1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 #include "dft/dft.h"
22 
23 typedef struct {
24      solver super;
25 } S;
26 
27 typedef struct {
28      plan_dft super;
29      INT n;     /* problem size */
30      INT nb;    /* size of convolution */
31      R *w;      /* lambda k . exp(2*pi*i*k^2/(2*n)) */
32      R *W;      /* DFT(w) */
33      plan *cldf;
34      INT is, os;
35 } P;
36 
bluestein_sequence(enum wakefulness wakefulness,INT n,R * w)37 static void bluestein_sequence(enum wakefulness wakefulness, INT n, R *w)
38 {
39      INT k, ksq, n2 = 2 * n;
40      triggen *t = X(mktriggen)(wakefulness, n2);
41 
42      ksq = 0;
43      for (k = 0; k < n; ++k) {
44 	  t->cexp(t, ksq, w+2*k);
45           /* careful with overflow */
46           ksq += 2*k + 1; while (ksq > n2) ksq -= n2;
47      }
48 
49      X(triggen_destroy)(t);
50 }
51 
mktwiddle(enum wakefulness wakefulness,P * p)52 static void mktwiddle(enum wakefulness wakefulness, P *p)
53 {
54      INT i;
55      INT n = p->n, nb = p->nb;
56      R *w, *W;
57      E nbf = (E)nb;
58 
59      p->w = w = (R *) MALLOC(2 * n * sizeof(R), TWIDDLES);
60      p->W = W = (R *) MALLOC(2 * nb * sizeof(R), TWIDDLES);
61 
62      bluestein_sequence(wakefulness, n, w);
63 
64      for (i = 0; i < nb; ++i)
65           W[2*i] = W[2*i+1] = K(0.0);
66 
67      W[0] = w[0] / nbf;
68      W[1] = w[1] / nbf;
69 
70      for (i = 1; i < n; ++i) {
71           W[2*i] = W[2*(nb-i)] = w[2*i] / nbf;
72           W[2*i+1] = W[2*(nb-i)+1] = w[2*i+1] / nbf;
73      }
74 
75      {
76           plan_dft *cldf = (plan_dft *)p->cldf;
77 	  /* cldf must be awake */
78           cldf->apply(p->cldf, W, W+1, W, W+1);
79      }
80 }
81 
apply(const plan * ego_,R * ri,R * ii,R * ro,R * io)82 static void apply(const plan *ego_, R *ri, R *ii, R *ro, R *io)
83 {
84      const P *ego = (const P *) ego_;
85      INT i, n = ego->n, nb = ego->nb, is = ego->is, os = ego->os;
86      R *w = ego->w, *W = ego->W;
87      R *b = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
88 
89      /* multiply input by conjugate bluestein sequence */
90      for (i = 0; i < n; ++i) {
91 	  E xr = ri[i*is], xi = ii[i*is];
92           E wr = w[2*i], wi = w[2*i+1];
93           b[2*i] = xr * wr + xi * wi;
94           b[2*i+1] = xi * wr - xr * wi;
95      }
96 
97      for (; i < nb; ++i) b[2*i] = b[2*i+1] = K(0.0);
98 
99      /* convolution: FFT */
100      {
101           plan_dft *cldf = (plan_dft *)ego->cldf;
102           cldf->apply(ego->cldf, b, b+1, b, b+1);
103      }
104 
105      /* convolution: pointwise multiplication */
106      for (i = 0; i < nb; ++i) {
107 	  E xr = b[2*i], xi = b[2*i+1];
108           E wr = W[2*i], wi = W[2*i+1];
109           b[2*i] = xi * wr + xr * wi;
110           b[2*i+1] = xr * wr - xi * wi;
111      }
112 
113      /* convolution: IFFT by FFT with real/imag input/output swapped */
114      {
115           plan_dft *cldf = (plan_dft *)ego->cldf;
116           cldf->apply(ego->cldf, b, b+1, b, b+1);
117      }
118 
119      /* multiply output by conjugate bluestein sequence */
120      for (i = 0; i < n; ++i) {
121 	  E xi = b[2*i], xr = b[2*i+1];
122           E wr = w[2*i], wi = w[2*i+1];
123           ro[i*os] = xr * wr + xi * wi;
124           io[i*os] = xi * wr - xr * wi;
125      }
126 
127      X(ifree)(b);
128 }
129 
awake(plan * ego_,enum wakefulness wakefulness)130 static void awake(plan *ego_, enum wakefulness wakefulness)
131 {
132      P *ego = (P *) ego_;
133 
134      X(plan_awake)(ego->cldf, wakefulness);
135 
136      switch (wakefulness) {
137 	 case SLEEPY:
138 	      X(ifree0)(ego->w); ego->w = 0;
139 	      X(ifree0)(ego->W); ego->W = 0;
140 	      break;
141 	 default:
142 	      A(!ego->w);
143 	      mktwiddle(wakefulness, ego);
144 	      break;
145      }
146 }
147 
applicable(const solver * ego,const problem * p_,const planner * plnr)148 static int applicable(const solver *ego, const problem *p_,
149 		      const planner *plnr)
150 {
151      const problem_dft *p = (const problem_dft *) p_;
152      UNUSED(ego);
153      return (1
154 	     && p->sz->rnk == 1
155 	     && p->vecsz->rnk == 0
156 	     /* FIXME: allow other sizes */
157 	     && X(is_prime)(p->sz->dims[0].n)
158 
159 	     /* FIXME: avoid infinite recursion of bluestein with itself.
