1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:41 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_twidsq_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1bv_5 -include dft/simd/q1b.h -sign 1 */
29 
30 /*
31  * This function contains 100 FP additions, 95 FP multiplications,
32  * (or, 55 additions, 50 multiplications, 45 fused multiply/add),
33  * 44 stack variables, 4 constants, and 50 memory accesses
34  */
35 #include "dft/simd/q1b.h"
36 
q1bv_5(R * ri,R * ii,const R * W,stride rs,stride vs,INT mb,INT me,INT ms)37 static void q1bv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
38 {
39      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
41      DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
42      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
43      {
44 	  INT m;
45 	  R *x;
46 	  x = ii;
47 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
48 	       V T1, Ta, Ti, Te, T8, T9, T1j, T1s, T1A, T1w, T1q, T1r, Tl, Tu, TC;
49 	       V Ty, Ts, Tt, TF, TO, TW, TS, TM, TN, TZ, T18, T1g, T1c, T16, T17;
50 	       {
51 		    V T7, Td, T4, Tc;
52 		    T1 = LD(&(x[0]), ms, &(x[0]));
53 		    {
54 			 V T5, T6, T2, T3;
55 			 T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
56 			 T6 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
57 			 T7 = VADD(T5, T6);
58 			 Td = VSUB(T5, T6);
59 			 T2 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
60 			 T3 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
61 			 T4 = VADD(T2, T3);
62 			 Tc = VSUB(T2, T3);
63 		    }
64 		    Ta = VSUB(T4, T7);
65 		    Ti = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tc, Td));
66 		    Te = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Td, Tc));
67 		    T8 = VADD(T4, T7);
68 		    T9 = VFNMS(LDK(KP250000000), T8, T1);
69 	       }
70 	       {
71 		    V T1p, T1v, T1m, T1u;
72 		    T1j = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
73 		    {
74 			 V T1n, T1o, T1k, T1l;
75 			 T1n = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
76 			 T1o = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
77 			 T1p = VADD(T1n, T1o);
78 			 T1v = VSUB(T1n, T1o);
79 			 T1k = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
80 			 T1l = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
81 			 T1m = VADD(T1k, T1l);
82 			 T1u = VSUB(T1k, T1l);
83 		    }
84 		    T1s = VSUB(T1m, T1p);
85 		    T1A = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1u, T1v));
86 		    T1w = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1v, T1u));
87 		    T1q = VADD(T1m, T1p);
88 		    T1r = VFNMS(LDK(KP250000000), T1q, T1j);
89 	       }
90 	       {
91 		    V Tr, Tx, To, Tw;
92 		    Tl = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
93 		    {
94 			 V Tp, Tq, Tm, Tn;
95 			 Tp = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
96 			 Tq = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
97 			 Tr = VADD(Tp, Tq);
98 			 Tx = VSUB(Tp, Tq);
99 			 Tm = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
100 			 Tn = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
