1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:09 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_twiddle_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include dft/simd/t1f.h */
29 
30 /*
31  * This function contains 23 FP additions, 18 FP multiplications,
32  * (or, 17 additions, 12 multiplications, 6 fused multiply/add),
33  * 19 stack variables, 2 constants, and 12 memory accesses
34  */
35 #include "dft/simd/t1f.h"
36 
t1fv_6(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)37 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
40      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
41      {
42 	  INT m;
43 	  R *x;
44 	  x = ri;
45 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
46 	       V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2;
47 	       T1 = LD(&(x[0]), ms, &(x[0]));
48 	       T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
49 	       T3 = BYTWJ(&(W[TWVL * 4]), T2);
50 	       T4 = VSUB(T1, T3);
51 	       Ti = VADD(T1, T3);
52 	       {
53 		    V Tb, Td, Ta, Tc;
54 		    Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
55 		    Tb = BYTWJ(&(W[TWVL * 6]), Ta);
56 		    Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
57 		    Td = BYTWJ(&(W[0]), Tc);
58 		    Te = VSUB(Tb, Td);
59 		    Tk = VADD(Tb, Td);
60 	       }
61 	       {
62 		    V T6, T8, T5, T7;
63 		    T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
64 		    T6 = BYTWJ(&(W[TWVL * 2]), T5);
65 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
66 		    T8 = BYTWJ(&(W[TWVL * 8]), T7);
67 		    T9 = VSUB(T6, T8);
68 		    Tj = VADD(T6, T8);
69 	       }
70 	       {
71 		    V Th, Tf, Tg, Tn, Tl, Tm;
72 		    Th = VMUL(LDK(KP866025403), VSUB(Te, T9));
73 		    Tf = VADD(T9, Te);
74 		    Tg = VFNMS(LDK(KP500000000), Tf, T4);
75 		    ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
76 		    ST(&(x[WS(rs, 1)]), VFMAI(Th, Tg), ms, &(x[WS(rs, 1)]));
77 		    ST(&(x[WS(rs, 5)]), VFNMSI(Th, Tg), ms, &(x[WS(rs, 1)]));
78 		    Tn = VMUL(LDK(KP866025403), VSUB(Tk, Tj));
79 		    Tl = VADD(Tj, Tk);
80 		    Tm = VFNMS(LDK(KP500000000), Tl, Ti);
81 		    ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
82 		    ST(&(x[WS(rs, 4)]), VFMAI(Tn, Tm), ms, &(x[0]));
83 		    ST(&(x[WS(rs, 2)]), VFNMSI(Tn, Tm), ms, &(x[0]));
84 	       }
85 	  }
86      }
87      VLEAVE();
88 }
89 
90 static const tw_instr twinstr[] = {
91      VTW(0, 1),
92      VTW(0, 2),
93      VTW(0, 3),
94      VTW(0, 4),
95      VTW(0, 5),
96      { TW_NEXT, VL, 0 }
97 };
98 
99 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, { 17, 12, 6, 0 }, 0, 0, 0 };
100 
XSIMD(codelet_t1fv_6)101 void XSIMD(codelet_t1fv_6) (planner *p) {
102      X(kdft_dit_register) (p, t1fv_6, &desc);
103 }
104 #else
105 
106 /* Generated by: ../../../genfft/gen_twiddle_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 6 -name t1fv_6 -include dft/simd/t1f.h */
