1 /*
2  * Copyright (c) 2003, 2007-14 Matteo Frigo
3  * Copyright (c) 2003, 2007-14 Massachusetts Institute of Technology
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
18  *
19  */
20 
21 
22 #include "kernel/ifftw.h"
23 
signof(INT x)24 static int signof(INT x)
25 {
26      if (x < 0) return -1;
27      if (x == 0) return 0;
28      /* if (x > 0) */ return 1;
29 }
30 
31 /* total order among iodim's */
X(dimcmp)32 int X(dimcmp)(const iodim *a, const iodim *b)
33 {
34      INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
35      INT sao = X(iabs)(a->os), sbo = X(iabs)(b->os);
36      INT sam = X(imin)(sai, sao), sbm = X(imin)(sbi, sbo);
37 
38      /* in descending order of min{istride, ostride} */
39      if (sam != sbm)
40 	  return signof(sbm - sam);
41 
42      /* in case of a tie, in descending order of istride */
43      if (sbi != sai)
44           return signof(sbi - sai);
45 
46      /* in case of a tie, in descending order of ostride */
47      if (sbo != sao)
48           return signof(sbo - sao);
49 
50      /* in case of a tie, in ascending order of n */
51      return signof(a->n - b->n);
52 }
53 
canonicalize(tensor * x)54 static void canonicalize(tensor *x)
55 {
56      if (x->rnk > 1) {
57 	  qsort(x->dims, (unsigned)x->rnk, sizeof(iodim),
58 		(int (*)(const void *, const void *))X(dimcmp));
59      }
60 }
61 
compare_by_istride(const iodim * a,const iodim * b)62 static int compare_by_istride(const iodim *a, const iodim *b)
63 {
64      INT sai = X(iabs)(a->is), sbi = X(iabs)(b->is);
65 
66      /* in descending order of istride */
67      return signof(sbi - sai);
68 }
69 
really_compress(const tensor * sz)70 static tensor *really_compress(const tensor *sz)
71 {
72      int i, rnk;
73      tensor *x;
74 
75      A(FINITE_RNK(sz->rnk));
76      for (i = rnk = 0; i < sz->rnk; ++i) {
77           A(sz->dims[i].n > 0);
78           if (sz->dims[i].n != 1)
79                ++rnk;
80      }
81 
82      x = X(mktensor)(rnk);
83      for (i = rnk = 0; i < sz->rnk; ++i) {
84           if (sz->dims[i].n != 1)
85                x->dims[rnk++] = sz->dims[i];
86      }
87      return x;
88 }
89 
90 /* Like tensor_copy, but eliminate n == 1 dimensions, which
91    never affect any transform or transform vector.
92 
93    Also, we sort the tensor into a canonical order of decreasing
94    strides (see X(dimcmp) for an exact definition).  In general,
95    processing a loop/array in order of decreasing stride will improve
96    locality.  Both forward and backwards traversal of the tensor are
97    considered e.g. by vrank-geq1, so sorting in increasing
98    vs. decreasing order is not really important. */
X(tensor_compress)99 tensor *X(tensor_compress)(const tensor *sz)
100 {
101      tensor *x = really_compress(sz);
102      canonicalize(x);
103      return x;
104 }
105 
106 /* Return whether the strides of a and b are such that they form an
107    effective contiguous 1d array.  Assumes that a.is >= b.is. */
strides_contig(iodim * a,iodim * b)108 static int strides_contig(iodim *a, iodim *b)
109 {
110      return (a->is == b->is * b->n && a->os == b->os * b->n);
111 }
112 
113 /* Like tensor_compress, but also compress into one dimension any
114    group of dimensions that form a contiguous block of indices with
115    some stride.  (This can safely be done for transform vector sizes.) */
