1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:56 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
29 
30 /*
31  * This function contains 26 FP additions, 10 FP multiplications,
32  * (or, 16 additions, 0 multiplications, 10 fused multiply/add),
33  * 24 stack variables, 1 constants, and 20 memory accesses
34  */
35 #include "dft/simd/n2b.h"
36 
n2bv_8(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
40      {
41 	  INT i;
42 	  const R *xi;
43 	  R *xo;
44 	  xi = ii;
45 	  xo = io;
46 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
47 	       V T3, Tj, Te, Tk, Ta, Tn, Tf, Tm, Tr, Tu;
48 	       {
49 		    V T1, T2, Tc, Td;
50 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
51 		    T2 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
52 		    T3 = VSUB(T1, T2);
53 		    Tj = VADD(T1, T2);
54 		    Tc = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
55 		    Td = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
56 		    Te = VSUB(Tc, Td);
57 		    Tk = VADD(Tc, Td);
58 		    {
59 			 V T4, T5, T6, T7, T8, T9;
60 			 T4 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
61 			 T5 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
62 			 T6 = VSUB(T4, T5);
63 			 T7 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
64 			 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
65 			 T9 = VSUB(T7, T8);
66 			 Ta = VADD(T6, T9);
67 			 Tn = VADD(T7, T8);
68 			 Tf = VSUB(T6, T9);
69 			 Tm = VADD(T4, T5);
70 		    }
71 	       }
72 	       {
73 		    V Ts, Tb, Tg, Tp, Tq, Tt;
74 		    Tb = VFNMS(LDK(KP707106781), Ta, T3);
75 		    Tg = VFNMS(LDK(KP707106781), Tf, Te);
76 		    Tr = VFNMSI(Tg, Tb);
77 		    STM2(&(xo[6]), Tr, ovs, &(xo[2]));
78 		    Ts = VFMAI(Tg, Tb);
79 		    STM2(&(xo[10]), Ts, ovs, &(xo[2]));
80 		    Tp = VADD(Tj, Tk);
81 		    Tq = VADD(Tm, Tn);
82 		    Tt = VSUB(Tp, Tq);
83 		    STM2(&(xo[8]), Tt, ovs, &(xo[0]));
84 		    STN2(&(xo[8]), Tt, Ts, ovs);
85 		    Tu = VADD(Tp, Tq);
86 		    STM2(&(xo[0]), Tu, ovs, &(xo[0]));
87 	       }
88 	       {
89 		    V Tw, Th, Ti, Tv;
90 		    Th = VFMA(LDK(KP707106781), Ta, T3);
91 		    Ti = VFMA(LDK(KP707106781), Tf, Te);
92 		    Tv = VFMAI(Ti, Th);
93 		    STM2(&(xo[2]), Tv, ovs, &(xo[2]));
94 		    STN2(&(xo[0]), Tu, Tv, ovs);
95 		    Tw = VFNMSI(Ti, Th);
96 		    STM2(&(xo[14]), Tw, ovs, &(xo[2]));
97 		    {
98 			 V Tl, To, Tx, Ty;
99 			 Tl = VSUB(Tj, Tk);
100 			 To = VSUB(Tm, Tn);
101 			 Tx = VFNMSI(To, Tl);
102 			 STM2(&(xo[12]), Tx, ovs, &(xo[0]));
103 			 STN2(&(xo[12]), Tx, Tw, ovs);
104 			 Ty = VFMAI(To, Tl);
105 			 STM2(&(xo[4]), Ty, ovs, &(xo[0]));
106 			 STN2(&(xo[4]), Ty, Tr, ovs);
107 		    }
108 	       }
109 	  }
110      }
111      VLEAVE();
112 }
113 
114 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), { 16, 0, 10, 0 }, &GENUS, 0, 2, 0, 0 };
115 
XSIMD(codelet_n2bv_8)116 void XSIMD(codelet_n2bv_8) (planner *p) { X(kdft_register) (p, n2bv_8, &desc);
117 }
118 
119 #else
120 
121 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 8 -name n2bv_8 -with-ostride 2 -include dft/simd/n2b.h -store-multiple 2 */
