1#SIXFORMAT GapDocGAP 2HELPBOOKINFOSIXTMP := rec( 3encoding := "UTF-8", 4bookname := "RCWA", 5entries := 6[ [ "Title page", ".", [ 0, 0, 0 ], 1, 1, "title page", "X7D2C85EC87DD46E5" ], 7 [ "Abstract", ".-1", [ 0, 0, 1 ], 24, 2, "abstract", "X7AA6C5737B711C89" ], 8 [ "Copyright", ".-2", [ 0, 0, 2 ], 49, 2, "copyright", "X81488B807F2A1CF1" ] 9 , [ "Acknowledgements", ".-3", [ 0, 0, 3 ], 68, 2, "acknowledgements", 10 "X82A988D47DFAFCFA" ], 11 [ "Table of Contents", ".-4", [ 0, 0, 4 ], 80, 3, "table of contents", 12 "X8537FEB07AF2BEC8" ], 13 [ "\033[1X\033[33X\033[0;-2YAbout the RCWA Package\033[133X\033[101X", "1", 14 [ 1, 0, 0 ], 1, 5, "about the rcwa package", "X83A8C2927FAE2C23" ], 15 [ 16 "\033[1X\033[33X\033[0;-2YResidue-Class-Wise Affine Mappings\033[133X\033[1\ 1701X", "2", [ 2, 0, 0 ], 1, 7, "residue-class-wise affine mappings", 18 "X7FD73FCB8510050E" ], 19 [ "\033[1X\033[33X\033[0;-2YBasic definitions\033[133X\033[101X", "2.1", 20 [ 2, 1, 0 ], 12, 7, "basic definitions", "X78ED07E37FC2BD46" ], 21 [ 22 "\033[1X\033[33X\033[0;-2YEntering residue-class-wise affine mappings\033[1\ 2333X\033[101X", "2.2", [ 2, 2, 0 ], 56, 8, 24 "entering residue-class-wise affine mappings", "X86BC55648302D643" ], 25 [ 26 "\033[1X\033[33X\033[0;-2YRcwaMapping (the general constructor)\033[133X\\ 27033[101X", "2.2-5", [ 2, 2, 5 ], 304, 12, 28 "rcwamapping the general constructor", "X8799551B83644B37" ], 29 [ 30 "\033[1X\033[33X\033[0;-2YBasic arithmetic for residue-class-wise affine ma\ 31ppings\033[133X\033[101X", "2.3", [ 2, 3, 0 ], 481, 14, 32 "basic arithmetic for residue-class-wise affine mappings", 33 "X78E796B8824C4FC8" ], 34 [ 35 "\033[1X\033[33X\033[0;-2YAttributes and properties of residue-class-wise a\ 36ffine mappings\033[133X\033[101X", "2.4", [ 2, 4, 0 ], 605, 16, 37 "attributes and properties of residue-class-wise affine mappings", 38 "X7C16D22C7BD40FDC" ], 39 [ 40 "\033[1X\033[33X\033[0;-2YFactoring residue-class-wise affine permutations\\ 41033[133X\033[101X", "2.5", [ 2, 5, 0 ], 814, 20, 42 "factoring residue-class-wise affine permutations", "X8475F844869DD060" 43 ], 44 [ 45 "\033[1X\033[33X\033[0;-2YExtracting roots of residue-class-wise affine map\ 46pings\033[133X\033[101X", "2.6", [ 2, 6, 0 ], 1011, 23, 47 "extracting roots of residue-class-wise affine mappings", 48 "X8141065381B0942B" ], 49 [ 50 "\033[1X\033[33X\033[0;-2YSpecial functions for non-bijective mappings\033[\ 51133X\033[101X", "2.7", [ 2, 7, 0 ], 1043, 24, 52 "special functions for non-bijective mappings", "X8322C6848305EC4C" ], 53 [ "\033[1X\033[33X\033[0;-2YOn trajectories and cycles of residue-class-wise\ 54 affine mappings\033[133X\033[101X", "2.8", [ 2, 8, 0 ], 1117, 25, 55 "on trajectories and cycles of residue-class-wise affine mappings", 56 "X7A34724386A2E9F3" ], 57 [ 58 "\033[1X\033[33X\033[0;-2YTrajectory (methods for rcwa mappings)\033[133X\\ 59033[101X", "2.8-1", [ 2, 8, 1 ], 1122, 25, 60 "trajectory methods for rcwa mappings", "X7C72174D7CCB6348" ], 61 [ 62 "\033[1X\033[33X\033[0;-2YTrajectory (methods for rcwa mappings -- \033[21X\ 63accumulated coefficients\033[121X\033[101X\027\033[1X\027)\033[133X\033[101X", 64 "2.8-2", [ 2, 8, 2 ], 1156, 25, 65 "trajectory