1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 /* This file was automatically generated --- DO NOT EDIT */
22 /* Generated on Thu Dec 10 07:04:41 EST 2020 */
23 
24 #include "dft/codelet-dft.h"
25 
26 #if defined(ARCH_PREFERS_FMA) || defined(ISA_EXTENSION_PREFERS_FMA)
27 
28 /* Generated by: ../../../genfft/gen_notw_c.native -fma -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include dft/simd/n1f.h */
29 
30 /*
31  * This function contains 72 FP additions, 34 FP multiplications,
32  * (or, 38 additions, 0 multiplications, 34 fused multiply/add),
33  * 30 stack variables, 3 constants, and 32 memory accesses
34  */
35 #include "dft/simd/n1f.h"
36 
n1fv_16(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)37 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
38 {
39      DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
40      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
41      DVK(KP414213562, +0.414213562373095048801688724209698078569671875);
42      {
43 	  INT i;
44 	  const R *xi;
45 	  R *xo;
46 	  xi = ri;
47 	  xo = ro;
48 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
49 	       V T7, TU, Tz, TH, Tu, TV, TA, TK, Te, TX, TC, TO, Tl, TY, TD;
50 	       V TR;
51 	       {
52 		    V T1, T2, T3, T4, T5, T6;
53 		    T1 = LD(&(xi[0]), ivs, &(xi[0]));
54 		    T2 = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
55 		    T3 = VADD(T1, T2);
56 		    T4 = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
57 		    T5 = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
58 		    T6 = VADD(T4, T5);
59 		    T7 = VSUB(T3, T6);
60 		    TU = VSUB(T4, T5);
61 		    Tz = VADD(T3, T6);
62 		    TH = VSUB(T1, T2);
63 	       }
64 	       {
65 		    V Tq, TJ, Tt, TI;
66 		    {
67 			 V To, Tp, Tr, Ts;
68 			 To = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
69 			 Tp = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
70 			 Tq = VADD(To, Tp);
71 			 TJ = VSUB(To, Tp);
72 			 Tr = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
73 			 Ts = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
74 			 Tt = VADD(Tr, Ts);
75 			 TI = VSUB(Tr, Ts);
76 		    }
77 		    Tu = VSUB(Tq, Tt);
78 		    TV = VSUB(TJ, TI);
79 		    TA = VADD(Tt, Tq);
80 		    TK = VADD(TI, TJ);
81 	       }
82 	       {
83 		    V Ta, TM, Td, TN;
84 		    {
85 			 V T8, T9, Tb, Tc;
86 			 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
87 			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
88 			 Ta = VADD(T8, T9);
89 			 TM = VSUB(T8, T9);
90 			 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
91 			 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
92 			 Td = VADD(Tb, Tc);
93 			 TN = VSUB(Tb, Tc);
94 		    }
95 		    Te = VSUB(Ta, Td);
96 		    TX = VFMA(LDK(KP414213562), TM, TN);
97 		    TC = VADD(Ta, Td);
98 		    TO = VFNMS(LDK(KP414213562), TN, TM);
99 	       }
100 	       {
101 		    V Th, TP, Tk, TQ;
102 		    {
103 			 V Tf, Tg, Ti, Tj;
104 			 Tf = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
105 			 Tg = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
