1% generated by GAPDoc2LaTeX from XML source (Frank Luebeck)
2\documentclass[a4paper,11pt]{report}
3
4\usepackage[top=37mm,bottom=37mm,left=27mm,right=27mm]{geometry}
5\sloppy
6\pagestyle{myheadings}
7\usepackage{amssymb}
8\usepackage[latin1]{inputenc}
9\usepackage{makeidx}
10\makeindex
11\usepackage{color}
12\definecolor{FireBrick}{rgb}{0.5812,0.0074,0.0083}
13\definecolor{RoyalBlue}{rgb}{0.0236,0.0894,0.6179}
14\definecolor{RoyalGreen}{rgb}{0.0236,0.6179,0.0894}
15\definecolor{RoyalRed}{rgb}{0.6179,0.0236,0.0894}
16\definecolor{LightBlue}{rgb}{0.8544,0.9511,1.0000}
17\definecolor{Black}{rgb}{0.0,0.0,0.0}
18
19\definecolor{linkColor}{rgb}{0.0,0.0,0.554}
20\definecolor{citeColor}{rgb}{0.0,0.0,0.554}
21\definecolor{fileColor}{rgb}{0.0,0.0,0.554}
22\definecolor{urlColor}{rgb}{0.0,0.0,0.554}
23\definecolor{promptColor}{rgb}{0.0,0.0,0.589}
24\definecolor{brkpromptColor}{rgb}{0.589,0.0,0.0}
25\definecolor{gapinputColor}{rgb}{0.589,0.0,0.0}
26\definecolor{gapoutputColor}{rgb}{0.0,0.0,0.0}
27
28%%  for a long time these were red and blue by default,
29%%  now black, but keep variables to overwrite
30\definecolor{FuncColor}{rgb}{0.0,0.0,0.0}
31%% strange name because of pdflatex bug:
32\definecolor{Chapter }{rgb}{0.0,0.0,0.0}
33\definecolor{DarkOlive}{rgb}{0.1047,0.2412,0.0064}
34
35
36\usepackage{fancyvrb}
37
38\usepackage{mathptmx,helvet}
39\usepackage[T1]{fontenc}
40\usepackage{textcomp}
41
42
43\usepackage[
44            pdftex=true,
45            bookmarks=true,
46            a4paper=true,
47            pdftitle={Written with GAPDoc},
48            pdfcreator={LaTeX with hyperref package / GAPDoc},
49            colorlinks=true,
50            backref=page,
51            breaklinks=true,
52            linkcolor=linkColor,
53            citecolor=citeColor,
54            filecolor=fileColor,
55            urlcolor=urlColor,
56            pdfpagemode={UseNone},
57           ]{hyperref}
58
59\newcommand{\maintitlesize}{\fontsize{50}{55}\selectfont}
60
61% write page numbers to a .pnr log file for online help
62\newwrite\pagenrlog
63\immediate\openout\pagenrlog =\jobname.pnr
64\immediate\write\pagenrlog{PAGENRS := [}
65\newcommand{\logpage}[1]{\protect\write\pagenrlog{#1, \thepage,}}
66%% were never documented, give conflicts with some additional packages
67
68\newcommand{\GAP}{\textsf{GAP}}
69
70%% nicer description environments, allows long labels
71\usepackage{enumitem}
72\setdescription{style=nextline}
73
74%% depth of toc
75\setcounter{tocdepth}{1}
76
77
78
79
80
81%% command for ColorPrompt style examples
82\newcommand{\gapprompt}[1]{\color{promptColor}{\bfseries #1}}
83\newcommand{\gapbrkprompt}[1]{\color{brkpromptColor}{\bfseries #1}}
84\newcommand{\gapinput}[1]{\color{gapinputColor}{#1}}
85
86
87\begin{document}
88
89\logpage{[ 0, 0, 0 ]}
90\begin{titlepage}
91\mbox{}\vfill
92
93\begin{center}{\maintitlesize \textbf{NoCK\mbox{}}}\\
94\vfill
95
96\hypersetup{pdftitle=NoCK}
97\markright{\scriptsize \mbox{}\hfill NoCK \hfill\mbox{}}