101 			 To = VADD(Tm, Tn);
102 			 Tw = VSUB(Tm, Tn);
103 		    }
104 		    Tu = VSUB(To, Tr);
105 		    TC = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tw, Tx));
106 		    Ty = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tx, Tw));
107 		    Ts = VADD(To, Tr);
108 		    Tt = VFNMS(LDK(KP250000000), Ts, Tl);
109 	       }
110 	       {
111 		    V TL, TR, TI, TQ;
112 		    TF = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
113 		    {
114 			 V TJ, TK, TG, TH;
115 			 TJ = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
116 			 TK = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
117 			 TL = VADD(TJ, TK);
118 			 TR = VSUB(TJ, TK);
119 			 TG = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
120 			 TH = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
121 			 TI = VADD(TG, TH);
122 			 TQ = VSUB(TG, TH);
123 		    }
124 		    TO = VSUB(TI, TL);
125 		    TW = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TQ, TR));
126 		    TS = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TR, TQ));
127 		    TM = VADD(TI, TL);
128 		    TN = VFNMS(LDK(KP250000000), TM, TF);
129 	       }
130 	       {
131 		    V T15, T1b, T12, T1a;
132 		    TZ = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
133 		    {
134 			 V T13, T14, T10, T11;
135 			 T13 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
136 			 T14 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
137 			 T15 = VADD(T13, T14);
138 			 T1b = VSUB(T13, T14);
139 			 T10 = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
140 			 T11 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
141 			 T12 = VADD(T10, T11);
142 			 T1a = VSUB(T10, T11);
143 		    }
144 		    T18 = VSUB(T12, T15);
145 		    T1g = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), T1a, T1b));
146 		    T1c = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), T1b, T1a));
147 		    T16 = VADD(T12, T15);
148 		    T17 = VFNMS(LDK(KP250000000), T16, TZ);
149 	       }
150 	       ST(&(x[0]), VADD(T1, T8), ms, &(x[0]));
151 	       ST(&(x[WS(rs, 4)]), VADD(T1j, T1q), ms, &(x[0]));
152 	       ST(&(x[WS(rs, 2)]), VADD(TF, TM), ms, &(x[0]));
153 	       ST(&(x[WS(rs, 3)]), VADD(TZ, T16), ms, &(x[WS(rs, 1)]));
154 	       ST(&(x[WS(rs, 1)]), VADD(Tl, Ts), ms, &(x[WS(rs, 1)]));
155 	       {
156 		    V Tj, Tk, Th, T1B, T1C, T1z;
157 		    Th = VFNMS(LDK(KP559016994), Ta, T9);
158 		    Tj = BYTW(&(W[TWVL * 2]), VFNMSI(Ti, Th));
159 		    Tk = BYTW(&(W[TWVL * 4]), VFMAI(Ti, Th));
160 		    ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
161 		    ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
162 		    T1z = VFNMS(LDK(KP559016994), T1s, T1r);
163 		    T1B = BYTW(&(W[TWVL * 2]), VFNMSI(T1A, T1z));
164 		    T1C = BYTW(&(W[TWVL * 4]), VFMAI(T1A, T1z));
165 		    ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
166 		    ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
167 	       }
168 	       {
169 		    V T1h, T1i, T1f, TD, TE, TB;
170 		    T1f = VFNMS(LDK(KP559016994), T18, T17);