106 			 Th = VADD(Tf, Tg);
107 			 TP = VSUB(Tf, Tg);
108 			 Ti = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
109 			 Tj = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
110 			 Tk = VADD(Ti, Tj);
111 			 TQ = VSUB(Tj, Ti);
112 		    }
113 		    Tl = VSUB(Th, Tk);
114 		    TY = VFMA(LDK(KP414213562), TP, TQ);
115 		    TD = VADD(Th, Tk);
116 		    TR = VFNMS(LDK(KP414213562), TQ, TP);
117 	       }
118 	       {
119 		    V TB, TE, TF, TG;
120 		    TB = VADD(Tz, TA);
121 		    TE = VADD(TC, TD);
122 		    ST(&(xo[WS(os, 8)]), VSUB(TB, TE), ovs, &(xo[0]));
123 		    ST(&(xo[0]), VADD(TB, TE), ovs, &(xo[0]));
124 		    TF = VSUB(Tz, TA);
125 		    TG = VSUB(TD, TC);
126 		    ST(&(xo[WS(os, 12)]), VFNMSI(TG, TF), ovs, &(xo[0]));
127 		    ST(&(xo[WS(os, 4)]), VFMAI(TG, TF), ovs, &(xo[0]));
128 	       }
129 	       {
130 		    V Tn, Tx, Tw, Ty, Tm, Tv;
131 		    Tm = VADD(Te, Tl);
132 		    Tn = VFNMS(LDK(KP707106781), Tm, T7);
133 		    Tx = VFMA(LDK(KP707106781), Tm, T7);
134 		    Tv = VSUB(Tl, Te);
135 		    Tw = VFNMS(LDK(KP707106781), Tv, Tu);
136 		    Ty = VFMA(LDK(KP707106781), Tv, Tu);
137 		    ST(&(xo[WS(os, 6)]), VFNMSI(Tw, Tn), ovs, &(xo[0]));
138 		    ST(&(xo[WS(os, 2)]), VFMAI(Ty, Tx), ovs, &(xo[0]));
139 		    ST(&(xo[WS(os, 10)]), VFMAI(Tw, Tn), ovs, &(xo[0]));
140 		    ST(&(xo[WS(os, 14)]), VFNMSI(Ty, Tx), ovs, &(xo[0]));
141 	       }
142 	       {
143 		    V TT, T11, T10, T12;
144 		    {
145 			 V TL, TS, TW, TZ;
146 			 TL = VFMA(LDK(KP707106781), TK, TH);
147 			 TS = VADD(TO, TR);
148 			 TT = VFNMS(LDK(KP923879532), TS, TL);
149 			 T11 = VFMA(LDK(KP923879532), TS, TL);
150 			 TW = VFNMS(LDK(KP707106781), TV, TU);
151 			 TZ = VSUB(TX, TY);
152 			 T10 = VFNMS(LDK(KP923879532), TZ, TW);
153 			 T12 = VFMA(LDK(KP923879532), TZ, TW);
154 		    }
155 		    ST(&(xo[WS(os, 9)]), VFNMSI(T10, TT), ovs, &(xo[WS(os, 1)]));
156 		    ST(&(xo[WS(os, 15)]), VFMAI(T12, T11), ovs, &(xo[WS(os, 1)]));
157 		    ST(&(xo[WS(os, 7)]), VFMAI(T10, TT), ovs, &(xo[WS(os, 1)]));
158 		    ST(&(xo[WS(os, 1)]), VFNMSI(T12, T11), ovs, &(xo[WS(os, 1)]));
159 	       }
160 	       {
161 		    V T15, T19, T18, T1a;
162 		    {
163 			 V T13, T14, T16, T17;
164 			 T13 = VFNMS(LDK(KP707106781), TK, TH);
165 			 T14 = VADD(TX, TY);
166 			 T15 = VFNMS(LDK(KP923879532), T14, T13);
167 			 T19 = VFMA(LDK(KP923879532), T14, T13);
168 			 T16 = VFMA(LDK(KP707106781), TV, TU);
169 			 T17 = VSUB(TR, TO);
170 			 T18 = VFNMS(LDK(KP923879532), T17, T16);
171 			 T1a = VFMA(LDK(KP923879532), T17, T16);
172 		    }
173 		    ST(&(xo[WS(os, 5)]), VFNMSI(T18, T15), ovs, &(xo[WS(os, 1)]));
174 		    ST(&(xo[WS(os, 13)]), VFNMSI(T1a, T19), ovs, &(xo[WS(os, 1)]));
175 		    ST(&(xo[WS(os, 11)]), VFMAI(T18, T15), ovs, &(xo[WS(os, 1)]));
176 		    ST(&(xo[WS(os, 3)]), VFMAI(T1a, T19), ovs, &(xo[WS(os, 1)]));
177 	       }
178 	  }
179      }
180      VLEAVE();
181 }
182 
183 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), { 38, 0, 34, 0 }, &GENUS, 0, 0, 0, 0 };
184 
