1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:08 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw.native -fma -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
29 
30 /*
31  * This function contains 84 FP additions, 36 FP multiplications,
32  * (or, 48 additions, 0 multiplications, 36 fused multiply/add),
33  * 41 stack variables, 4 constants, and 40 memory accesses
34  */
35 #include "dft/scalar/n.h"
36 
n1_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
40      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
41      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
42      DK(KP618033988, +0.618033988749894848204586834365638117720309180);
43      {
44 	  INT i;
45 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
46 	       E T3, Tj, TN, T1b, TU, TV, T1j, T1i, Tm, Tp, Tq, Ta, Th, Ti, TA;
47 	       E TH, T17, T14, T1c, T1d, T1e, TO, TP, TQ;
48 	       {
49 		    E T1, T2, TL, TM;
50 		    T1 = ri[0];
51 		    T2 = ri[WS(is, 5)];
52 		    T3 = T1 - T2;
53 		    Tj = T1 + T2;
54 		    TL = ii[0];
55 		    TM = ii[WS(is, 5)];
56 		    TN = TL - TM;
57 		    T1b = TL + TM;
58 	       }
59 	       {
60 		    E T6, Tk, Tg, To, T9, Tl, Td, Tn;
61 		    {
62 			 E T4, T5, Te, Tf;
63 			 T4 = ri[WS(is, 2)];
64 			 T5 = ri[WS(is, 7)];
65 			 T6 = T4 - T5;
66 			 Tk = T4 + T5;
67 			 Te = ri[WS(is, 6)];
68 			 Tf = ri[WS(is, 1)];
69 			 Tg = Te - Tf;
70 			 To = Te + Tf;
71 		    }
72 		    {
73 			 E T7, T8, Tb, Tc;
74 			 T7 = ri[WS(is, 8)];
75 			 T8 = ri[WS(is, 3)];
76 			 T9 = T7 - T8;
77 			 Tl = T7 + T8;
78 			 Tb = ri[WS(is, 4)];
79 			 Tc = ri[WS(is, 9)];
80 			 Td = Tb - Tc;
81 			 Tn = Tb + Tc;
82 		    }
83 		    TU = T6 - T9;
84 		    TV = Td - Tg;
85 		    T1j = Tk - Tl;
86 		    T1i = Tn - To;
87 		    Tm = Tk + Tl;
88 		    Tp = Tn + To;
89 		    Tq = Tm + Tp;
90 		    Ta = T6 + T9;
91 		    Th = Td + Tg;
92 		    Ti = Ta + Th;
93 	       }
94 	       {
95 		    E Tw, T15, TG, T13, Tz, T16, TD, T12;
96 		    {
97 			 E Tu, Tv, TE, TF;
98 			 Tu = ii[WS(is, 2)];
99 			 Tv = ii[WS(is, 7)];
100 			 Tw = Tu - Tv;
101 			 T15 = Tu + Tv;
102 			 TE = ii[WS(is, 6)];
103 			 TF = ii[WS(is, 1)];
104 			 TG = TE - TF;
105 			 T13 = TE + TF;
106 		    }
107 		    {
108 			 E Tx, Ty, TB, TC;
109 			 Tx = ii[WS(is, 8)];
110 			 Ty = ii[WS(is, 3)];
111 			 Tz = Tx - Ty;
112 			 T16 = Tx + Ty;
113 			 TB = ii[WS(is, 4)];
114 			 TC = ii[WS(is, 9)];
115 			 TD = TB - TC;
116 			 T12 = TB + TC;
117 		    }
118 		    TA = Tw - Tz;
119 		    TH = TD - TG;
120 		    T17 = T15 - T16;
121 		    T14 = T12 - T13;
122 		    T1c = T15 + T16;