171 		    T1h = BYTW(&(W[TWVL * 2]), VFNMSI(T1g, T1f));
172 		    T1i = BYTW(&(W[TWVL * 4]), VFMAI(T1g, T1f));
173 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
174 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
175 		    TB = VFNMS(LDK(KP559016994), Tu, Tt);
176 		    TD = BYTW(&(W[TWVL * 2]), VFNMSI(TC, TB));
177 		    TE = BYTW(&(W[TWVL * 4]), VFMAI(TC, TB));
178 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
179 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
180 	       }
181 	       {
182 		    V TX, TY, TV, TT, TU, TP;
183 		    TV = VFNMS(LDK(KP559016994), TO, TN);
184 		    TX = BYTW(&(W[TWVL * 2]), VFNMSI(TW, TV));
185 		    TY = BYTW(&(W[TWVL * 4]), VFMAI(TW, TV));
186 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
187 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
188 		    TP = VFMA(LDK(KP559016994), TO, TN);
189 		    TT = BYTW(&(W[0]), VFMAI(TS, TP));
190 		    TU = BYTW(&(W[TWVL * 6]), VFNMSI(TS, TP));
191 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
192 		    ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
193 	       }
194 	       {
195 		    V Tf, Tg, Tb, Tz, TA, Tv;
196 		    Tb = VFMA(LDK(KP559016994), Ta, T9);
197 		    Tf = BYTW(&(W[0]), VFMAI(Te, Tb));
198 		    Tg = BYTW(&(W[TWVL * 6]), VFNMSI(Te, Tb));
199 		    ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
200 		    ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
201 		    Tv = VFMA(LDK(KP559016994), Tu, Tt);
202 		    Tz = BYTW(&(W[0]), VFMAI(Ty, Tv));
203 		    TA = BYTW(&(W[TWVL * 6]), VFNMSI(Ty, Tv));
204 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
205 		    ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
206 	       }
207 	       {
208 		    V T1d, T1e, T19, T1x, T1y, T1t;
209 		    T19 = VFMA(LDK(KP559016994), T18, T17);
210 		    T1d = BYTW(&(W[0]), VFMAI(T1c, T19));
211 		    T1e = BYTW(&(W[TWVL * 6]), VFNMSI(T1c, T19));
212 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
213 		    ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
214 		    T1t = VFMA(LDK(KP559016994), T1s, T1r);
215 		    T1x = BYTW(&(W[0]), VFMAI(T1w, T1t));
216 		    T1y = BYTW(&(W[TWVL * 6]), VFNMSI(T1w, T1t));
217 		    ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
218 		    ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
219 	       }
220 	  }
221      }
222      VLEAVE();
223 }
224 
225 static const tw_instr twinstr[] = {
226      VTW(0, 1),
227      VTW(0, 2),
228      VTW(0, 3),
229      VTW(0, 4),
230      { TW_NEXT, VL, 0 }
231 };
232 
233 static const ct_desc desc = { 5, XSIMD_STRING("q1bv_5"), twinstr, &GENUS, { 55, 50, 45, 0 }, 0, 0, 0 };
234 
XSIMD(codelet_q1bv_5)235 void XSIMD(codelet_q1bv_5) (planner *p) {
236      X(kdft_difsq_register) (p, q1bv_5, &desc);
237 }
238 #else
239 
240 /* Generated by: ../../../genfft/gen_twidsq_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 5 -dif -name q1bv_5 -include dft/simd/q1b.h -sign 1 */
241 
242 /*
243  * This function contains 100 FP additions, 70 FP multiplications,
