1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:44 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */
29 
30 /*
31  * This function contains 42 FP additions, 22 FP multiplications,
32  * (or, 24 additions, 4 multiplications, 18 fused multiply/add),
33  * 33 stack variables, 4 constants, and 20 memory accesses
34  */
35 #include "dft/simd/n1b.h"
36 
n1bv_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
40      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
41      DVK(KP618033988, +0.618033988749894848204586834365638117720309180);
42      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
43      {
44 	  INT i;
45 	  const R *xi;
46 	  R *xo;
47 	  xi = ii;
48 	  xo = io;
49 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
50 	       V T3, Tr, Tm, Tn, TD, TC, Tu, Tx, Ty, Ta, Th, Ti, T1, T2;
51 	       T1 = LD(&(xi[0]), ivs, &(xi[0]));
52 	       T2 = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
53 	       T3 = VSUB(T1, T2);
54 	       Tr = VADD(T1, T2);
55 	       {
56 		    V T6, Ts, Tg, Tw, T9, Tt, Td, Tv;
57 		    {
58 			 V T4, T5, Te, Tf;
59 			 T4 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
60 			 T5 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
61 			 T6 = VSUB(T4, T5);
62 			 Ts = VADD(T4, T5);
63 			 Te = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
64 			 Tf = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
65 			 Tg = VSUB(Te, Tf);
66 			 Tw = VADD(Te, Tf);
67 		    }
68 		    {
69 			 V T7, T8, Tb, Tc;
70 			 T7 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
71 			 T8 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
72 			 T9 = VSUB(T7, T8);
73 			 Tt = VADD(T7, T8);
74 			 Tb = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
75 			 Tc = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
76 			 Td = VSUB(Tb, Tc);
77 			 Tv = VADD(Tb, Tc);
78 		    }
79 		    Tm = VSUB(T6, T9);
80 		    Tn = VSUB(Td, Tg);
81 		    TD = VSUB(Ts, Tt);
82 		    TC = VSUB(Tv, Tw);
83 		    Tu = VADD(Ts, Tt);
84 		    Tx = VADD(Tv, Tw);
85 		    Ty = VADD(Tu, Tx);
86 		    Ta = VADD(T6, T9);
87 		    Th = VADD(Td, Tg);
88 		    Ti = VADD(Ta, Th);
89 	       }
90 	       ST(&(xo[WS(os, 5)]), VADD(T3, Ti), ovs, &(xo[WS(os, 1)]));
91 	       ST(&(xo[0]), VADD(Tr, Ty), ovs, &(xo[0]));
92 	       {
93 		    V To, Tq, Tl, Tp, Tj, Tk;
94 		    To = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), Tn, Tm));
95 		    Tq = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), Tm, Tn));
96 		    Tj = VFNMS(LDK(KP250000000), Ti, T3);
97 		    Tk = VSUB(Ta, Th);
98 		    Tl = VFMA(LDK(KP559016994), Tk, Tj);
99 		    Tp = VFNMS(LDK(KP559016994), Tk, Tj);
100 		    ST(&(xo[WS(os, 1)]), VFMAI(To, Tl), ovs, &(xo[WS(os, 1)]));
101 		    ST(&(xo[WS(os, 7)]), VFNMSI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
102 		    ST(&(xo[WS(os, 9)]), VFNMSI(To, Tl), ovs, &(xo[WS(os, 1)]));
103 		    ST(&(xo[WS(os, 3)]), VFMAI(Tq, Tp), ovs, &(xo[WS(os, 1)]));
104 	       }
105 	       {
106 		    V TE, TG, TB, TF, Tz, TA;
107 		    TE = VMUL(LDK(KP951056516), VFNMS(LDK(KP618033988), TD, TC));
108 		    TG = VMUL(LDK(KP951056516), VFMA(LDK(KP618033988), TC, TD));
109 		    Tz = VFNMS(LDK(KP250000000), Ty, Tr);
110 		    TA = VSUB(Tu, Tx);
111 		    TB = VFNMS(LDK(KP559016994), TA, Tz);
112 		    TF = VFMA(LDK(KP559016994), TA, Tz);
113 		    ST(&(xo[WS(os, 2)]), VFNMSI(TE, TB), ovs, &(xo[0]));
114 		    ST(&(xo[WS(os, 6)]), VFMAI(TG, TF), ovs, &(xo[0]));
115 		    ST(&(xo[WS(os, 8)]), VFMAI(TE, TB), ovs, &(xo[0]));
116 		    ST(&(xo[WS(os, 4)]), VFNMSI(TG, TF), ovs, &(xo[0]));
117 	       }
118 	  }
119      }
120      VLEAVE();
121 }
122 
123 static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 24, 4, 18, 0 }, &GENUS, 0, 0, 0, 0 };
124 
XSIMD(codelet_n1bv_10)125 void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc);
126 }
127 
128 #else
129 
130 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -sign 1 -n 10 -name n1bv_10 -include dft/simd/n1b.h */
131 
132 /*