123 		    T1d = T12 + T13;
124 		    T1e = T1c + T1d;
125 		    TO = Tw + Tz;
126 		    TP = TD + TG;
127 		    TQ = TO + TP;
128 	       }
129 	       ro[WS(os, 5)] = T3 + Ti;
130 	       io[WS(os, 5)] = TN + TQ;
131 	       ro[0] = Tj + Tq;
132 	       io[0] = T1b + T1e;
133 	       {
134 		    E TI, TK, Tt, TJ, Tr, Ts;
135 		    TI = FMA(KP618033988, TH, TA);
136 		    TK = FNMS(KP618033988, TA, TH);
137 		    Tr = FNMS(KP250000000, Ti, T3);
138 		    Ts = Ta - Th;
139 		    Tt = FMA(KP559016994, Ts, Tr);
140 		    TJ = FNMS(KP559016994, Ts, Tr);
141 		    ro[WS(os, 9)] = FNMS(KP951056516, TI, Tt);
142 		    ro[WS(os, 3)] = FMA(KP951056516, TK, TJ);
143 		    ro[WS(os, 1)] = FMA(KP951056516, TI, Tt);
144 		    ro[WS(os, 7)] = FNMS(KP951056516, TK, TJ);
145 	       }
146 	       {
147 		    E TW, TY, TT, TX, TR, TS;
148 		    TW = FMA(KP618033988, TV, TU);
149 		    TY = FNMS(KP618033988, TU, TV);
150 		    TR = FNMS(KP250000000, TQ, TN);
151 		    TS = TO - TP;
152 		    TT = FMA(KP559016994, TS, TR);
153 		    TX = FNMS(KP559016994, TS, TR);
154 		    io[WS(os, 1)] = FNMS(KP951056516, TW, TT);
155 		    io[WS(os, 7)] = FMA(KP951056516, TY, TX);
156 		    io[WS(os, 9)] = FMA(KP951056516, TW, TT);
157 		    io[WS(os, 3)] = FNMS(KP951056516, TY, TX);
158 	       }
159 	       {
160 		    E T18, T1a, T11, T19, TZ, T10;
161 		    T18 = FNMS(KP618033988, T17, T14);
162 		    T1a = FMA(KP618033988, T14, T17);
163 		    TZ = FNMS(KP250000000, Tq, Tj);
164 		    T10 = Tm - Tp;
165 		    T11 = FNMS(KP559016994, T10, TZ);
166 		    T19 = FMA(KP559016994, T10, TZ);
167 		    ro[WS(os, 2)] = FNMS(KP951056516, T18, T11);
168 		    ro[WS(os, 6)] = FMA(KP951056516, T1a, T19);
169 		    ro[WS(os, 8)] = FMA(KP951056516, T18, T11);
170 		    ro[WS(os, 4)] = FNMS(KP951056516, T1a, T19);
171 	       }
172 	       {
173 		    E T1k, T1m, T1h, T1l, T1f, T1g;
174 		    T1k = FNMS(KP618033988, T1j, T1i);
175 		    T1m = FMA(KP618033988, T1i, T1j);
176 		    T1f = FNMS(KP250000000, T1e, T1b);
177 		    T1g = T1c - T1d;
178 		    T1h = FNMS(KP559016994, T1g, T1f);
179 		    T1l = FMA(KP559016994, T1g, T1f);
180 		    io[WS(os, 2)] = FMA(KP951056516, T1k, T1h);
181 		    io[WS(os, 6)] = FNMS(KP951056516, T1m, T1l);
182 		    io[WS(os, 8)] = FNMS(KP951056516, T1k, T1h);
183 		    io[WS(os, 4)] = FMA(KP951056516, T1m, T1l);
184 	       }
185 	  }
186      }
187 }
188 
189 static const kdft_desc desc = { 10, "n1_10", { 48, 0, 36, 0 }, &GENUS, 0, 0, 0, 0 };
190 
X(codelet_n1_10)191 void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc);
192 }
193 
194 #else
195 