methods for rcwa mappings -- accumulated coefficients", 66 "X7FFD09837E934853" ], 67 [ 68 "\033[1X\033[33X\033[0;-2YIncreasingOn & DecreasingOn (for an rcwa mapping)\ 69\033[133X\033[101X", "2.8-3", [ 2, 8, 3 ], 1185, 26, 70 "increasingon & decreasingon for an rcwa mapping", "X7E0244A386744185" ] 71 , 72 [ 73 "\033[1X\033[33X\033[0;-2YSources & Sinks (of an rcwa mapping)\033[133X\\ 74033[101X", "2.8-8", [ 2, 8, 8 ], 1295, 28, 75 "sources & sinks of an rcwa mapping", "X81DBA2D58526BE7E" ], 76 [ 77 "\033[1X\033[33X\033[0;-2YSaving memory -- the sparse representation of rcw\ 78a mappings\033[133X\033[101X", "2.9", [ 2, 9, 0 ], 1415, 30, 79 "saving memory -- the sparse representation of rcwa mappings", 80 "X86F0E0D17E6A9663" ], 81 [ 82 "\033[1X\033[33X\033[0;-2YThe categories and families of rcwa mappings\033[\ 83133X\033[101X", "2.10", [ 2, 10, 0 ], 1499, 31, 84 "the categories and families of rcwa mappings", "X83FA71DD842377F0" ], 85 [ "\033[1X\033[33X\033[0;-2YResidue-Class-Wise Affine Groups\033[133X\033[10\ 861X", "3", [ 3, 0, 0 ], 1, 32, "residue-class-wise affine groups", 87 "X874A3BB684F0639A" ], 88 [ 89 "\033[1X\033[33X\033[0;-2YConstructing residue-class-wise affine groups\\ 90033[133X\033[101X", "3.1", [ 3, 1, 0 ], 7, 32, 91 "constructing residue-class-wise affine groups", "X81242A6586A604A3" ], 92 [ "\033[1X\033[33X\033[0;-2YWreathProduct (for an rcwa group over Z, with a \ 93permutation group or (\342\204\244,+))\033[133X\033[101X", "3.1-3", 94 [ 3, 1, 3 ], 86, 33, 95 "wreathproduct for an rcwa group over z with a permutation group or a\ 96\204\244 +", "X80D13D2A7AD73C2C" ], 97 [ 98 "\033[1X\033[33X\033[0;-2YRestriction (of an rcwa mapping or -group, by an \ 99injective rcwa mapping)\033[133X\033[101X", "3.1-6", [ 3, 1, 6 ], 214, 35, 100 "restriction of an rcwa mapping or -group by an injective rcwa mapping", 101 "X852EF2C079E4D7FF" ], 102 [ 103 "\033[1X\033[33X\033[0;-2YInduction (of an rcwa mapping or -group, by an in\ 104jective rcwa mapping)\033[133X\033[101X", "3.1-7", [ 3, 1, 7 ], 242, 36, 105 "induction of an rcwa mapping or -group by an injective rcwa mapping", 106 "X82171D7287CBED95" ], 107 [ 108 "\033[1X\033[33X\033[0;-2YBasic routines for investigating residue-class-wi\ 109se affine groups\033[133X\033[101X", "3.2", [ 3, 2, 0 ], 395, 38, 110 "basic routines for investigating residue-class-wise affine groups", 111 "X80C042BE82EE0F9A" ], 112 [ 113 "\033[1X\033[33X\033[0;-2YThe natural action of an rcwa group on the underl\ 114ying ring\033[133X\033[101X", "3.3", [ 3, 3, 0 ], 675, 43, 115 "the natural action of an rcwa group on the underlying ring", 116 "X8151BE577FFDCE87" ], 117 [ 118 "\033[1X\033[33X\033[0;-2YOrbit (for an rcwa group and either a point or a \ 119set)\033[133X\033[101X", "3.3-1", [ 3, 3, 1 ], 797, 45, 120 "orbit for an rcwa group and either a point or a set", 121 "X7C046BE97EE53692" ], 122 [ 123 "\033[1X\033[33X\033[0;-2YShortOrbits (for rcwa groups) & ShortCycles (for \ 124rcwa permutations)\033[133X\033[101X", "3.3-4", [ 3, 3, 4 ], 925, 47, 125 "shortorbits for rcwa groups & shortcycles for rcwa permutations", 126 "X78F145197F63A25D" ], 127 [ 128 "\033[1X\033[33X\033[0;-2YShortResidueClassOrbits & ShortResidueClassCycles\ 129\033[133X\033[101X", "3.3-5", [ 3, 3, 5 ], 980, 48, 130 "shortresidueclassorbits & shortresidueclasscycles", 131 "X80D18D0778A96C16" ], 132 [ 133 "\033[1X\033[33X\033[0;-2YBall (for group, element and radius or group, poi\ 134nt, radius and action)\033[133X\033[101X", "3.3-9", [ 3, 3, 9 ], 1144, 51, 135 "ball for group element and radius or group point radius and action", 136 "X8735855587CC029F" ], 137 [ 138 "\033[1X\033[33X\033[0;-2YSpecial attributes of tame residue-class-wise aff\ 139ine groups\033[133X\033[101X", "3.4", [ 3, 4, 0 ], 1384, 55, 140 "special attributes of tame residue-class-wise affine groups", 141 "X781CBEFA7F39B58D" ], 142 [ 143 "\033[1X\033[33X\033[0;-2YRespectedPartition (of a tame rcwa group or -perm\ 144utation)\033[133X\033[101X", "3.4-1", [ 3, 4, 1 ], 1396, 55, 145 "respectedpartition of a tame rcwa group or -permutation", 146 "X7F523A6B87825AB8" ], 147 [ 148 "\033[1X\033[33X\033[0;-2YActionOnRespectedPartition & KernelOfActionOnResp\ 149ectedPartition\033[133X\033[101X", "3.4-2", [ 3, 4, 2 ], 1430, 56, 150 "actiononrespectedpartition & kernelofactiononrespectedpartition", 151 "X831ADC1584DE6113" ], 152 [ 153 "\033[1X\033[33X\033[0;-2YGenerating pseudo-random elements of RCWA(R) and \ 154CT(R)\033[133X\033[101X", "3.5", [ 3, 5, 0 ], 1492, 57, 155 "generating pseudo-random elements of rcwa r and ct r", 156 "X81941A247942FB99" ], 157 [ 158 "\033[1X\033[33X\033[0;-2YThe categories of residue-class-wise affine group\ 159s\033[133X\033[101X", "3.6", [ 3, 6, 0 ], 1540, 58, 160 "the categories of residue-class-wise affine groups", 161 "X86327F6C83D09798" ], 162 [ 163 "\033[1X\033[33X\033[0;-2YResidue-Class-Wise Affine Monoids\033[133X\033[10\ 1641X", "4", [ 4, 0, 0 ], 1, 59, "residue-class-wise affine monoids", 165 "X81C90F7C7BA25BDF" ], 166 [ 167 "\033[1X\033[33X\033[0;-2YConstructing residue-class-wise affine monoids\\ 168033[133X\033[101X", "4.1", [ 4, 1, 0 ], 8, 59, 169 "constructing residue-class-wise affine monoids", "X83D42E26849D5580" ], 170 [ "\033[1X\033[33X\033[0;-2YComputing with residue-class-wise affine monoids\ 171\033[133X\033[101X", "4.2", [ 4, 2, 0 ], 78, 60, 172 "computing with residue-class-wise affine monoids", "X8759954F7EB1A658" 173 ], 174 [ 175 "\033[1X\033[33X\033[0;-2YBall (for monoid, element and radius or monoid, p\ 176oint, radius and action)\033[133X\033[101X", "4.2-2", [ 4, 2, 2 ], 165, 62, 177 "ball for monoid element and radius or monoid point radius and action", 178 "X787848137DF1C245" ], 179 [ 180 "\033[1X\033[33X\033[0;-2YResidue-Class-Wise Affine Mappings, Groups and Mo\ 181noids over \033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027\033[133X\ 182\033[101X", "5", [ 5, 0, 0 ], 1, 63, 183 "residue-class-wise affine mappings groups and monoids over a\204\244^2" 184 , "X788EB00B82897762" ], 185 [ 186 "\033[1X\033[33X\033[0;-2YThe definition of residue-class-wise affine mappi\ 187ngs of \033[22X\342\204\244^d\033[122X\033[101X\027\033[1X\027\033[133X\033[10\ 1881X", "5.1", [ 5, 1, 0 ], 22, 63, 189 "the definition of residue-class-wise affine mappings of a\204\244^d", 190 "X781907CA785CC7AC" ], 191 [ 192 "\033[1X\033[33X\033[0;-2YEntering