1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:05:37 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_twiddle.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
29 
30 /*
31  * This function contains 66 FP additions, 36 FP multiplications,
32  * (or, 44 additions, 14 multiplications, 22 fused multiply/add),
33  * 34 stack variables, 1 constants, and 32 memory accesses
34  */
35 #include "dft/simd/ts.h"
36 
t1sv_8(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)37 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
38 {
39      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
40      {
41 	  INT m;
42 	  for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
43 	       V T1, T1m, T7, T1l, Tk, TS, Te, TQ, TF, T14, TL, T16, T12, T17, Ts;
44 	       V TX, Ty, TZ, TV, T10;
45 	       T1 = LD(&(ri[0]), ms, &(ri[0]));
46 	       T1m = LD(&(ii[0]), ms, &(ii[0]));
47 	       {
48 		    V T3, T6, T4, T1k, T2, T5;
49 		    T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
50 		    T6 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
51 		    T2 = LDW(&(W[TWVL * 6]));
52 		    T4 = VMUL(T2, T3);
53 		    T1k = VMUL(T2, T6);
54 		    T5 = LDW(&(W[TWVL * 7]));
55 		    T7 = VFMA(T5, T6, T4);
56 		    T1l = VFNMS(T5, T3, T1k);
57 	       }
58 	       {
59 		    V Tg, Tj, Th, TR, Tf, Ti;
60 		    Tg = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
61 		    Tj = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
62 		    Tf = LDW(&(W[TWVL * 10]));
63 		    Th = VMUL(Tf, Tg);
64 		    TR = VMUL(Tf, Tj);
65 		    Ti = LDW(&(W[TWVL * 11]));
66 		    Tk = VFMA(Ti, Tj, Th);
67 		    TS = VFNMS(Ti, Tg, TR);
68 	       }
69 	       {
70 		    V Ta, Td, Tb, TP, T9, Tc;
71 		    Ta = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
72 		    Td = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
73 		    T9 = LDW(&(W[TWVL * 2]));
74 		    Tb = VMUL(T9, Ta);
75 		    TP = VMUL(T9, Td);
76 		    Tc = LDW(&(W[TWVL * 3]));
77 		    Te = VFMA(Tc, Td, Tb);
78 		    TQ = VFNMS(Tc, Ta, TP);
79 	       }
80 	       {
81 		    V TB, TE, TC, T13, TH, TK, TI, T15, TA, TG, TD, TJ;
82 		    TB = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
83 		    TE = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
84 		    TA = LDW(&(W[TWVL * 12]));
85 		    TC = VMUL(TA, TB);
86 		    T13 = VMUL(TA, TE);
87 		    TH = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
88 		    TK = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
89 		    TG = LDW(&(W[TWVL * 4]));
90 		    TI = VMUL(TG, TH);
91 		    T15 = VMUL(TG, TK);
