN, Tb, Ty, Tq, T6, Tx, Tr, Ti, Tt, Tl, Tu, Tm, TO, Td;
73 		    V Te, Tc, Tn;
74 		    Td = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
75 		    Te = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
76 		    Tf = VADD(Td, Te);
77 		    TN = VSUB(Td, Te);
78 		    {
79 			 V T7, T8, T9, Ta;
80 			 T7 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
81 			 T8 = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
82 			 T9 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
83 			 Ta = VADD(T8, T9);
84 			 Tb = VADD(T7, Ta);
85 			 Ty = VFMS(LDK(KP500000000), Ta, T7);
86 			 Tq = VSUB(T8, T9);
87 		    }
88 		    {
89 			 V T2, T3, T4, T5;
90 			 T2 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
91 			 T3 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
92 			 T4 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
93 			 T5 = VADD(T3, T4);
94 			 T6 = VADD(T2, T5);
95 			 Tx = VFNMS(LDK(KP500000000), T5, T2);
96 			 Tr = VSUB(T4, T3);
97 		    }
98 		    {
99 			 V Tg, Th, Tj, Tk;
100 			 Tg = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
101 			 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
102 			 Ti = VADD(Tg, Th);
103 			 Tt = VSUB(Tg, Th);
104 			 Tj = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
105 			 Tk = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
106 			 Tl = VADD(Tj, Tk);
107 			 Tu = VSUB(Tj, Tk);
108 		    }
109 		    Tm = VADD(Ti, Tl);
110 		    TO = VADD(Tt, Tu);
111 		    TX = VSUB(T6, Tb);
112 		    TY = VADD(TN, TO);
113 		    Tc = VADD(T6, Tb);
114 		    Tn = VADD(Tf, Tm);
115 		    To = VADD(Tc, Tn);
116 		    TH = VSUB(Tc, Tn);
117 		    {
118 			 V TP, TQ, Tz, TA;
119 			 TP = VFNMS(LDK(KP500000000), TO, TN);
120 			 TQ = VADD(Tr, Tq);
121 			 TR = VFMA(LDK(KP866025403), TQ, TP);
122 			 TU = VFNMS(LDK(KP866025403), TQ, TP);
123 			 Tz = VSUB(Tx, Ty);
124 			 TA = VFNMS(LDK(KP500000000), Tm, Tf);
125 			 TB = VADD(Tz, TA);
126 			 TE = VSUB(Tz, TA);
127 		    }
128 		    {
129 			 V Ts, Tv, TK, TL;
130 			 Ts = VSUB(Tq, Tr);
131 			 Tv = VSUB(Tt, Tu);
132 			 Tw = VADD(Ts, Tv);
133 			 TF = VSUB(Ts, Tv);
134 			 TK = VADD(Tx, Ty);
135 			 TL = VSUB(Ti, Tl);
136 			 TM = VFMA(LDK(KP866025403), TL, TK);
137 			 TT = VFNMS(LDK(KP866025403), TL, TK);
138 		    }
139 	       }
140 	       ST(&(xo[0]), VADD(T1, To), ovs, &(xo[0]));
141 	       {
142 		    V T1c, T1k, T15, T14, T1e, T1n, TZ, TW, T1f, T1m, TD, T1j, TI, T19, TS;
143 		    V TV;
144 		    {
145 			 V T1a, T1b, T12, T13;
146 			 T1a = VFNMS(LDK(KP226109445), Tw, TB);
147 			 T1b = VFMA(LDK(KP686558370), TE, TF);
148 			 T1c = VFNMS(LDK(KP769338817), T1b, T1a);
149 			 T1k = VFMA(LDK(KP769338817), T1b, T1a);
150 			 T15 = VFNMS(LDK(KP302775637), TX, TY);