XSIMD(codelet_n1fv_16)185 void XSIMD(codelet_n1fv_16) (planner *p) { X(kdft_register) (p, n1fv_16, &desc);
186 }
187 
188 #else
189 
190 /* Generated by: ../../../genfft/gen_notw_c.native -simd -compact -variables 4 -pipeline-latency 8 -n 16 -name n1fv_16 -include dft/simd/n1f.h */
191 
192 /*
193  * This function contains 72 FP additions, 12 FP multiplications,
194  * (or, 68 additions, 8 multiplications, 4 fused multiply/add),
195  * 30 stack variables, 3 constants, and 32 memory accesses
196  */
197 #include "dft/simd/n1f.h"
198 
n1fv_16(const R * ri,const R * ii,R * ro,R * io,stride is,stride os,INT v,INT ivs,INT ovs)199 static void n1fv_16(const R *ri, const R *ii, R *ro, R *io, stride is, stride os, INT v, INT ivs, INT ovs)
200 {
201      DVK(KP923879532, +0.923879532511286756128183189396788286822416626);
202      DVK(KP382683432, +0.382683432365089771728459984030398866761344562);
203      DVK(KP707106781, +0.707106781186547524400844362104849039284835938);
204      {
205 	  INT i;
206 	  const R *xi;
207 	  R *xo;
208 	  xi = ri;
209 	  xo = ro;
210 	  for (i = v; i > 0; i = i - VL, xi = xi + (VL * ivs), xo = xo + (VL * ovs), MAKE_VOLATILE_STRIDE(32, is), MAKE_VOLATILE_STRIDE(32, os)) {
211 	       V Tp, T13, Tu, TN, Tm, T14, Tv, TY, T7, T17, Ty, TT, Te, T16, Tx;
212 	       V TQ;
213 	       {
214 		    V Tn, To, TM, Ts, Tt, TL;
215 		    Tn = LD(&(xi[WS(is, 4)]), ivs, &(xi[0]));
216 		    To = LD(&(xi[WS(is, 12)]), ivs, &(xi[0]));
217 		    TM = VADD(Tn, To);
218 		    Ts = LD(&(xi[0]), ivs, &(xi[0]));
219 		    Tt = LD(&(xi[WS(is, 8)]), ivs, &(xi[0]));
220 		    TL = VADD(Ts, Tt);
221 		    Tp = VSUB(Tn, To);
222 		    T13 = VADD(TL, TM);
223 		    Tu = VSUB(Ts, Tt);
224 		    TN = VSUB(TL, TM);
225 	       }
226 	       {
227 		    V Ti, TW, Tl, TX;
228 		    {
229 			 V Tg, Th, Tj, Tk;
230 			 Tg = LD(&(xi[WS(is, 14)]), ivs, &(xi[0]));
231 			 Th = LD(&(xi[WS(is, 6)]), ivs, &(xi[0]));
232 			 Ti = VSUB(Tg, Th);
233 			 TW = VADD(Tg, Th);
234 			 Tj = LD(&(xi[WS(is, 2)]), ivs, &(xi[0]));
235 			 Tk = LD(&(xi[WS(is, 10)]), ivs, &(xi[0]));
236 			 Tl = VSUB(Tj, Tk);
237 			 TX = VADD(Tj, Tk);
238 		    }
239 		    Tm = VMUL(LDK(KP707106781), VSUB(Ti, Tl));
240 		    T14 = VADD(TX, TW);
241 		    Tv = VMUL(LDK(KP707106781), VADD(Tl, Ti));
242 		    TY = VSUB(TW, TX);
243 	       }
244 	       {
245 		    V T3, TR, T6, TS;
246 		    {
247 			 V T1, T2, T4, T5;
248 			 T1 = LD(&(xi[WS(is, 15)]), ivs, &(xi[WS(is, 1)]));
249 			 T2 = LD(&(xi[WS(is, 7)]), ivs, &(xi[WS(is, 1)]));
250 			 T3 = VSUB(T1, T2);
251 			 TR = VADD(T1, T2);
252 			 T4 = LD(&(xi[WS(is, 3)]), ivs, &(xi[WS(is, 1)]));
253 			 T5 = LD(&(xi[WS(is, 11)]), ivs, &(xi[WS(is, 1)]));
254 			 T6 = VSUB(T4, T5);
255 			 TS = VADD(T4, T5);
256 		    }
257 		    T7 = VFNMS(LDK(KP923879532), T6, VMUL(LDK(KP382683432), T3));
258 		    T17 = VADD(TR, TS);
259 		    Ty = VFMA(LDK(KP923879532), T3, VMUL(LDK(KP382683432), T6));
260 		    TT = VSUB(TR, TS);
261 	       }
262 	       {
263 		    V Ta, TO, Td, TP;
264 		    {
265 			 V T8, T9, Tb, Tc;