196 /* Generated by: ../../../genfft/gen_notw.native -compact -variables 4 -pipeline-latency 4 -n 10 -name n1_10 -include dft/scalar/n.h */
197 
198 /*
199  * This function contains 84 FP additions, 24 FP multiplications,
200  * (or, 72 additions, 12 multiplications, 12 fused multiply/add),
201  * 41 stack variables, 4 constants, and 40 memory accesses
202  */
203 #include "dft/scalar/n.h"
204 
n1_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)205 static void n1_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
206 {
207      DK(KP250000000, +0.250000000000000000000000000000000000000000000);
208      DK(KP559016994, +0.559016994374947424102293417182819058860154590);
209      DK(KP587785252, +0.587785252292473129168705954639072768597652438);
210      DK(KP951056516, +0.951056516295153572116439333379382143405698634);
211      {
212 	  INT i;
213 	  for (i = v; i > 0; i = i - 1, ri = ri + ivs, ii = ii + ivs, ro = ro + ovs, io = io + ovs, MAKE_VOLATILE_STRIDE(40, is), MAKE_VOLATILE_STRIDE(40, os)) {
214 	       E T3, Tj, TQ, T1e, TU, TV, T1c, T1b, Tm, Tp, Tq, Ta, Th, Ti, TA;
215 	       E TH, T17, T14, T1f, T1g, T1h, TL, TM, TR;
216 	       {
217 		    E T1, T2, TO, TP;
218 		    T1 = ri[0];
219 		    T2 = ri[WS(is, 5)];
220 		    T3 = T1 - T2;
221 		    Tj = T1 + T2;
222 		    TO = ii[0];
223 		    TP = ii[WS(is, 5)];
224 		    TQ = TO - TP;
225 		    T1e = TO + TP;
226 	       }
227 	       {
228 		    E T6, Tk, Tg, To, T9, Tl, Td, Tn;
229 		    {
230 			 E T4, T5, Te, Tf;
231 			 T4 = ri[WS(is, 2)];
232 			 T5 = ri[WS(is, 7)];
233 			 T6 = T4 - T5;
234 			 Tk = T4 + T5;
235 			 Te = ri[WS(is, 6)];
236 			 Tf = ri[WS(is, 1)];
237 			 Tg = Te - Tf;
238 			 To = Te + Tf;
239 		    }
240 		    {
241 			 E T7, T8, Tb, Tc;
242 			 T7 = ri[WS(is, 8)];
243 			 T8 = ri[WS(is, 3)];
244 			 T9 = T7 - T8;
245 			 Tl = T7 + T8;
246 			 Tb = ri[WS(is, 4)];
247 			 Tc = ri[WS(is, 9)];
248 			 Td = Tb - Tc;
249 			 Tn = Tb + Tc;
250 		    }
251 		    TU = T6 - T9;
252 		    TV = Td - Tg;
253 		    T1c = Tk - Tl;
254 		    T1b = Tn - To;
255 		    Tm = Tk + Tl;
256 		    Tp = Tn + To;
257 		    Tq = Tm + Tp;
258 		    Ta = T6 + T9;
259 		    Th = Td + Tg;
260 		    Ti = Ta + Th;
261 	       }
262 	       {
263 		    E Tw, T15, TG, T13, Tz, T16, TD, T12;
264 		    {
265 			 E Tu, Tv, TE, TF;
266 			 Tu = ii[WS(is, 2)];
267 			 Tv = ii[WS(is, 7)];
268 			 Tw = Tu - Tv;
269 			 T15 = Tu + Tv;
270 			 TE = ii[WS(is, 6)];
271 			 TF = ii[WS(is, 1)];
272 			 TG = TE - TF;
273 			 T13 = TE + TF;
274 		    }
275 		    {
276 			 E Tx, Ty, TB, TC;
277 			 Tx = ii[WS(is, 8)];
278 			 Ty = ii[WS(is, 3)];
279 			 Tz = Tx - Ty;