98{\Huge \textbf{Computing obstruction for the existence of compact Clifford-Klein form\mbox{}}}\\
99\vfill
100
101{\Huge Version 1.4\mbox{}}\\[1cm]
102{October 2019 \mbox{}}\\[1cm]
103\mbox{}\\[2cm]
104{\Large \textbf{ Maciej Boche{\a'n}ski   \mbox{}}}\\
105{\Large \textbf{ Piotr Jastrz{\k e}bski    \mbox{}}}\\
106{\Large \textbf{ Anna Szczepkowska   \mbox{}}}\\
107{\Large \textbf{ Aleksy Tralle    \mbox{}}}\\
108{\Large \textbf{ Artur Woike    \mbox{}}}\\
109\hypersetup{pdfauthor= Maciej Boche{\a'n}ski   ;  Piotr Jastrz{\k e}bski    ;  Anna Szczepkowska   ;  Aleksy Tralle    ;  Artur Woike    }
110\end{center}\vfill
111
112\mbox{}\\
113{\mbox{}\\
114\small \noindent \textbf{ Maciej Boche{\a'n}ski   }  Email: \href{mailto://mabo@matman.uwm.edu.pl} {\texttt{mabo@matman.uwm.edu.pl}}\\
115  Address: \begin{minipage}[t]{8cm}\noindent
116 Faculty of Mathematics and Computer Science,\\
117 University of Warmia and Mazury in Olsztyn\\
118 Sloneczna 54 Street, \\
119 10-710 Olsztyn, Poland \end{minipage}
120}\\
121{\mbox{}\\
122\small \noindent \textbf{ Piotr Jastrz{\k e}bski    }  Email: \href{mailto://piojas@matman.uwm.edu.pl} {\texttt{piojas@matman.uwm.edu.pl}}\\
123  Homepage: \href{http://wmii.uwm.edu.pl/~piojas/} {\texttt{http://wmii.uwm.edu.pl/\texttt{\symbol{126}}piojas/}}\\
124  Address: \begin{minipage}[t]{8cm}\noindent
125 Faculty of Mathematics and Computer Science,\\
126 University of Warmia and Mazury in Olsztyn\\
127 Sloneczna 54 Street, \\
128 10-710 Olsztyn, Poland \end{minipage}
129}\\
130{\mbox{}\\
131\small \noindent \textbf{ Anna Szczepkowska   }  Email: \href{mailto://anna.szczepkowska@matman.uwm.edu.pl} {\texttt{anna.szczepkowska@matman.uwm.edu.pl}}\\
132  Address: \begin{minipage}[t]{8cm}\noindent
133 Faculty of Mathematics and Computer Science,\\
134 University of Warmia and Mazury in Olsztyn\\
135 Sloneczna 54 Street, \\
136 10-710 Olsztyn, Poland \end{minipage}
137}\\
138{\mbox{}\\
139\small \noindent \textbf{ Aleksy Tralle    }  Email: \href{mailto://tralle@matman.uwm.edu.pl} {\texttt{tralle@matman.uwm.edu.pl}}\\
140  Homepage: \href{http://wmii.uwm.edu.pl/~tralle/} {\texttt{http://wmii.uwm.edu.pl/\texttt{\symbol{126}}tralle/}}\\
141  Address: \begin{minipage}[t]{8cm}\noindent
142 Faculty of Mathematics and Computer Science,\\
143 University of Warmia and Mazury in Olsztyn\\
144 Sloneczna 54 Street, \\
145 10-710 Olsztyn, Poland \end{minipage}
146}\\
147{\mbox{}\\
148\small \noindent \textbf{ Artur Woike    }  Email: \href{mailto://awoike@matman.uwm.edu.pl} {\texttt{awoike@matman.uwm.edu.pl}}\\
149  Homepage: \href{http://wmii.uwm.edu.pl/~awoike/} {\texttt{http://wmii.uwm.edu.pl/\texttt{\symbol{126}}awoike/}}\\
150  Address: \begin{minipage}[t]{8cm}\noindent
151 Faculty of Mathematics and Computer Science,\\
152 University of Warmia and Mazury in Olsztyn\\
153 Sloneczna 54 Street, \\
154 10-710 Olsztyn, Poland \end{minipage}
155}\\
156\end{titlepage}
157
158\newpage\setcounter{page}{2}
159{\small
160\section*{Abstract}
161\logpage{[ 0, 0, 1 ]}