160 		This works because all factors in child problems are 2, 3, 5 */
161 	     && p->sz->dims[0].n > 16
162 
163 	     && CIMPLIES(NO_SLOWP(plnr), p->sz->dims[0].n > BLUESTEIN_MAX_SLOW)
164 	  );
165 }
166 
destroy(plan * ego_)167 static void destroy(plan *ego_)
168 {
169      P *ego = (P *) ego_;
170      X(plan_destroy_internal)(ego->cldf);
171 }
172 
print(const plan * ego_,printer * p)173 static void print(const plan *ego_, printer *p)
174 {
175      const P *ego = (const P *)ego_;
176      p->print(p, "(dft-bluestein-%D/%D%(%p%))",
177               ego->n, ego->nb, ego->cldf);
178 }
179 
choose_transform_size(INT minsz)180 static INT choose_transform_size(INT minsz)
181 {
182      while (!X(factors_into_small_primes)(minsz))
183 	  ++minsz;
184      return minsz;
185 }
186 
mkplan(const solver * ego,const problem * p_,planner * plnr)187 static plan *mkplan(const solver *ego, const problem *p_, planner *plnr)
188 {
189      const problem_dft *p = (const problem_dft *) p_;
190      P *pln;
191      INT n, nb;
192      plan *cldf = 0;
193      R *buf = (R *) 0;
194 
195      static const plan_adt padt = {
196 	  X(dft_solve), awake, print, destroy
197      };
198 
199      if (!applicable(ego, p_, plnr))
200 	  return (plan *) 0;
201 
202      n = p->sz->dims[0].n;
203      nb = choose_transform_size(2 * n - 1);
204      buf = (R *) MALLOC(2 * nb * sizeof(R), BUFFERS);
205 
206      cldf = X(mkplan_f_d)(plnr,
207 			  X(mkproblem_dft_d)(X(mktensor_1d)(nb, 2, 2),
208 					     X(mktensor_1d)(1, 0, 0),
209 					     buf, buf+1,
210 					     buf, buf+1),
211 			  NO_SLOW, 0, 0);
212      if (!cldf) goto nada;
213 
214      X(ifree)(buf);
215 
216      pln = MKPLAN_DFT(P, &padt, apply);
217 
218      pln->n = n;
219      pln->nb = nb;
220      pln->w = 0;
221      pln->W = 0;
222      pln->cldf = cldf;
223      pln->is = p->sz->dims[0].is;
224      pln->os = p->sz->dims[0].os;
225 
226      X(ops_add)(&cldf->ops, &cldf->ops, &pln->super.super.ops);
227      pln->super.super.ops.add += 4 * n + 2 * nb;
228      pln->super.super.ops.mul += 8 * n + 4 * nb;
229      pln->super.super.ops.other += 6 * (n + nb);
230 
231      return &(pln->super.super);
232 
233  nada:
234      X(ifree0)(buf);
235      X(plan_destroy_internal)(cldf);
236      return (plan *)0;
237 }
238 
239 
mksolver(void)240 static solver *mksolver(void)
241 {
242      static const solver_adt sadt = { PROBLEM_DFT, mkplan, 0 };
243      S *slv = MKSOLVER(S, &sadt);
244      return &(slv->super);
245 }
246 
X(dft_bluestein_register)247 void X(dft_bluestein_register)(planner *p)
248 {
249      REGISTER_SOLVER(p, mksolver());
250 }
251