133  * This function contains 42 FP additions, 12 FP multiplications,
134  * (or, 36 additions, 6 multiplications, 6 fused multiply/add),
135  * 33 stack variables, 4 constants, and 20 memory accesses
136  */
137 #include "dft/simd/n1b.h"
138 
n1bv_10(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)139 static void n1bv_10(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
140 {
141      DVK(KP250000000, +0.250000000000000000000000000000000000000000000);
142      DVK(KP559016994, +0.559016994374947424102293417182819058860154590);
143      DVK(KP587785252, +0.587785252292473129168705954639072768597652438);
144      DVK(KP951056516, +0.951056516295153572116439333379382143405698634);
145      {
146 	  INT i;
147 	  const R *xi;
148 	  R *xo;
149 	  xi = ii;
150 	  xo = io;
151 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(20, is), MAKE_VOLATILE_STRIDE(20, os)) {
152 	       V Tl, Ty, T7, Te, Tw, Tt, Tz, TA, TB, Tg, Th, Tm, Tj, Tk;
153 	       Tj = LD(&(xi[0]), ivs, &(xi[0]));
154 	       Tk = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
155 	       Tl = VSUB(Tj, Tk);
156 	       Ty = VADD(Tj, Tk);
157 	       {
158 		    V T3, Tr, Td, Tv, T6, Ts, Ta, Tu;
159 		    {
160 			 V T1, T2, Tb, Tc;
161 			 T1 = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
162 			 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
163 			 T3 = VSUB(T1, T2);
164 			 Tr = VADD(T1, T2);
165 			 Tb = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
166 			 Tc = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
167 			 Td = VSUB(Tb, Tc);
168 			 Tv = VADD(Tb, Tc);
169 		    }
170 		    {
171 			 V T4, T5, T8, T9;
172 			 T4 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
173 			 T5 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
174 			 T6 = VSUB(T4, T5);
175 			 Ts = VADD(T4, T5);
176 			 T8 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
177 			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
178 			 Ta = VSUB(T8, T9);
179 			 Tu = VADD(T8, T9);
180 		    }
181 		    T7 = VSUB(T3, T6);
182 		    Te = VSUB(Ta, Td);
183 		    Tw = VSUB(Tu, Tv);
184 		    Tt = VSUB(Tr, Ts);
185 		    Tz = VADD(Tr, Ts);
186 		    TA = VADD(Tu, Tv);
187 		    TB = VADD(Tz, TA);
188 		    Tg = VADD(T3, T6);
189 		    Th = VADD(Ta, Td);
190 		    Tm = VADD(Tg, Th);
191 	       }
192 	       ST(&(xo[WS(os, 5)]), VADD(Tl, Tm), ovs, &(xo[WS(os, 1)]));
193 	       ST(&(xo[0]), VADD(Ty, TB), ovs, &(xo[0]));
194 	       {
195 		    V Tf, Tq, To, Tp, Ti, Tn;
196 		    Tf = VBYI(VFMA(LDK(KP951056516), T7, VMUL(LDK(KP587785252), Te)));
197 		    Tq = VBYI(VFNMS(LDK(KP951056516), Te, VMUL(LDK(KP587785252), T7)));
198 		    Ti = VMUL(LDK(KP559016994), VSUB(Tg, Th));
199 		    Tn = VFNMS(LDK(KP250000000), Tm, Tl);
200 		    To = VADD(Ti, Tn);
201 		    Tp = VSUB(Tn, Ti);
202 		    ST(&(xo[WS(os, 1)]), VADD(Tf, To), ovs, &(xo[WS(os, 1)]));
203 		    ST(&(xo[WS(os, 7)]), VADD(Tq, Tp), ovs, &(xo[WS(os, 1)]));
204 		    ST(&(xo[WS(os, 9)]), VSUB(To, Tf), ovs, &(xo[WS(os, 1)]));
205 		    ST(&(xo[WS(os, 3)]), VSUB(Tp, Tq), ovs, &(xo[WS(os, 1)]));
206 	       }
207 	       {
208 		    V Tx, TG, TE, TF, TC, TD;
209 		    Tx = VBYI(VFNMS(LDK(KP951056516), Tw, VMUL(LDK(KP587785252), Tt)));
210 		    TG = VBYI(VFMA(LDK(KP951056516), Tt, VMUL(LDK(KP587785252), Tw)));
211 		    TC = VFNMS(LDK(KP250000000), TB, Ty);
212 		    TD = VMUL(LDK(KP559016994), VSUB(Tz, TA));
213 		    TE = VSUB(TC, TD);
214 		    TF = VADD(TD, TC);
215 		    ST(&(xo[WS(os, 2)]), VADD(Tx, TE), ovs, &(xo[0]));
216 		    ST(&(xo[WS(os, 6)]), VADD(TG, TF), ovs, &(xo[0]));
217 		    ST(&(xo[WS(os, 8)]), VSUB(TE, Tx), ovs, &(xo[0]));
218 		    ST(&(xo[WS(os, 4)]), VSUB(TF, TG), ovs, &(xo[0]));
219 	       }
220 	  }
221      }
222      VLEAVE();
223 }
224 
225 static const kdft_desc desc = { 10, XSIMD_STRING("n1bv_10"), { 36, 6, 6, 0 }, &GENUS, 0, 0, 0, 0 };
226 
XSIMD(codelet_n1bv_10)227 void XSIMD(codelet_n1bv_10) (planner *p) { X(kdft_register) (p, n1bv_10, &desc);
228 }
229 
230 #endif
231