162 In this package we develop functions for an algorithm designed to find
163homogeneous spaces of semisimple non-compact Lie groups which do not admit
164compact Clifford-Klein forms. \mbox{}}\\[1cm]
165{\small
166\section*{Copyright}
167\logpage{[ 0, 0, 3 ]}
168 NoCK Package is free software; you can redistribute it and/or modify it under
169the terms of the \href{http://www.fsf.org/licenses/gpl.html} {GNU General Public License} as published by the Free Software Foundation; either version 2 of the License,
170or (at your option) any later version. \mbox{}}\\[1cm]
171{\small
172\section*{Acknowledgements}
173\logpage{[ 0, 0, 2 ]}
174 We thank Willem de Graaf for his help in getting some literature sources. \mbox{}}\\[1cm]
175\newpage
176
177\def\contentsname{Contents\logpage{[ 0, 0, 4 ]}}
178
179\tableofcontents
180\newpage
181
182
183\chapter{\textcolor{Chapter }{Notation}}\logpage{[ 1, 0, 0 ]}
184\hyperdef{L}{X7DD31B407B9402A3}{}
185{
186  We use the notation and convention for real Lie algebras as is from CoReLG
187Package, \cite{CoReLG}.
188\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
189  !gapprompt@gap>| !gapinput@G:=RealFormById( "E", 7,3);
190|
191  <Lie algebra of dimension 133 over SqrtField>
192  !gapprompt@gap>| !gapinput@rankG:=Dimension(CartanSubalgebra(G));
193|
194  7
195  !gapprompt@gap>| !gapinput@rankRG:=Dimension(CartanSubspace(G));
196|
197  3
198  !gapprompt@gap>| !gapinput@dimG:=Dimension(G);
199|
200  133
201  !gapprompt@gap>| !gapinput@P:=CartanDecomposition( G ).P;
202|
203  <vector space over SqrtField, with 54 generators>
204  !gapprompt@gap>| !gapinput@dimPforG:=Dimension(P);
205|
206  54
207  !gapprompt@gap>| !gapinput@K:=CartanDecomposition( G ).K;
208|
209  <Lie algebra of dimension 79 over SqrtField>
210  !gapprompt@gap>| !gapinput@rankK:= Dimension(CartanSubalgebra(K));
211|
212  7
213  !gapprompt@gap>| !gapinput@dimK:= Dimension(K);
214|
215  79
216\end{Verbatim}
217 Classification can be found in Table 9 in \cite{onvin}, p. 312-317. }
218
219
220\chapter{\textcolor{Chapter }{Obstruction for the existence of compact Clifford-Klein form}}\logpage{[ 2, 0, 0 ]}
221\hyperdef{L}{X7DD2840E797415E3}{}
222{
223  In this chapter we describe functions for algorithm from \cite{our}.
224\section{\textcolor{Chapter }{Technical functions}}\logpage{[ 2, 1, 0 ]}
225\hyperdef{L}{X805C42557996F58A}{}
226{
227
228
229\subsection{\textcolor{Chapter }{NonCompactDimension}}
230\logpage{[ 2, 1, 1 ]}\nobreak
231\hyperdef{L}{X832D9E887973AABE}{}
232{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{NonCompactDimension({\mdseries\slshape G})\index{NonCompactDimension@\texttt{NonCompactDimension}}
233\label{NonCompactDimension}
234}\hfill{\scriptsize (function)}}\\
235
236
237 For a real Lie algebra $G$ constructed by the function \mbox{\texttt{\mdseries\slshape RealFormById}} (from \cite{CoReLG}), this function returns the non-compact dimension of $G$ (dimension of a non-compact part in Cartan decomposition of $G$).