107 
108 /*
109  * This function contains 23 FP additions, 14 FP multiplications,
110  * (or, 21 additions, 12 multiplications, 2 fused multiply/add),
111  * 19 stack variables, 2 constants, and 12 memory accesses
112  */
113 #include "dft/simd/t1f.h"
114 
t1fv_6(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)115 static void t1fv_6(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
116 {
117      DVK(KP500000000, +0.500000000000000000000000000000000000000000000);
118      DVK(KP866025403, +0.866025403784438646763723170752936183471402627);
119      {
120 	  INT m;
121 	  R *x;
122 	  x = ri;
123 	  for (m = mb, W = W + (mb * ((TWVL / VL) * 10)); m < me; m = m + VL, x = x + (VL * ms), W = W + (TWVL * 10), MAKE_VOLATILE_STRIDE(6, rs)) {
124 	       V T4, Ti, Te, Tk, T9, Tj, T1, T3, T2;
125 	       T1 = LD(&(x[0]), ms, &(x[0]));
126 	       T2 = LD(&(x[WS(rs, 3)]), ms, &(x[WS(rs, 1)]));
127 	       T3 = BYTWJ(&(W[TWVL * 4]), T2);
128 	       T4 = VSUB(T1, T3);
129 	       Ti = VADD(T1, T3);
130 	       {
131 		    V Tb, Td, Ta, Tc;
132 		    Ta = LD(&(x[WS(rs, 4)]), ms, &(x[0]));
133 		    Tb = BYTWJ(&(W[TWVL * 6]), Ta);
134 		    Tc = LD(&(x[WS(rs, 1)]), ms, &(x[WS(rs, 1)]));
135 		    Td = BYTWJ(&(W[0]), Tc);
136 		    Te = VSUB(Tb, Td);
137 		    Tk = VADD(Tb, Td);
138 	       }
139 	       {
140 		    V T6, T8, T5, T7;
141 		    T5 = LD(&(x[WS(rs, 2)]), ms, &(x[0]));
142 		    T6 = BYTWJ(&(W[TWVL * 2]), T5);
143 		    T7 = LD(&(x[WS(rs, 5)]), ms, &(x[WS(rs, 1)]));
144 		    T8 = BYTWJ(&(W[TWVL * 8]), T7);
145 		    T9 = VSUB(T6, T8);
146 		    Tj = VADD(T6, T8);
147 	       }
148 	       {
149 		    V Th, Tf, Tg, Tn, Tl, Tm;
150 		    Th = VBYI(VMUL(LDK(KP866025403), VSUB(Te, T9)));
151 		    Tf = VADD(T9, Te);
152 		    Tg = VFNMS(LDK(KP500000000), Tf, T4);
153 		    ST(&(x[WS(rs, 3)]), VADD(T4, Tf), ms, &(x[WS(rs, 1)]));
154 		    ST(&(x[WS(rs, 1)]), VADD(Tg, Th), ms, &(x[WS(rs, 1)]));
155 		    ST(&(x[WS(rs, 5)]), VSUB(Tg, Th), ms, &(x[WS(rs, 1)]));
156 		    Tn = VBYI(VMUL(LDK(KP866025403), VSUB(Tk, Tj)));
157 		    Tl = VADD(Tj, Tk);
158 		    Tm = VFNMS(LDK(KP500000000), Tl, Ti);
159 		    ST(&(x[0]), VADD(Ti, Tl), ms, &(x[0]));
160 		    ST(&(x[WS(rs, 4)]), VADD(Tm, Tn), ms, &(x[0]));
161 		    ST(&(x[WS(rs, 2)]), VSUB(Tm, Tn), ms, &(x[0]));
162 	       }
163 	  }
164      }
165      VLEAVE();
166 }
167 
168 static const tw_instr twinstr[] = {
169      VTW(0, 1),
170      VTW(0, 2),
171      VTW(0, 3),
172      VTW(0, 4),
173      VTW(0, 5),
174      { TW_NEXT, VL, 0 }
175 };
176 
177 static const ct_desc desc = { 6, XSIMD_STRING("t1fv_6"), twinstr, &GENUS, { 21, 12, 2, 0 }, 0, 0, 0 };
178 
XSIMD(codelet_t1fv_6)179 void XSIMD(codelet_t1fv_6) (planner *p) {
180      X(kdft_dit_register) (p, t1fv_6, &desc);
181 }
182 #endif
183