122 
123 /*
124  * This function contains 26 FP additions, 2 FP multiplications,
125  * (or, 26 additions, 2 multiplications, 0 fused multiply/add),
126  * 24 stack variables, 1 constants, and 20 memory accesses
127  */
128 #include "dft/simd/n2b.h"
129 
n2bv_8(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)130 static void n2bv_8(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
131 {
132      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
133      {
134 	  INT i;
135 	  const R *xi;
136 	  R *xo;
137 	  xi = ii;
138 	  xo = io;
139 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(16, is), MAKE_VOLATILE_STRIDE(16, os)) {
140 	       V Ta, Tk, Te, Tj, T7, Tn, Tf, Tm, Tr, Tu;
141 	       {
142 		    V T8, T9, Tc, Td;
143 		    T8 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
144 		    T9 = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
145 		    Ta = VSUB(T8, T9);
146 		    Tk = VADD(T8, T9);
147 		    Tc = LD(&(xi[0]), ivs, &(xi[0]));
148 		    Td = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
149 		    Te = VSUB(Tc, Td);
150 		    Tj = VADD(Tc, Td);
151 		    {
152 			 V T1, T2, T3, T4, T5, T6;
153 			 T1 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
154 			 T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
155 			 T3 = VSUB(T1, T2);
156 			 T4 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
157 			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
158 			 T6 = VSUB(T4, T5);
159 			 T7 = VMUL(LDK(KP707106781), VSUB(T3, T6));
160 			 Tn = VADD(T4, T5);
161 			 Tf = VMUL(LDK(KP707106781), VADD(T3, T6));
162 			 Tm = VADD(T1, T2);
163 		    }
164 	       }
165 	       {
166 		    V Ts, Tb, Tg, Tp, Tq, Tt;
167 		    Tb = VBYI(VSUB(T7, Ta));
168 		    Tg = VSUB(Te, Tf);
169 		    Tr = VADD(Tb, Tg);
170 		    STM2(&(xo[6]), Tr, ovs, &(xo[2]));
171 		    Ts = VSUB(Tg, Tb);
172 		    STM2(&(xo[10]), Ts, ovs, &(xo[2]));
173 		    Tp = VADD(Tj, Tk);
174 		    Tq = VADD(Tm, Tn);
175 		    Tt = VSUB(Tp, Tq);
176 		    STM2(&(xo[8]), Tt, ovs, &(xo[0]));
177 		    STN2(&(xo[8]), Tt, Ts, ovs);
178 		    Tu = VADD(Tp, Tq);
179 		    STM2(&(xo[0]), Tu, ovs, &(xo[0]));
180 	       }
181 	       {
182 		    V Tw, Th, Ti, Tv;
183 		    Th = VBYI(VADD(Ta, T7));
184 		    Ti = VADD(Te, Tf);
185 		    Tv = VADD(Th, Ti);
186 		    STM2(&(xo[2]), Tv, ovs, &(xo[2]));
187 		    STN2(&(xo[0]), Tu, Tv, ovs);
188 		    Tw = VSUB(Ti, Th);
189 		    STM2(&(xo[14]), Tw, ovs, &(xo[2]));
190 		    {
191 			 V Tl, To, Tx, Ty;
192 			 Tl = VSUB(Tj, Tk);
193 			 To = VBYI(VSUB(Tm, Tn));
194 			 Tx = VSUB(Tl, To);
195 			 STM2(&(xo[12]), Tx, ovs, &(xo[0]));
196 			 STN2(&(xo[12]), Tx, Tw, ovs);
197 			 Ty = VADD(Tl, To);
198 			 STM2(&(xo[4]), Ty, ovs, &(xo[0]));
199 			 STN2(&(xo[4]), Ty, Tr, ovs);
200 		    }
201 	       }
202 	  }
203      }
204      VLEAVE();
205 }
206 
207 static const kdft_desc desc = { 8, XSIMD_STRING("n2bv_8"), { 26, 2, 0, 0 }, &GENUS, 0, 2, 0, 0 };
208 
XSIMD(codelet_n2bv_8)209 void XSIMD(codelet_n2bv_8) (planner *p) { X(kdft_register) (p, n2bv_8, &desc);
210 }
211 
212 #endif
213