151 			 T12 = VFMA(LDK(KP038632954), TM, TR);
152 			 T13 = VFMA(LDK(KP612264650), TT, TU);
153 			 T14 = VFNMS(LDK(KP853480001), T13, T12);
154 			 T1e = VFNMS(LDK(KP522026385), T14, T15);
155 			 T1n = VFMA(LDK(KP853480001), T13, T12);
156 		    }
157 		    TZ = VFMA(LDK(KP302775637), TY, TX);
158 		    TS = VFNMS(LDK(KP038632954), TR, TM);
159 		    TV = VFNMS(LDK(KP612264650), TU, TT);
160 		    TW = VFNMS(LDK(KP853480001), TV, TS);
161 		    T1f = VFMA(LDK(KP853480001), TV, TS);
162 		    T1m = VFNMS(LDK(KP522026385), TW, TZ);
163 		    {
164 			 V TG, T18, Tp, TC, T17;
165 			 TG = VFNMS(LDK(KP514918778), TF, TE);
166 			 T18 = VFNMS(LDK(KP859542535), TG, TH);
167 			 Tp = VFNMS(LDK(KP083333333), To, T1);
168 			 TC = VFMA(LDK(KP301479260), TB, Tw);
169 			 T17 = VFNMS(LDK(KP251768516), TC, Tp);
170 			 TD = VFMA(LDK(KP503537032), TC, Tp);
171 			 T1j = VFNMS(LDK(KP300462606), T18, T17);
172 			 TI = VFMA(LDK(KP581704778), TH, TG);
173 			 T19 = VFMA(LDK(KP300462606), T18, T17);
174 		    }
175 		    {
176 			 V TJ, T10, T1l, T1o;
177 			 TJ = VFNMS(LDK(KP516520780), TI, TD);
178 			 T10 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), TZ, TW));
179 			 ST(&(xo[WS(os, 5)]), VFNMSI(T10, TJ), ovs, &(xo[WS(os, 1)]));
180 			 ST(&(xo[WS(os, 8)]), VFMAI(T10, TJ), ovs, &(xo[0]));
181 			 {
182 			      V T11, T16, T1p, T1q;
183 			      T11 = VFMA(LDK(KP516520780), TI, TD);
184 			      T16 = VMUL(LDK(KP600477271), VFMA(LDK(KP957805992), T15, T14));
185 			      ST(&(xo[WS(os, 1)]), VFMAI(T16, T11), ovs, &(xo[WS(os, 1)]));
186 			      ST(&(xo[WS(os, 12)]), VFNMSI(T16, T11), ovs, &(xo[0]));
187 			      T1p = VFMA(LDK(KP503537032), T1k, T1j);
188 			      T1q = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1n, T1m));
189 			      ST(&(xo[WS(os, 2)]), VFNMSI(T1q, T1p), ovs, &(xo[0]));
190 			      ST(&(xo[WS(os, 11)]), VFMAI(T1q, T1p), ovs, &(xo[WS(os, 1)]));
191 			 }
192 			 T1l = VFNMS(LDK(KP503537032), T1k, T1j);
193 			 T1o = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1n, T1m));
194 			 ST(&(xo[WS(os, 6)]), VFNMSI(T1o, T1l), ovs, &(xo[0]));
195 			 ST(&(xo[WS(os, 7)]), VFMAI(T1o, T1l), ovs, &(xo[WS(os, 1)]));
196 			 {
197 			      V T1h, T1i, T1d, T1g;
198 			      T1h = VFMA(LDK(KP503537032), T1c, T19);
199 			      T1i = VMUL(LDK(KP575140729), VFNMS(LDK(KP904176221), T1f, T1e));
200 			      ST(&(xo[WS(os, 3)]), VFMAI(T1i, T1h), ovs, &(xo[WS(os, 1)]));
201 			      ST(&(xo[WS(os, 10)]), VFNMSI(T1i, T1h), ovs, &(xo[0]));
202 			      T1d = VFNMS(LDK(KP503537032), T1c, T19);
203 			      T1g = VMUL(LDK(KP575140729), VFMA(LDK(KP904176221), T1f, T1e));
204 			      ST(&(xo[WS(os, 4)]), VFNMSI(T1g, T1d), ovs, &(xo[0]));
205 			      ST(&(xo[WS(os, 9)]), VFMAI(T1g, T1d), ovs, &(xo[WS(os, 1)]));
206 			 }