92 		    TD = LDW(&(W[TWVL * 13]));
93 		    TF = VFMA(TD, TE, TC);
94 		    T14 = VFNMS(TD, TB, T13);
95 		    TJ = LDW(&(W[TWVL * 5]));
96 		    TL = VFMA(TJ, TK, TI);
97 		    T16 = VFNMS(TJ, TH, T15);
98 		    T12 = VSUB(TF, TL);
99 		    T17 = VSUB(T14, T16);
100 	       }
101 	       {
102 		    V To, Tr, Tp, TW, Tu, Tx, Tv, TY, Tn, Tt, Tq, Tw;
103 		    To = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
104 		    Tr = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
105 		    Tn = LDW(&(W[0]));
106 		    Tp = VMUL(Tn, To);
107 		    TW = VMUL(Tn, Tr);
108 		    Tu = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
109 		    Tx = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
110 		    Tt = LDW(&(W[TWVL * 8]));
111 		    Tv = VMUL(Tt, Tu);
112 		    TY = VMUL(Tt, Tx);
113 		    Tq = LDW(&(W[TWVL * 1]));
114 		    Ts = VFMA(Tq, Tr, Tp);
115 		    TX = VFNMS(Tq, To, TW);
116 		    Tw = LDW(&(W[TWVL * 9]));
117 		    Ty = VFMA(Tw, Tx, Tv);
118 		    TZ = VFNMS(Tw, Tu, TY);
119 		    TV = VSUB(Ts, Ty);
120 		    T10 = VSUB(TX, TZ);
121 	       }
122 	       {
123 		    V TU, T1a, T1t, T1v, T19, T1w, T1d, T1u;
124 		    {
125 			 V TO, TT, T1r, T1s;
126 			 TO = VSUB(T1, T7);
127 			 TT = VSUB(TQ, TS);
128 			 TU = VADD(TO, TT);
129 			 T1a = VSUB(TO, TT);
130 			 T1r = VSUB(T1m, T1l);
131 			 T1s = VSUB(Te, Tk);
132 			 T1t = VSUB(T1r, T1s);
133 			 T1v = VADD(T1s, T1r);
134 		    }
135 		    {
136 			 V T11, T18, T1b, T1c;
137 			 T11 = VADD(TV, T10);
138 			 T18 = VSUB(T12, T17);
139 			 T19 = VADD(T11, T18);
140 			 T1w = VSUB(T18, T11);
141 			 T1b = VSUB(T10, TV);
142 			 T1c = VADD(T12, T17);
143 			 T1d = VSUB(T1b, T1c);
144 			 T1u = VADD(T1b, T1c);
145 		    }
146 		    ST(&(ri[WS(rs, 5)]), VFNMS(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
147 		    ST(&(ii[WS(rs, 5)]), VFNMS(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
148 		    ST(&(ri[WS(rs, 1)]), VFMA(LDK(KP707106781), T19, TU), ms, &(ri[WS(rs, 1)]));
149 		    ST(&(ii[WS(rs, 1)]), VFMA(LDK(KP707106781), T1u, T1t), ms, &(ii[WS(rs, 1)]));
150 		    ST(&(ri[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
151 		    ST(&(ii[WS(rs, 7)]), VFNMS(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
152 		    ST(&(ri[WS(rs, 3)]), VFMA(LDK(KP707106781), T1d, T1a), ms, &(ri[WS(rs, 1)]));
153 		    ST(&(ii[WS(rs, 3)]), VFMA(LDK(KP707106781), T1w, T1v), ms, &(ii[WS(rs, 1)]));
154 	       }
155 	       {
156 		    V Tm, T1e, T1o, T1q, TN, T1p, T1h, T1i;
157 		    {
158 			 V T8, Tl, T1j, T1n;
159 			 T8 = VADD(T1, T7);
160 			 Tl = VADD(Te, Tk);