X(tensor_compress_contiguous)116 tensor *X(tensor_compress_contiguous)(const tensor *sz)
117 {
118      int i, rnk;
119      tensor *sz2, *x;
120 
121      if (X(tensor_sz)(sz) == 0)
122 	  return X(mktensor)(RNK_MINFTY);
123 
124      sz2 = really_compress(sz);
125      A(FINITE_RNK(sz2->rnk));
126 
127      if (sz2->rnk <= 1) { /* nothing to compress. */
128 	  if (0) {
129 	       /* this call is redundant, because "sz->rnk <= 1" implies
130 		  that the tensor is already canonical, but I am writing
131 		  it explicitly because "logically" we need to canonicalize
132 		  the tensor before returning. */
133 	       canonicalize(sz2);
134 	  }
135           return sz2;
136      }
137 
138      /* sort in descending order of |istride|, so that compressible
139 	dimensions appear contigously */
140      qsort(sz2->dims, (unsigned)sz2->rnk, sizeof(iodim),
141 		(int (*)(const void *, const void *))compare_by_istride);
142 
143      /* compute what the rank will be after compression */
144      for (i = rnk = 1; i < sz2->rnk; ++i)
145           if (!strides_contig(sz2->dims + i - 1, sz2->dims + i))
146                ++rnk;
147 
148      /* merge adjacent dimensions whenever possible */
149      x = X(mktensor)(rnk);
150      x->dims[0] = sz2->dims[0];
151      for (i = rnk = 1; i < sz2->rnk; ++i) {
152           if (strides_contig(sz2->dims + i - 1, sz2->dims + i)) {
153                x->dims[rnk - 1].n *= sz2->dims[i].n;
154                x->dims[rnk - 1].is = sz2->dims[i].is;
155                x->dims[rnk - 1].os = sz2->dims[i].os;
156           } else {
157                A(rnk < x->rnk);
158                x->dims[rnk++] = sz2->dims[i];
159           }
160      }
161 
162      X(tensor_destroy)(sz2);
163 
164      /* reduce to canonical form */
165      canonicalize(x);
166      return x;
167 }
168 
169 /* The inverse of X(tensor_append): splits the sz tensor into
170    tensor a followed by tensor b, where a's rank is arnk. */
X(tensor_split)171 void X(tensor_split)(const tensor *sz, tensor **a, int arnk, tensor **b)
172 {
173      A(FINITE_RNK(sz->rnk) && FINITE_RNK(arnk));
174 
175      *a = X(tensor_copy_sub)(sz, 0, arnk);
176      *b = X(tensor_copy_sub)(sz, arnk, sz->rnk - arnk);
177 }
178 
179 /* TRUE if the two tensors are equal */
X(tensor_equal)180 int X(tensor_equal)(const tensor *a, const tensor *b)
181 {
182      if (a->rnk != b->rnk)
183 	  return 0;
184 
185      if (FINITE_RNK(a->rnk)) {
186 	  int i;
187 	  for (i = 0; i < a->rnk; ++i)
188 	       if (0
189 		   || a->dims[i].n != b->dims[i].n
190 		   || a->dims[i].is != b->dims[i].is
191 		   || a->dims[i].os != b->dims[i].os
192 		    )
193 		    return 0;
194      }
195 
196      return 1;
197 }
198 
199 /* TRUE if the sets of input and output locations described by
200    (append sz vecsz) are the same */
X(tensor_inplace_locations)201 int X(tensor_inplace_locations)(const tensor *sz, const tensor *vecsz)
202 {
203      tensor *t = X(tensor_append)(sz, vecsz);
204      tensor *ti = X(tensor_copy_inplace)(t, INPLACE_IS);
205      tensor *to = X(tensor_copy_inplace)(t, INPLACE_OS);
206      tensor *tic = X(tensor_compress_contiguous)(ti);
207      tensor *toc = X(tensor_compress_contiguous)(to);
208 
209      int retval = X(tensor_equal)(tic, toc);
210 
211      X(tensor_destroy)(t);
212      X(tensor_destroy4)(ti, to, tic, toc);
213 
214      return retval;
215 }
216