207 		    }
208 	       }
209 	  }
210      }
211      VLEAVE();
212 }
213 
214 static const kdft_desc desc = { 13, XSIMD_STRING("n1fv_13"), { 31, 6, 57, 0 }, &GENUS, 0, 0, 0, 0 };
215 
XSIMD(codelet_n1fv_13)216 void XSIMD(codelet_n1fv_13) (planner *p) { X(kdft_register) (p, n1fv_13, &desc);
217 }
218 
219 #else
220 
221 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 13 -name n1fv_13 -include dft/simd/n1f.h */
222 
223 /*
224  * This function contains 88 FP additions, 34 FP multiplications,
225  * (or, 69 additions, 15 multiplications, 19 fused multiply/add),
226  * 60 stack variables, 20 constants, and 26 memory accesses
227  */
228 #include "dft/simd/n1f.h"
229 
n1fv_13(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)230 static void n1fv_13(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
231 {
232      DVK(KP2_000000000, +2.000000000000000000000000000000000000000000000);
233      DVK(KP083333333, +0.083333333333333333333333333333333333333333333);
234      DVK(KP075902986, +0.075902986037193865983102897245103540356428373);
235      DVK(KP251768516, +0.251768516431883313623436926934233488546674281);
236      DVK(KP132983124, +0.132983124607418643793760531921092974399165133);
237      DVK(KP258260390, +0.258260390311744861420450644284508567852516811);
238      DVK(KP1_732050807, +1.732050807568877293527446341505872366942805254);
239      DVK(KP300238635, +0.300238635966332641462884626667381504676006424);
240      DVK(KP011599105, +0.011599105605768290721655456654083252189827041);
241      DVK(KP156891391, +0.156891391051584611046832726756003269660212636);
242      DVK(KP256247671, +0.256247671582936600958684654061725059144125175);
243      DVK(KP174138601, +0.174138601152135905005660794929264742616964676);
244      DVK(KP575140729, +0.575140729474003121368385547455453388461001608);
245      DVK(KP503537032, +0.503537032863766627246873853868466977093348562);
246      DVK(KP113854479, +0.113854479055790798974654345867655310534642560);
247      DVK(KP265966249, +0.265966249214837287587521063842185948798330267);
248      DVK(KP387390585, +0.387390585467617292130675966426762851778775217);
249      DVK(KP300462606, +0.300462606288665774426601772289207995520941381);
250      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
251      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
252      {
253 	  INT i;
254 	  const R *xi;
255 	  R *xo;
256 	  xi = ri;
257 	  xo = ro;
258 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(26, is), MAKE_VOLATILE_STRIDE(26, os)) {
259 	       V TW, Tb, Tm, Tu, TC, TR, TX, TK, TU, Tz, TB, TN, TT;
260 	       TW = LD(&(xi[0]), ivs, &(xi[0]));
261 	       {
262 		    V T3, TH, Tl, Tw, Tp, Tg, Tv, To, T6, Tr, T9, Ts, Ta, TI, T1;
263 		    V T2, Tq, Tt;