244  * (or, 85 additions, 55 multiplications, 15 fused multiply/add),
245  * 44 stack variables, 4 constants, and 50 memory accesses
246  */
247 #include "dft/simd/q1b.h"
248 
q1bv_5(R * ri,R * ii,const R * W,stride rs,stride vs,INT mb,INT me,INT ms)249 static void q1bv_5(R *ri, R *ii, const R *W, stride rs, stride vs, INT mb, INT me, INT ms)
250 {
251      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
252      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
253      DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
254      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
255      {
256 	  INT m;
257 	  R *x;
258 	  x = ii;
259 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 8)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 8), MAKE_VOLATILE_STRIDE(10, rs), MAKE_VOLATILE_STRIDE(10, vs)) {
260 	       V Tb, T7, Th, Ta, Tc, Td, T1t, T1p, T1z, T1s, T1u, T1v, Tv, Tr, TB;
261 	       V Tu, Tw, Tx, TP, TL, TV, TO, TQ, TR, T19, T15, T1f, T18, T1a, T1b;
262 	       {
263 		    V T6, T9, T3, T8;
264 		    Tb = LD(&(x[0]), ms, &(x[0]));
265 		    {
266 			 V T4, T5, T1, T2;
267 			 T4 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
268 			 T5 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
269 			 T6 = VSUB(T4, T5);
270 			 T9 = VADD(T4, T5);
271 			 T1 = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
272 			 T2 = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
273 			 T3 = VSUB(T1, T2);
274 			 T8 = VADD(T1, T2);
275 		    }
276 		    T7 = VBYI(VFMA(LDK(KP951056516), T3, VMUL(LDK(KP587785252), T6)));
277 		    Th = VBYI(VFNMS(LDK(KP951056516), T6, VMUL(LDK(KP587785252), T3)));
278 		    Ta = VMUL(LDK(KP559016994), VSUB(T8, T9));
279 		    Tc = VADD(T8, T9);
280 		    Td = VFNMS(LDK(KP250000000), Tc, Tb);
281 	       }
282 	       {
283 		    V T1o, T1r, T1l, T1q;
284 		    T1t = LD(&(x[WS(vs, 4)]), ms, &(x[WS(vs, 4)]));
285 		    {
286 			 V T1m, T1n, T1j, T1k;
287 			 T1m = LD(&(x[WS(vs, 4) + WS(rs, 2)]), ms, &(x[WS(vs, 4)]));
288 			 T1n = LD(&(x[WS(vs, 4) + WS(rs, 3)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
289 			 T1o = VSUB(T1m, T1n);
290 			 T1r = VADD(T1m, T1n);
291 			 T1j = LD(&(x[WS(vs, 4) + WS(rs, 1)]), ms, &(x[WS(vs, 4) + WS(rs, 1)]));
292 			 T1k = LD(&(x[WS(vs, 4) + WS(rs, 4)]), ms, &(x[WS(vs, 4)]));
293 			 T1l = VSUB(T1j, T1k);
294 			 T1q = VADD(T1j, T1k);
295 		    }
296 		    T1p = VBYI(VFMA(LDK(KP951056516), T1l, VMUL(LDK(KP587785252), T1o)));
297 		    T1z = VBYI(VFNMS(LDK(KP951056516), T1o, VMUL(LDK(KP587785252), T1l)));
298 		    T1s = VMUL(LDK(KP559016994), VSUB(T1q, T1r));
299 		    T1u = VADD(T1q, T1r);
300 		    T1v = VFNMS(LDK(KP250000000), T1u, T1t);
301 	       }
302 	       {
303 		    V Tq, Tt, Tn, Ts;
304 		    Tv = LD(&(x[WS(vs, 1)]), ms, &(x[WS(vs, 1)]));
305 		    {
306 			 V To, Tp, Tl, Tm;
307 			 To = LD(&(x[WS(vs, 1) + WS(rs, 2)]), ms, &(x[WS(vs, 1)]));
308 			 Tp = LD(&(x[WS(vs, 1) + WS(rs, 3)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
309 			 Tq = VSUB(To, Tp);
310 			 Tt = VADD(To, Tp);
311 			 Tl = LD(&(x[WS(vs, 1) + WS(rs, 1)]), ms, &(x[WS(vs, 1) + WS(rs, 1)]));