161 			 Tm = VADD(T8, Tl);
162 			 T1e = VSUB(T8, Tl);
163 			 T1j = VADD(TQ, TS);
164 			 T1n = VADD(T1l, T1m);
165 			 T1o = VADD(T1j, T1n);
166 			 T1q = VSUB(T1n, T1j);
167 		    }
168 		    {
169 			 V Tz, TM, T1f, T1g;
170 			 Tz = VADD(Ts, Ty);
171 			 TM = VADD(TF, TL);
172 			 TN = VADD(Tz, TM);
173 			 T1p = VSUB(TM, Tz);
174 			 T1f = VADD(TX, TZ);
175 			 T1g = VADD(T14, T16);
176 			 T1h = VSUB(T1f, T1g);
177 			 T1i = VADD(T1f, T1g);
178 		    }
179 		    ST(&(ri[WS(rs, 4)]), VSUB(Tm, TN), ms, &(ri[0]));
180 		    ST(&(ii[WS(rs, 4)]), VSUB(T1o, T1i), ms, &(ii[0]));
181 		    ST(&(ri[0]), VADD(Tm, TN), ms, &(ri[0]));
182 		    ST(&(ii[0]), VADD(T1i, T1o), ms, &(ii[0]));
183 		    ST(&(ri[WS(rs, 6)]), VSUB(T1e, T1h), ms, &(ri[0]));
184 		    ST(&(ii[WS(rs, 6)]), VSUB(T1q, T1p), ms, &(ii[0]));
185 		    ST(&(ri[WS(rs, 2)]), VADD(T1e, T1h), ms, &(ri[0]));
186 		    ST(&(ii[WS(rs, 2)]), VADD(T1p, T1q), ms, &(ii[0]));
187 	       }
188 	  }
189      }
190      VLEAVE();
191 }
192 
193 static const tw_instr twinstr[] = {
194      VTW(0, 1),
195      VTW(0, 2),
196      VTW(0, 3),
197      VTW(0, 4),
198      VTW(0, 5),
199      VTW(0, 6),
200      VTW(0, 7),
201      { TW_NEXT, (2 * VL), 0 }
202 };
203 
204 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, { 44, 14, 22, 0 }, 0, 0, 0 };
205 
XSIMD(codelet_t1sv_8)206 void XSIMD(codelet_t1sv_8) (planner *p) {
207      X(kdft_dit_register) (p, t1sv_8, &desc);
208 }
209 #else
210 
211 /* Generated by: ../../../genfft/gen_twiddle.native -simd -compact -variables 4 -pipeline-latency 8 -n 8 -name t1sv_8 -include dft/simd/ts.h */
212 
213 /*
214  * This function contains 66 FP additions, 32 FP multiplications,
215  * (or, 52 additions, 18 multiplications, 14 fused multiply/add),
216  * 28 stack variables, 1 constants, and 32 memory accesses
217  */
218 #include "dft/simd/ts.h"
219 
t1sv_8(R * ri,R * ii,const R * W,stride rs,INT mb,INT me,INT ms)220 static void t1sv_8(R *ri, R *ii, const R *W, stride rs, INT mb, INT me, INT ms)
221 {
222      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
223      {
224 	  INT m;
225 	  for (m = mb, W = W + (mb * 14); m < me; m = m + (2 * VL), ri = ri + ((2 * VL) * ms), ii = ii + ((2 * VL) * ms), W = W + ((2 * VL) * 14), MAKE_VOLATILE_STRIDE(16, rs)) {
226 	       V T7, T1e, TH, T19, TF, T13, TR, TU, Ti, T1f, TK, T16, Tu, T12, TM;
227 	       V TP;
228 	       {
229 		    V T1, T18, T6, T17;
230 		    T1 = LD(&(ri[0]), ms, &(ri[0]));
231 		    T18 = LD(&(ii[0]), ms, &(ii[0]));
232 		    {
233 			 V T3, T5, T2, T4;
234 			 T3 = LD(&(ri[WS(rs, 4)]), ms, &(ri[0]));