264 		    T1 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
265 		    T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
266 		    T3 = VSUB(T1, T2);
267 		    TH = VADD(T1, T2);
268 		    {
269 			 V Th, Ti, Tj, Tk;
270 			 Th = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
271 			 Ti = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
272 			 Tj = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
273 			 Tk = VADD(Ti, Tj);
274 			 Tl = VADD(Th, Tk);
275 			 Tw = VSUB(Ti, Tj);
276 			 Tp = VFNMS(LDK(KP500000000), Tk, Th);
277 		    }
278 		    {
279 			 V Tc, Td, Te, Tf;
280 			 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
281 			 Td = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
282 			 Te = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
283 			 Tf = VADD(Td, Te);
284 			 Tg = VADD(Tc, Tf);
285 			 Tv = VSUB(Td, Te);
286 			 To = VFNMS(LDK(KP500000000), Tf, Tc);
287 		    }
288 		    {
289 			 V T4, T5, T7, T8;
290 			 T4 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
291 			 T5 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
292 			 T6 = VSUB(T4, T5);
293 			 Tr = VADD(T4, T5);
294 			 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
295 			 T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
296 			 T9 = VSUB(T7, T8);
297 			 Ts = VADD(T7, T8);
298 		    }
299 		    Ta = VADD(T6, T9);
300 		    TI = VADD(Tr, Ts);
301 		    Tb = VADD(T3, Ta);
302 		    Tm = VSUB(Tg, Tl);
303 		    Tq = VSUB(To, Tp);
304 		    Tt = VMUL(LDK(KP866025403), VSUB(Tr, Ts));
305 		    Tu = VADD(Tq, Tt);
306 		    TC = VSUB(Tq, Tt);
307 		    {
308 			 V TP, TQ, TG, TJ;
309 			 TP = VADD(Tg, Tl);
310 			 TQ = VADD(TH, TI);
311 			 TR = VMUL(LDK(KP300462606), VSUB(TP, TQ));
312 			 TX = VADD(TP, TQ);
313 			 TG = VADD(To, Tp);
314 			 TJ = VFNMS(LDK(KP500000000), TI, TH);
315 			 TK = VSUB(TG, TJ);
316 			 TU = VADD(TG, TJ);
317 		    }
318 		    {
319 			 V Tx, Ty, TL, TM;
320 			 Tx = VMUL(LDK(KP866025403), VSUB(Tv, Tw));
321 			 Ty = VFNMS(LDK(KP500000000), Ta, T3);
322 			 Tz = VSUB(Tx, Ty);
323 			 TB = VADD(Tx, Ty);
324 			 TL = VADD(Tv, Tw);
325 			 TM = VSUB(T6, T9);
326 			 TN = VSUB(TL, TM);
327 			 TT = VADD(TL, TM);
328 		    }
329 	       }
330 	       ST(&(xo[0]), VADD(TW, TX), ovs, &(xo[0]));
331 	       {
332 		    V T19, T1n, T14, T13, T1f, T1k, Tn, TE, T1e, T1j, TS, T1m, TZ, T1c, TA;
333 		    V TD;
334 		    {
335 			 V T17, T18, T11, T12;
336 			 T17 = VFMA(LDK(KP387390585), TN, VMUL(LDK(KP265966249), TK));
337 			 T18 = VFNMS(LDK(KP503537032), TU, VMUL(LDK(KP113854479), TT));
338 			 T19 = VSUB(T17, T18);
339 			 T1n = VADD(T17, T18);
340 			 T14 = VFMA(LDK(KP575140729), Tm, VMUL(LDK(KP174138601), Tb));
341 			 T11 = VFNMS(LDK(KP156891391), TB, VMUL(LDK(KP256247671), TC));