312 			 Tm = LD(&(x[WS(vs, 1) + WS(rs, 4)]), ms, &(x[WS(vs, 1)]));
313 			 Tn = VSUB(Tl, Tm);
314 			 Ts = VADD(Tl, Tm);
315 		    }
316 		    Tr = VBYI(VFMA(LDK(KP951056516), Tn, VMUL(LDK(KP587785252), Tq)));
317 		    TB = VBYI(VFNMS(LDK(KP951056516), Tq, VMUL(LDK(KP587785252), Tn)));
318 		    Tu = VMUL(LDK(KP559016994), VSUB(Ts, Tt));
319 		    Tw = VADD(Ts, Tt);
320 		    Tx = VFNMS(LDK(KP250000000), Tw, Tv);
321 	       }
322 	       {
323 		    V TK, TN, TH, TM;
324 		    TP = LD(&(x[WS(vs, 2)]), ms, &(x[WS(vs, 2)]));
325 		    {
326 			 V TI, TJ, TF, TG;
327 			 TI = LD(&(x[WS(vs, 2) + WS(rs, 2)]), ms, &(x[WS(vs, 2)]));
328 			 TJ = LD(&(x[WS(vs, 2) + WS(rs, 3)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
329 			 TK = VSUB(TI, TJ);
330 			 TN = VADD(TI, TJ);
331 			 TF = LD(&(x[WS(vs, 2) + WS(rs, 1)]), ms, &(x[WS(vs, 2) + WS(rs, 1)]));
332 			 TG = LD(&(x[WS(vs, 2) + WS(rs, 4)]), ms, &(x[WS(vs, 2)]));
333 			 TH = VSUB(TF, TG);
334 			 TM = VADD(TF, TG);
335 		    }
336 		    TL = VBYI(VFMA(LDK(KP951056516), TH, VMUL(LDK(KP587785252), TK)));
337 		    TV = VBYI(VFNMS(LDK(KP951056516), TK, VMUL(LDK(KP587785252), TH)));
338 		    TO = VMUL(LDK(KP559016994), VSUB(TM, TN));
339 		    TQ = VADD(TM, TN);
340 		    TR = VFNMS(LDK(KP250000000), TQ, TP);
341 	       }
342 	       {
343 		    V T14, T17, T11, T16;
344 		    T19 = LD(&(x[WS(vs, 3)]), ms, &(x[WS(vs, 3)]));
345 		    {
346 			 V T12, T13, TZ, T10;
347 			 T12 = LD(&(x[WS(vs, 3) + WS(rs, 2)]), ms, &(x[WS(vs, 3)]));
348 			 T13 = LD(&(x[WS(vs, 3) + WS(rs, 3)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
349 			 T14 = VSUB(T12, T13);
350 			 T17 = VADD(T12, T13);
351 			 TZ = LD(&(x[WS(vs, 3) + WS(rs, 1)]), ms, &(x[WS(vs, 3) + WS(rs, 1)]));
352 			 T10 = LD(&(x[WS(vs, 3) + WS(rs, 4)]), ms, &(x[WS(vs, 3)]));
353 			 T11 = VSUB(TZ, T10);
354 			 T16 = VADD(TZ, T10);
355 		    }
356 		    T15 = VBYI(VFMA(LDK(KP951056516), T11, VMUL(LDK(KP587785252), T14)));
357 		    T1f = VBYI(VFNMS(LDK(KP951056516), T14, VMUL(LDK(KP587785252), T11)));
358 		    T18 = VMUL(LDK(KP559016994), VSUB(T16, T17));
359 		    T1a = VADD(T16, T17);
360 		    T1b = VFNMS(LDK(KP250000000), T1a, T19);
361 	       }
362 	       ST(&(x[0]), VADD(Tb, Tc), ms, &(x[0]));
363 	       ST(&(x[WS(rs, 4)]), VADD(T1t, T1u), ms, &(x[0]));
364 	       ST(&(x[WS(rs, 2)]), VADD(TP, TQ), ms, &(x[0]));
365 	       ST(&(x[WS(rs, 3)]), VADD(T19, T1a), ms, &(x[WS(rs, 1)]));
366 	       ST(&(x[WS(rs, 1)]), VADD(Tv, Tw), ms, &(x[WS(rs, 1)]));
367 	       {
368 		    V Tj, Tk, Ti, T1B, T1C, T1A;
369 		    Ti = VSUB(Td, Ta);
370 		    Tj = BYTW(&(W[TWVL * 2]), VADD(Th, Ti));
371 		    Tk = BYTW(&(W[TWVL * 4]), VSUB(Ti, Th));
372 		    ST(&(x[WS(vs, 2)]), Tj, ms, &(x[WS(vs, 2)]));
373 		    ST(&(x[WS(vs, 3)]), Tk, ms, &(x[WS(vs, 3)]));
374 		    T1A = VSUB(T1v, T1s);
375 		    T1B = BYTW(&(W[TWVL * 2]), VADD(T1z, T1A));
376 		    T1C = BYTW(&(W[TWVL * 4]), VSUB(T1A, T1z));
377 		    ST(&(x[WS(vs, 2) + WS(rs, 4)]), T1B, ms, &(x[WS(vs, 2)]));