280 			 T16 = Tx + Ty;
281 			 TB = ii[WS(is, 4)];
282 			 TC = ii[WS(is, 9)];
283 			 TD = TB - TC;
284 			 T12 = TB + TC;
285 		    }
286 		    TA = Tw - Tz;
287 		    TH = TD - TG;
288 		    T17 = T15 - T16;
289 		    T14 = T12 - T13;
290 		    T1f = T15 + T16;
291 		    T1g = T12 + T13;
292 		    T1h = T1f + T1g;
293 		    TL = Tw + Tz;
294 		    TM = TD + TG;
295 		    TR = TL + TM;
296 	       }
297 	       ro[WS(os, 5)] = T3 + Ti;
298 	       io[WS(os, 5)] = TQ + TR;
299 	       ro[0] = Tj + Tq;
300 	       io[0] = T1e + T1h;
301 	       {
302 		    E TI, TK, Tt, TJ, Tr, Ts;
303 		    TI = FMA(KP951056516, TA, KP587785252 * TH);
304 		    TK = FNMS(KP587785252, TA, KP951056516 * TH);
305 		    Tr = KP559016994 * (Ta - Th);
306 		    Ts = FNMS(KP250000000, Ti, T3);
307 		    Tt = Tr + Ts;
308 		    TJ = Ts - Tr;
309 		    ro[WS(os, 9)] = Tt - TI;
310 		    ro[WS(os, 3)] = TJ + TK;
311 		    ro[WS(os, 1)] = Tt + TI;
312 		    ro[WS(os, 7)] = TJ - TK;
313 	       }
314 	       {
315 		    E TW, TY, TT, TX, TN, TS;
316 		    TW = FMA(KP951056516, TU, KP587785252 * TV);
317 		    TY = FNMS(KP587785252, TU, KP951056516 * TV);
318 		    TN = KP559016994 * (TL - TM);
319 		    TS = FNMS(KP250000000, TR, TQ);
320 		    TT = TN + TS;
321 		    TX = TS - TN;
322 		    io[WS(os, 1)] = TT - TW;
323 		    io[WS(os, 7)] = TY + TX;
324 		    io[WS(os, 9)] = TW + TT;
325 		    io[WS(os, 3)] = TX - TY;
326 	       }
327 	       {
328 		    E T18, T1a, T11, T19, TZ, T10;
329 		    T18 = FNMS(KP587785252, T17, KP951056516 * T14);
330 		    T1a = FMA(KP951056516, T17, KP587785252 * T14);
331 		    TZ = FNMS(KP250000000, Tq, Tj);
332 		    T10 = KP559016994 * (Tm - Tp);
333 		    T11 = TZ - T10;
334 		    T19 = T10 + TZ;
335 		    ro[WS(os, 2)] = T11 - T18;
336 		    ro[WS(os, 6)] = T19 + T1a;
337 		    ro[WS(os, 8)] = T11 + T18;
338 		    ro[WS(os, 4)] = T19 - T1a;
339 	       }
340 	       {
341 		    E T1d, T1l, T1k, T1m, T1i, T1j;
342 		    T1d = FNMS(KP587785252, T1c, KP951056516 * T1b);
343 		    T1l = FMA(KP951056516, T1c, KP587785252 * T1b);
344 		    T1i = FNMS(KP250000000, T1h, T1e);
345 		    T1j = KP559016994 * (T1f - T1g);
346 		    T1k = T1i - T1j;
347 		    T1m = T1j + T1i;
348 		    io[WS(os, 2)] = T1d + T1k;
349 		    io[WS(os, 6)] = T1m - T1l;
350 		    io[WS(os, 8)] = T1k - T1d;
351 		    io[WS(os, 4)] = T1l + T1m;
352 	       }
353 	  }
354      }
355 }
356 
357 static const kdft_desc desc = { 10, "n1_10", { 72, 12, 12, 0 }, &GENUS, 0, 0, 0, 0 };
358 
X(codelet_n1_10)359 void X(codelet_n1_10) (planner *p) { X(kdft_register) (p, n1_10, &desc);
360 }
361 
362 #endif
363