235 			 T5 = LD(&(ii[WS(rs, 4)]), ms, &(ii[0]));
236 			 T2 = LDW(&(W[TWVL * 6]));
237 			 T4 = LDW(&(W[TWVL * 7]));
238 			 T6 = VFMA(T2, T3, VMUL(T4, T5));
239 			 T17 = VFNMS(T4, T3, VMUL(T2, T5));
240 		    }
241 		    T7 = VADD(T1, T6);
242 		    T1e = VSUB(T18, T17);
243 		    TH = VSUB(T1, T6);
244 		    T19 = VADD(T17, T18);
245 	       }
246 	       {
247 		    V Tz, TS, TE, TT;
248 		    {
249 			 V Tw, Ty, Tv, Tx;
250 			 Tw = LD(&(ri[WS(rs, 7)]), ms, &(ri[WS(rs, 1)]));
251 			 Ty = LD(&(ii[WS(rs, 7)]), ms, &(ii[WS(rs, 1)]));
252 			 Tv = LDW(&(W[TWVL * 12]));
253 			 Tx = LDW(&(W[TWVL * 13]));
254 			 Tz = VFMA(Tv, Tw, VMUL(Tx, Ty));
255 			 TS = VFNMS(Tx, Tw, VMUL(Tv, Ty));
256 		    }
257 		    {
258 			 V TB, TD, TA, TC;
259 			 TB = LD(&(ri[WS(rs, 3)]), ms, &(ri[WS(rs, 1)]));
260 			 TD = LD(&(ii[WS(rs, 3)]), ms, &(ii[WS(rs, 1)]));
261 			 TA = LDW(&(W[TWVL * 4]));
262 			 TC = LDW(&(W[TWVL * 5]));
263 			 TE = VFMA(TA, TB, VMUL(TC, TD));
264 			 TT = VFNMS(TC, TB, VMUL(TA, TD));
265 		    }
266 		    TF = VADD(Tz, TE);
267 		    T13 = VADD(TS, TT);
268 		    TR = VSUB(Tz, TE);
269 		    TU = VSUB(TS, TT);
270 	       }
271 	       {
272 		    V Tc, TI, Th, TJ;
273 		    {
274 			 V T9, Tb, T8, Ta;
275 			 T9 = LD(&(ri[WS(rs, 2)]), ms, &(ri[0]));
276 			 Tb = LD(&(ii[WS(rs, 2)]), ms, &(ii[0]));
277 			 T8 = LDW(&(W[TWVL * 2]));
278 			 Ta = LDW(&(W[TWVL * 3]));
279 			 Tc = VFMA(T8, T9, VMUL(Ta, Tb));
280 			 TI = VFNMS(Ta, T9, VMUL(T8, Tb));
281 		    }
282 		    {
283 			 V Te, Tg, Td, Tf;
284 			 Te = LD(&(ri[WS(rs, 6)]), ms, &(ri[0]));
285 			 Tg = LD(&(ii[WS(rs, 6)]), ms, &(ii[0]));
286 			 Td = LDW(&(W[TWVL * 10]));
287 			 Tf = LDW(&(W[TWVL * 11]));
288 			 Th = VFMA(Td, Te, VMUL(Tf, Tg));
289 			 TJ = VFNMS(Tf, Te, VMUL(Td, Tg));
290 		    }
291 		    Ti = VADD(Tc, Th);
292 		    T1f = VSUB(Tc, Th);
293 		    TK = VSUB(TI, TJ);
294 		    T16 = VADD(TI, TJ);
295 	       }
296 	       {
297 		    V To, TN, Tt, TO;
298 		    {
299 			 V Tl, Tn, Tk, Tm;
300 			 Tl = LD(&(ri[WS(rs, 1)]), ms, &(ri[WS(rs, 1)]));
301 			 Tn = LD(&(ii[WS(rs, 1)]), ms, &(ii[WS(rs, 1)]));
302 			 Tk = LDW(&(W[0]));
303 			 Tm = LDW(&(W[TWVL * 1]));
304 			 To = VFMA(Tk, Tl, VMUL(Tm, Tn));
305 			 TN = VFNMS(Tm, Tl, VMUL(Tk, Tn));
306 		    }
307 		    {
308 			 V Tq, Ts, Tp, Tr;
309 			 Tq = LD(&(ri[WS(rs, 5)]), ms, &(ri[WS(rs, 1)]));
310 			 Ts = LD(&(ii[WS(rs, 5)]), ms, &(ii[WS(rs, 1)]));
311 			 Tp = LDW(&(W[TWVL * 8]));
312 			 Tr = LDW(&(W[TWVL * 9]));
313 			 Tt = VFMA(Tp, Tq, VMUL(Tr, Ts));
314 			 TO = VFNMS(Tr, Tq, VMUL(Tp, Ts));