378 		    ST(&(x[WS(vs, 3) + WS(rs, 4)]), T1C, ms, &(x[WS(vs, 3)]));
379 	       }
380 	       {
381 		    V T1h, T1i, T1g, TD, TE, TC;
382 		    T1g = VSUB(T1b, T18);
383 		    T1h = BYTW(&(W[TWVL * 2]), VADD(T1f, T1g));
384 		    T1i = BYTW(&(W[TWVL * 4]), VSUB(T1g, T1f));
385 		    ST(&(x[WS(vs, 2) + WS(rs, 3)]), T1h, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
386 		    ST(&(x[WS(vs, 3) + WS(rs, 3)]), T1i, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
387 		    TC = VSUB(Tx, Tu);
388 		    TD = BYTW(&(W[TWVL * 2]), VADD(TB, TC));
389 		    TE = BYTW(&(W[TWVL * 4]), VSUB(TC, TB));
390 		    ST(&(x[WS(vs, 2) + WS(rs, 1)]), TD, ms, &(x[WS(vs, 2) + WS(rs, 1)]));
391 		    ST(&(x[WS(vs, 3) + WS(rs, 1)]), TE, ms, &(x[WS(vs, 3) + WS(rs, 1)]));
392 	       }
393 	       {
394 		    V TX, TY, TW, TT, TU, TS;
395 		    TW = VSUB(TR, TO);
396 		    TX = BYTW(&(W[TWVL * 2]), VADD(TV, TW));
397 		    TY = BYTW(&(W[TWVL * 4]), VSUB(TW, TV));
398 		    ST(&(x[WS(vs, 2) + WS(rs, 2)]), TX, ms, &(x[WS(vs, 2)]));
399 		    ST(&(x[WS(vs, 3) + WS(rs, 2)]), TY, ms, &(x[WS(vs, 3)]));
400 		    TS = VADD(TO, TR);
401 		    TT = BYTW(&(W[0]), VADD(TL, TS));
402 		    TU = BYTW(&(W[TWVL * 6]), VSUB(TS, TL));
403 		    ST(&(x[WS(vs, 1) + WS(rs, 2)]), TT, ms, &(x[WS(vs, 1)]));
404 		    ST(&(x[WS(vs, 4) + WS(rs, 2)]), TU, ms, &(x[WS(vs, 4)]));
405 	       }
406 	       {
407 		    V Tf, Tg, Te, Tz, TA, Ty;
408 		    Te = VADD(Ta, Td);
409 		    Tf = BYTW(&(W[0]), VADD(T7, Te));
410 		    Tg = BYTW(&(W[TWVL * 6]), VSUB(Te, T7));
411 		    ST(&(x[WS(vs, 1)]), Tf, ms, &(x[WS(vs, 1)]));
412 		    ST(&(x[WS(vs, 4)]), Tg, ms, &(x[WS(vs, 4)]));
413 		    Ty = VADD(Tu, Tx);
414 		    Tz = BYTW(&(W[0]), VADD(Tr, Ty));
415 		    TA = BYTW(&(W[TWVL * 6]), VSUB(Ty, Tr));
416 		    ST(&(x[WS(vs, 1) + WS(rs, 1)]), Tz, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
417 		    ST(&(x[WS(vs, 4) + WS(rs, 1)]), TA, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
418 	       }
419 	       {
420 		    V T1d, T1e, T1c, T1x, T1y, T1w;
421 		    T1c = VADD(T18, T1b);
422 		    T1d = BYTW(&(W[0]), VADD(T15, T1c));
423 		    T1e = BYTW(&(W[TWVL * 6]), VSUB(T1c, T15));
424 		    ST(&(x[WS(vs, 1) + WS(rs, 3)]), T1d, ms, &(x[WS(vs, 1) + WS(rs, 1)]));
425 		    ST(&(x[WS(vs, 4) + WS(rs, 3)]), T1e, ms, &(x[WS(vs, 4) + WS(rs, 1)]));
426 		    T1w = VADD(T1s, T1v);
427 		    T1x = BYTW(&(W[0]), VADD(T1p, T1w));
428 		    T1y = BYTW(&(W[TWVL * 6]), VSUB(T1w, T1p));
429 		    ST(&(x[WS(vs, 1) + WS(rs, 4)]), T1x, ms, &(x[WS(vs, 1)]));
430 		    ST(&(x[WS(vs, 4) + WS(rs, 4)]), T1y, ms, &(x[WS(vs, 4)]));
431 	       }
432 	  }
433      }
434      VLEAVE();
435 }
436 
437 static const tw_instr twinstr[] = {
438      VTW(0, 1),
439      VTW(0, 2),
440      VTW(0, 3),
441      VTW(0, 4),
442      { TW_NEXT, VL, 0 }
443 };
444 
445 static const ct_desc desc = { 5, XSIMD_STRING("q1bv_5"), twinstr, &GENUS, { 85, 55, 15, 0 }, 0, 0, 0 };
446 
XSIMD(codelet_q1bv_5)447 void XSIMD(codelet_q1bv_5) (planner *p) {
448      X(kdft_difsq_register) (p, q1bv_5, &desc);
449 }
450 #endif
451