266 			 T8 = LD(&(xi[WS(is, 1)]), ivs, &(xi[WS(is, 1)]));
267 			 T9 = LD(&(xi[WS(is, 9)]), ivs, &(xi[WS(is, 1)]));
268 			 Ta = VSUB(T8, T9);
269 			 TO = VADD(T8, T9);
270 			 Tb = LD(&(xi[WS(is, 5)]), ivs, &(xi[WS(is, 1)]));
271 			 Tc = LD(&(xi[WS(is, 13)]), ivs, &(xi[WS(is, 1)]));
272 			 Td = VSUB(Tb, Tc);
273 			 TP = VADD(Tb, Tc);
274 		    }
275 		    Te = VFMA(LDK(KP382683432), Ta, VMUL(LDK(KP923879532), Td));
276 		    T16 = VADD(TO, TP);
277 		    Tx = VFNMS(LDK(KP382683432), Td, VMUL(LDK(KP923879532), Ta));
278 		    TQ = VSUB(TO, TP);
279 	       }
280 	       {
281 		    V T15, T18, T19, T1a;
282 		    T15 = VADD(T13, T14);
283 		    T18 = VADD(T16, T17);
284 		    ST(&(xo[WS(os, 8)]), VSUB(T15, T18), ovs, &(xo[0]));
285 		    ST(&(xo[0]), VADD(T15, T18), ovs, &(xo[0]));
286 		    T19 = VSUB(T13, T14);
287 		    T1a = VBYI(VSUB(T17, T16));
288 		    ST(&(xo[WS(os, 12)]), VSUB(T19, T1a), ovs, &(xo[0]));
289 		    ST(&(xo[WS(os, 4)]), VADD(T19, T1a), ovs, &(xo[0]));
290 	       }
291 	       {
292 		    V TV, T11, T10, T12, TU, TZ;
293 		    TU = VMUL(LDK(KP707106781), VADD(TQ, TT));
294 		    TV = VADD(TN, TU);
295 		    T11 = VSUB(TN, TU);
296 		    TZ = VMUL(LDK(KP707106781), VSUB(TT, TQ));
297 		    T10 = VBYI(VADD(TY, TZ));
298 		    T12 = VBYI(VSUB(TZ, TY));
299 		    ST(&(xo[WS(os, 14)]), VSUB(TV, T10), ovs, &(xo[0]));
300 		    ST(&(xo[WS(os, 6)]), VADD(T11, T12), ovs, &(xo[0]));
301 		    ST(&(xo[WS(os, 2)]), VADD(TV, T10), ovs, &(xo[0]));
302 		    ST(&(xo[WS(os, 10)]), VSUB(T11, T12), ovs, &(xo[0]));
303 	       }
304 	       {
305 		    V Tr, TB, TA, TC;
306 		    {
307 			 V Tf, Tq, Tw, Tz;
308 			 Tf = VSUB(T7, Te);
309 			 Tq = VSUB(Tm, Tp);
310 			 Tr = VBYI(VSUB(Tf, Tq));
311 			 TB = VBYI(VADD(Tq, Tf));
312 			 Tw = VADD(Tu, Tv);
313 			 Tz = VADD(Tx, Ty);
314 			 TA = VSUB(Tw, Tz);
315 			 TC = VADD(Tw, Tz);
316 		    }
317 		    ST(&(xo[WS(os, 7)]), VADD(Tr, TA), ovs, &(xo[WS(os, 1)]));
318 		    ST(&(xo[WS(os, 15)]), VSUB(TC, TB), ovs, &(xo[WS(os, 1)]));
319 		    ST(&(xo[WS(os, 9)]), VSUB(TA, Tr), ovs, &(xo[WS(os, 1)]));
320 		    ST(&(xo[WS(os, 1)]), VADD(TB, TC), ovs, &(xo[WS(os, 1)]));
321 	       }
322 	       {
323 		    V TF, TJ, TI, TK;
324 		    {
325 			 V TD, TE, TG, TH;
326 			 TD = VSUB(Tu, Tv);
327 			 TE = VADD(Te, T7);
328 			 TF = VADD(TD, TE);
329 			 TJ = VSUB(TD, TE);
330 			 TG = VADD(Tp, Tm);
331 			 TH = VSUB(Ty, Tx);
332 			 TI = VBYI(VADD(TG, TH));
333 			 TK = VBYI(VSUB(TH, TG));
334 		    }
335 		    ST(&(xo[WS(os, 13)]), VSUB(TF, TI), ovs, &(xo[WS(os, 1)]));
336 		    ST(&(xo[WS(os, 5)]), VADD(TJ, TK), ovs, &(xo[WS(os, 1)]));
337 		    ST(&(xo[WS(os, 3)]), VADD(TF, TI), ovs, &(xo[WS(os, 1)]));
338 		    ST(&(xo[WS(os, 11)]), VSUB(TJ, TK), ovs, &(xo[WS(os, 1)]));
339 	       }
340 	  }
341      }
342      VLEAVE();
343 }
344 
345 static const kdft_desc desc = { 16, XSIMD_STRING("n1fv_16"), { 68, 8, 4, 0 }, &GENUS, 0, 0, 0, 0 };
346 
XSIMD(codelet_n1fv_16)347 void XSIMD(codelet_n1fv_16) (planner *p) { X(kdft_register) (p, n1fv_16, &desc);
348 }
349 
350 #endif
351