238\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
239  !gapprompt@gap>| !gapinput@G:=RealFormById("E",6,2); # E6(6)
240|
241  <Lie algebra of dimension 78 over SqrtField>
242  !gapprompt@gap>| !gapinput@dG:=NonCompactDimension(G);
243|
244  42
245\end{Verbatim}
246 }
247
248
249
250\subsection{\textcolor{Chapter }{PCoefficients}}
251\logpage{[ 2, 1, 2 ]}\nobreak
252\hyperdef{L}{X868FC1B77B4B4D4C}{}
253{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PCoefficients({\mdseries\slshape type, rank})\index{PCoefficients@\texttt{PCoefficients}}
254\label{PCoefficients}
255}\hfill{\scriptsize (function)}}\\
256
257
258 Let $G$ be a compact connected Lie group of the type \mbox{\texttt{\mdseries\slshape type}} and the rank \mbox{\texttt{\mdseries\slshape rank}}. Let $\Lambda\,P_{G}=\Lambda (y_1,...,y_l)$ be the exterior algebra over the spaces $P_G$ of the primitive elements in $H^*(G)$. Denote the degrees as follows $|y_j|=2p_j-1,j=1,...,l$. This function returns coefficients $p_1,\ldots,p_l$.
259\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
260  !gapprompt@gap>| !gapinput@PCoefficients("D",5);
261|
262  [ 2, 4, 6, 8, 5 ]
263\end{Verbatim}
264 }
265
266
267
268\subsection{\textcolor{Chapter }{PCalculate}}
269\logpage{[ 2, 1, 3 ]}\nobreak
270\hyperdef{L}{X827DC41787C8BC7B}{}
271{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{PCalculate({\mdseries\slshape pi, qi})\index{PCalculate@\texttt{PCalculate}}
272\label{PCalculate}
273}\hfill{\scriptsize (function)}}\\
274
275
276 Here $pi=\{ p_1,\ldots,p_l\}$ and $qi=\{ q_1,\ldots,q_m\}$ are sets of coefficients ($l\geq m$). This function returns the polynomial: $P(t)=\prod_{j=m+1}^l(1+t^{2p_j-1})\prod_{i=1}^m(1-t^{2p_i})/(1-t^{2q_i})$.
277\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
278  !gapprompt@gap>| !gapinput@PCalculate([4,2,3],[2,2]);
279|
280  t^9+t^5+t^4+1
281\end{Verbatim}
282 }
283
284
285
286\subsection{\textcolor{Chapter }{AllZeroDH}}
287\logpage{[ 2, 1, 4 ]}\nobreak
288\hyperdef{L}{X87164CA87A56E5B8}{}
289{\noindent\textcolor{FuncColor}{$\triangleright$\enspace\texttt{AllZeroDH({\mdseries\slshape type, rank, id})\index{AllZeroDH@\texttt{AllZeroDH}}
290\label{AllZeroDH}
291}\hfill{\scriptsize (function)}}\\
292
293
294 Let $G^C$ be a complex Lie algebra of the type \mbox{\texttt{\mdseries\slshape type}} and the rank \mbox{\texttt{\mdseries\slshape rank}}. Let $G$ be a real form of $G^C$ with the index \mbox{\texttt{\mdseries\slshape id}} (see \mbox{\texttt{\mdseries\slshape RealFormsInformation}},\cite{CoReLG}). This function returns the set of degrees of $P(t)$ that have zero coefficients over all permutation (see Section 7 in \cite{our}).
295\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
296  !gapprompt@gap>| !gapinput@AllZeroDH("F",4,2);
297|
298  [ 1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27 ]
299\end{Verbatim}
300 }
301
302 }
303
304 }
305
306
307\chapter{\textcolor{Chapter }{Algorithm example}}\logpage{[ 3, 0, 0 ]}
308\hyperdef{L}{X7F57F15D7A4099A1}{}
309{
310  In this chapter we use additionaly functions from the following packages:
311CoReLG \cite{CoReLG} and SLA \cite{SLA}. We will show in detail the split case (for a non-split case you should use
312algoritm to generate regular subalgebras from \cite{DFG}). For example, we take $G=\mathfrak{e}_{6(6)}$ (tuple "E",6,2 in CoReLG notation). We calculate \mbox{\texttt{\mdseries\slshape AllZeroDH}} on it.