315 		    }
316 		    Tu = VADD(To, Tt);
317 		    T12 = VADD(TN, TO);
318 		    TM = VSUB(To, Tt);
319 		    TP = VSUB(TN, TO);
320 	       }
321 	       {
322 		    V Tj, TG, T1b, T1c;
323 		    Tj = VADD(T7, Ti);
324 		    TG = VADD(Tu, TF);
325 		    ST(&(ri[WS(rs, 4)]), VSUB(Tj, TG), ms, &(ri[0]));
326 		    ST(&(ri[0]), VADD(Tj, TG), ms, &(ri[0]));
327 		    {
328 			 V T15, T1a, T11, T14;
329 			 T15 = VADD(T12, T13);
330 			 T1a = VADD(T16, T19);
331 			 ST(&(ii[0]), VADD(T15, T1a), ms, &(ii[0]));
332 			 ST(&(ii[WS(rs, 4)]), VSUB(T1a, T15), ms, &(ii[0]));
333 			 T11 = VSUB(T7, Ti);
334 			 T14 = VSUB(T12, T13);
335 			 ST(&(ri[WS(rs, 6)]), VSUB(T11, T14), ms, &(ri[0]));
336 			 ST(&(ri[WS(rs, 2)]), VADD(T11, T14), ms, &(ri[0]));
337 		    }
338 		    T1b = VSUB(TF, Tu);
339 		    T1c = VSUB(T19, T16);
340 		    ST(&(ii[WS(rs, 2)]), VADD(T1b, T1c), ms, &(ii[0]));
341 		    ST(&(ii[WS(rs, 6)]), VSUB(T1c, T1b), ms, &(ii[0]));
342 		    {
343 			 V TX, T1g, T10, T1d, TY, TZ;
344 			 TX = VSUB(TH, TK);
345 			 T1g = VSUB(T1e, T1f);
346 			 TY = VSUB(TP, TM);
347 			 TZ = VADD(TR, TU);
348 			 T10 = VMUL(LDK(KP707106781), VSUB(TY, TZ));
349 			 T1d = VMUL(LDK(KP707106781), VADD(TY, TZ));
350 			 ST(&(ri[WS(rs, 7)]), VSUB(TX, T10), ms, &(ri[WS(rs, 1)]));
351 			 ST(&(ii[WS(rs, 5)]), VSUB(T1g, T1d), ms, &(ii[WS(rs, 1)]));
352 			 ST(&(ri[WS(rs, 3)]), VADD(TX, T10), ms, &(ri[WS(rs, 1)]));
353 			 ST(&(ii[WS(rs, 1)]), VADD(T1d, T1g), ms, &(ii[WS(rs, 1)]));
354 		    }
355 		    {
356 			 V TL, T1i, TW, T1h, TQ, TV;
357 			 TL = VADD(TH, TK);
358 			 T1i = VADD(T1f, T1e);
359 			 TQ = VADD(TM, TP);
360 			 TV = VSUB(TR, TU);
361 			 TW = VMUL(LDK(KP707106781), VADD(TQ, TV));
362 			 T1h = VMUL(LDK(KP707106781), VSUB(TV, TQ));
363 			 ST(&(ri[WS(rs, 5)]), VSUB(TL, TW), ms, &(ri[WS(rs, 1)]));
364 			 ST(&(ii[WS(rs, 7)]), VSUB(T1i, T1h), ms, &(ii[WS(rs, 1)]));
365 			 ST(&(ri[WS(rs, 1)]), VADD(TL, TW), ms, &(ri[WS(rs, 1)]));
366 			 ST(&(ii[WS(rs, 3)]), VADD(T1h, T1i), ms, &(ii[WS(rs, 1)]));
367 		    }
368 	       }
369 	  }
370      }
371      VLEAVE();
372 }
373 
374 static const tw_instr twinstr[] = {
375      VTW(0, 1),
376      VTW(0, 2),
377      VTW(0, 3),
378      VTW(0, 4),
379      VTW(0, 5),
380      VTW(0, 6),
381      VTW(0, 7),
382      { TW_NEXT, (2 * VL), 0 }
383 };
384 
385 static const ct_desc desc = { 8, XSIMD_STRING("t1sv_8"), twinstr, &GENUS, { 52, 18, 14, 0 }, 0, 0, 0 };
386 
XSIMD(codelet_t1sv_8)387 void XSIMD(codelet_t1sv_8) (planner *p) {
388      X(kdft_dit_register) (p, t1sv_8, &desc);
389 }
390 #endif
391