342 			 T12 = VFMA(LDK(KP011599105), Tz, VMUL(LDK(KP300238635), Tu));
343 			 T13 = VSUB(T11, T12);
344 			 T1f = VADD(T14, T13);
345 			 T1k = VMUL(LDK(KP1_732050807), VADD(T11, T12));
346 		    }
347 		    Tn = VFNMS(LDK(KP174138601), Tm, VMUL(LDK(KP575140729), Tb));
348 		    TA = VFNMS(LDK(KP300238635), Tz, VMUL(LDK(KP011599105), Tu));
349 		    TD = VFMA(LDK(KP256247671), TB, VMUL(LDK(KP156891391), TC));
350 		    TE = VSUB(TA, TD);
351 		    T1e = VMUL(LDK(KP1_732050807), VADD(TD, TA));
352 		    T1j = VSUB(Tn, TE);
353 		    {
354 			 V TO, T1b, TV, TY, T1a;
355 			 TO = VFNMS(LDK(KP132983124), TN, VMUL(LDK(KP258260390), TK));
356 			 T1b = VSUB(TR, TO);
357 			 TV = VFMA(LDK(KP251768516), TT, VMUL(LDK(KP075902986), TU));
358 			 TY = VFNMS(LDK(KP083333333), TX, TW);
359 			 T1a = VSUB(TY, TV);
360 			 TS = VFMA(LDK(KP2_000000000), TO, TR);
361 			 T1m = VADD(T1b, T1a);
362 			 TZ = VFMA(LDK(KP2_000000000), TV, TY);
363 			 T1c = VSUB(T1a, T1b);
364 		    }
365 		    {
366 			 V TF, T10, T1l, T1o;
367 			 TF = VBYI(VFMA(LDK(KP2_000000000), TE, Tn));
368 			 T10 = VADD(TS, TZ);
369 			 ST(&(xo[WS(os, 1)]), VADD(TF, T10), ovs, &(xo[WS(os, 1)]));
370 			 ST(&(xo[WS(os, 12)]), VSUB(T10, TF), ovs, &(xo[0]));
371 			 {
372 			      V T15, T16, T1p, T1q;
373 			      T15 = VBYI(VFMS(LDK(KP2_000000000), T13, T14));
374 			      T16 = VSUB(TZ, TS);
375 			      ST(&(xo[WS(os, 5)]), VADD(T15, T16), ovs, &(xo[WS(os, 1)]));
376 			      ST(&(xo[WS(os, 8)]), VSUB(T16, T15), ovs, &(xo[0]));
377 			      T1p = VADD(T1n, T1m);
378 			      T1q = VBYI(VADD(T1j, T1k));
379 			      ST(&(xo[WS(os, 4)]), VSUB(T1p, T1q), ovs, &(xo[0]));
380 			      ST(&(xo[WS(os, 9)]), VADD(T1q, T1p), ovs, &(xo[WS(os, 1)]));
381 			 }
382 			 T1l = VBYI(VSUB(T1j, T1k));
383 			 T1o = VSUB(T1m, T1n);
384 			 ST(&(xo[WS(os, 3)]), VADD(T1l, T1o), ovs, &(xo[WS(os, 1)]));
385 			 ST(&(xo[WS(os, 10)]), VSUB(T1o, T1l), ovs, &(xo[0]));
386 			 {
387 			      V T1h, T1i, T1d, T1g;
388 			      T1h = VBYI(VSUB(T1e, T1f));
389 			      T1i = VSUB(T1c, T19);
390 			      ST(&(xo[WS(os, 6)]), VADD(T1h, T1i), ovs, &(xo[0]));
391 			      ST(&(xo[WS(os, 7)]), VSUB(T1i, T1h), ovs, &(xo[WS(os, 1)]));
392 			      T1d = VADD(T19, T1c);
393 			      T1g = VBYI(VADD(T1e, T1f));
394 			      ST(&(xo[WS(os, 2)]), VSUB(T1d, T1g), ovs, &(xo[0]));
395 			      ST(&(xo[WS(os, 11)]), VADD(T1g, T1d), ovs, &(xo[WS(os, 1)]));
396 			 }
397 		    }
398 	       }
399 	  }
400      }
401      VLEAVE();
402 }
403 
404 static const kdft_desc desc = { 13, XSIMD_STRING("n1fv_13"), { 69, 15, 19, 0 }, &GENUS, 0, 0, 0, 0 };
405 
XSIMD(codelet_n1fv_13)406 void XSIMD(codelet_n1fv_13) (planner *p) { X(kdft_register) (p, n1fv_13, &desc);
407 }
408 
409 #endif
410