313\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
314  !gapprompt@gap>| !gapinput@AllZeroDH("E",6,2);
315|
316  [ 1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13, 14, 15, 18, 19, 20, 21, 22, 23, 24, 27,
317   28, 29, 30, 31, 32, 35, 36, 37, 38, 39, 40, 41 ]
318\end{Verbatim}
319 We generate all regular subalgebras of complexification.
320\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
321  !gapprompt@gap>| !gapinput@GC:=SimpleLieAlgebra("E",6,Rationals);;
322|
323  !gapprompt@gap>| !gapinput@REG:=RegularSemisimpleSubalgebras(GC);;
324|
325  !gapprompt@gap>| !gapinput@L0:=List( REG, SemiSimpleType );
326|
327  [ "A1", "A1 A1", "A2 A1", "A4", "D5", "A4 A1", "A2 A1 A1", "A2 A1 A2", "A3 A1",
328   "A1 A1 A1", "A2", "A3", "A5", "A2 A2", "D4", "A5 A1", "A3 A1 A1", "A1 A1 A1 A1",
329   "A2 A2 A2" ]
330\end{Verbatim}
331 For each subalgebras we take the split real form and calculate its non-compact
332dimension.
333\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
334  !gapprompt@gap>| !gapinput@L0[4];
335|
336  "A4"
337  !gapprompt@gap>| !gapinput@RealFormsInformation( "A", 4 );
338|
339
340    There are 4 simple real forms with complexification A4
341      1 is of type su(5), compact form
342      2 - 3 are of type su(p,5-p) with 1 <= p <= 2
343      4 is of type sl(5,R)
344    Index '0' returns the realification of A4
345
346  !gapprompt@gap>| !gapinput@G:=RealFormById("A",4,4);;
347|
348  !gapprompt@gap>| !gapinput@NonCompactDimension( G );
349|
350  14
351\end{Verbatim}
352 Number 14 is in output of \mbox{\texttt{\mdseries\slshape AllZeroDH}} function, so for $\mathfrak{g}=e_{6(6)}$ and $\mathfrak{h}=\mathfrak{sl}(5,\mathbb{R})$ corresponding homogeneous spaces $G/H$ do not have compact Clifford{\textendash}Klein forms.
353\begin{Verbatim}[commandchars=!@|,fontsize=\small,frame=single,label=Example]
354  !gapprompt@gap>| !gapinput@L0[5];
355|
356  "D5"
357  !gapprompt@gap>| !gapinput@RealFormsInformation( "D", 5 );
358|
359
360    There are 7 simple real forms with complexification D5
361      1 is of type so(10), compact form
362      2 - 3 are of type so(2p,10-2p) with 1 <= p <= 2
363      4 is of type so*(10)
364      5 is of type so(9,1)
365      6 - 7 are of type so(2p+1,10-2p-1) with 1 <= p <= 2
366    Index '0' returns the realification of D5
367
368  !gapprompt@gap>| !gapinput@G:=RealFormById("D",5,7);;
369|
370  !gapprompt@gap>| !gapinput@NonCompactDimension( G );
371|
372  25
373\end{Verbatim}
374 Number 25 is not in output of \mbox{\texttt{\mdseries\slshape AllZeroDH}} function, so for $\mathfrak{g}=e_{6(6)}$ and $\mathfrak{h}=\mathfrak{so}(5,5)$ our algoritm does not provide a solution to the problem. }
375
376 \def\bibname{References\logpage{[ "Bib", 0, 0 ]}
377\hyperdef{L}{X7A6F98FD85F02BFE}{}
378}
379
380\bibliographystyle{alpha}
381\bibliography{NoCKbib.xml}
382
383\addcontentsline{toc}{chapter}{References}
384
385\def\indexname{Index\logpage{[ "Ind", 0, 0 ]}
386\hyperdef{L}{X83A0356F839C696F}{}
387}
388
389\cleardoublepage
390\phantomsection
391\addcontentsline{toc}{chapter}{Index}
392
393
394\printindex
395
396\newpage
397\immediate\write\pagenrlog{["End"], \arabic{page}];}
398\immediate\closeout\pagenrlog
399\end{document}
400