residue-class-wise affine mappings of \\ 193033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 194 "5.2", [ 5, 2, 0 ], 44, 64, 195 "entering residue-class-wise affine mappings of a\204\244^2", 196 "X7A39FCF08030AB9B" ], 197 [ 198 "\033[1X\033[33X\033[0;-2YRcwaMapping (the general constructor; methods for\ 199 \033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027)\033[133X\033[101X", 200 "5.2-1", [ 5, 2, 1 ], 52, 64, 201 "rcwamapping the general constructor methods for a\204\244^2", 202 "X790649618012C606" ], 203 [ 204 "\033[1X\033[33X\033[0;-2YClassTransposition (for \033[22X\342\204\244^2\\ 205033[122X\033[101X\027\033[1X\027)\033[133X\033[101X", "5.2-2", [ 5, 2, 2 ], 206 201, 66, "classtransposition for a\204\244^2", "X7B450EE17B465E02" ], 207 [ 208 "\033[1X\033[33X\033[0;-2YClassRotation (for \033[22X\342\204\244^2\033[122\ 209X\033[101X\027\033[1X\027)\033[133X\033[101X", "5.2-3", [ 5, 2, 3 ], 267, 67, 210 "classrotation for a\204\244^2", "X828438127DDAEBB4" ], 211 [ 212 "\033[1X\033[33X\033[0;-2YClassShift (for \033[22X\342\204\244^2\033[122X\\ 213033[101X\027\033[1X\027)\033[133X\033[101X", "5.2-4", [ 5, 2, 4 ], 304, 68, 214 "classshift for a\204\244^2", "X7A14A8F48247E651" ], 215 [ 216 "\033[1X\033[33X\033[0;-2YMethods for residue-class-wise affine mappings of\ 217 \033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027\033[133X\033[101X", 218 "5.3", [ 5, 3, 0 ], 342, 69, 219 "methods for residue-class-wise affine mappings of a\204\244^2", 220 "X8531E39785FFF8A7" ], 221 [ 222 "\033[1X\033[33X\033[0;-2YMethods for residue-class-wise affine groups and \ 223-monoids over \033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027\033[133X\ 224\033[101X", "5.4", [ 5, 4, 0 ], 407, 70, 225 "methods for residue-class-wise affine groups and -monoids over a\204\ 226\244^2", "X83A1752F7BE9CE85" ], 227 [ 228 "\033[1X\033[33X\033[0;-2YIsomorphismRcwaGroup (Embeddings of SL(2,\342\\ 229204\244) and GL(2,\342\204\244))\033[133X\033[101X", "5.4-1", [ 5, 4, 1 ], 230 424, 70, 231 "isomorphismrcwagroup embeddings of sl 2 a\204\244 and gl 2 a\204\244", 232 "X79A8F9AD7E839862" ], 233 [ "\033[1X\033[33X\033[0;-2YDrawGrid\033[133X\033[101X", "5.4-2", 234 [ 5, 4, 2 ], 469, 71, "drawgrid", "X812135EB87527F01" ], 235 [ 236 "\033[1X\033[33X\033[0;-2YDatabases of Residue-Class-Wise Affine Groups and\ 237 -Mappings\033[133X\033[101X", "6", [ 6, 0, 0 ], 1, 72, 238 "databases of residue-class-wise affine groups and -mappings", 239 "X81BA344979567342" ], 240 [ "\033[1X\033[33X\033[0;-2YThe collection of examples\033[133X\033[101X", 241 "6.1", [ 6, 1, 0 ], 8, 72, "the collection of examples", 242 "X86CCBF017A746F50" ], 243 [ "\033[1X\033[33X\033[0;-2YDatabases of rcwa groups\033[133X\033[101X", 244 "6.2", [ 6, 2, 0 ], 45, 73, "databases of rcwa groups", 245 "X85DD85DF87DE47C9" ], 246 [ "\033[1X\033[33X\033[0;-2YDatabases of rcwa mappings\033[133X\033[101X", 247 "6.3", [ 6, 3, 0 ], 404, 79, "databases of rcwa mappings", 248 "X78A1A8E587C7FFD5" ], 249 [ "\033[1X\033[33X\033[0;-2YExamples\033[133X\033[101X", "7", [ 7, 0, 0 ], 250 1, 81, "examples", "X7A489A5D79DA9E5C" ], 251 [ "\033[1X\033[33X\033[0;-2YThompson's group V\033[133X\033[101X", "7.1", 252 [ 7, 1, 0 ], 23, 81, "thompsons group v", "X84A058CF7C65A908" ], 253 [ 254 "\033[1X\033[33X\033[0;-2YFactoring Collatz' permutation of the integers\\ 255033[133X\033[101X", "7.2", [ 7, 2, 0 ], 197, 84, 256 "factoring collatz permutation of the integers", "X86C2BAE3876985A6" ], 257 [ "\033[1X\033[33X\033[0;-2YThe \033[22X3n+1\033[122X\033[101X\027\033[1X\ 258\027 group\033[133X\033[101X", "7.3", [ 7, 3, 0 ], 301, 86, "the 3n+1 group", 259 "X811919107D5DAAC1" ], 260 [ 261 "\033[1X\033[33X\033[0;-2YA group with huge finite orbits\033[133X\033[101X\ 262", "7.4", [ 7, 4, 0 ], 728, 93, "a group with huge finite orbits", 263 "X7DCFDC797FF213C5" ], 264 [ 265 "\033[1X\033[33X\033[0;-2YA group which acts 4-transitively on the positive\ 266 integers\033[133X\033[101X", "7.5", [ 7, 5, 0 ], 941, 97, 267 "a group which acts 4-transitively on the positive integers", 268 "X7968C1DF7EF0BD8E" ], 269 [ 270 "\033[1X\033[33X\033[0;-2YA group which acts 3-transitively, but not 4-tran\ 271sitively on \342\204\244\033[133X\033[101X", "7.6", [ 7, 6, 0 ], 1390, 105, 272 "a group which acts 3-transitively but not 4-transitively on a\204\244", 273 "X85C529088050BEA3" ], 274 [ 275 "\033[1X\033[33X\033[0;-2YAn rcwa mapping which seems to be contracting, bu\ 276t very slow\033[133X\033[101X", "7.7", [ 7, 7, 0 ], 1586, 108, 277 "an rcwa mapping which seems to be contracting but very slow", 278 "X878499AF7889FD9E" ], 279 [ 280 "\033[1X\033[33X\033[0;-2YChecking a result by P. Andaloro\033[133X\033[101\ 281X", "7.8", [ 7, 8, 0 ], 1677, 110, "checking a result by p. andaloro", 282 "X84A915BA833E0BDE" ], 283 [ 284 "\033[1X\033[33X\033[0;-2YTwo examples by Matthews and Leigh\033[133X\033[1\ 28501X", "7.9", [ 7, 9, 0 ], 1723, 111, "two examples by matthews and leigh", 286 "X7E8CD9B67ED78735" ], 287 [ "\033[1X\033[33X\033[0;-2YOrders of commutators\033[133X\033[101X", 288 "7.10", [ 7, 10, 0 ], 1839, 113, "orders of commutators", 289 "X854E9F65817E4F63" ], 290 [ 291 "\033[1X\033[33X\033[0;-2YAn infinite subgroup of CT(GF(2)[x]) with many to\ 292rsion elements\033[133X\033[101X", "7.11", [ 7, 11, 0 ], 1916, 114, 293 "an infinite subgroup of ct gf 2 [x] with many torsion elements", 294 "X7F085B867D799293" ], 295 [ 296 "\033[1X\033[33X\033[0;-2YAn abelian rcwa group over a polynomial ring\033[\ 297133X\033[101X", "7.12", [ 7, 12, 0 ], 2071, 117, 298 "an abelian rcwa group over a polynomial ring", "X7A8605E680F664BF" ], 299 [ "\033[1X\033[33X\033[0;-2YChecking for solvability\033[133X\033[101X", 300 "7.13", [ 7, 13, 0 ], 2172, 119, "checking for solvability", 301 "X78DFE4B4821E07A6" ], 302 [ 303 "\033[1X\033[33X\033[0;-2YSome examples over (semi)localizations of the int\ 304egers\033[133X\033[101X", "7.14", [ 7, 14, 0 ], 2224, 120, 305 "some examples over semi localizations of the integers", 306 "X783D54DC7A646273" ], 307 [ 308 "\033[1X\033[33X\033[0;-2YTwisting 257-cycles into an rcwa mapping with mod\ 309ulus 32\033[133X\033[101X", "7.15", [ 7, 15, 0 ], 2356, 122, 310 "twisting 257-cycles into an rcwa mapping with modulus 32", 311 "X846D7D087861E0AC" ], 312 [ 313 "\033[1X\033[33X\033[0;-2YThe behaviour of the moduli of powers\033[133X\\ 314033[101X", "7.16", [ 7, 16, 0 ], 2445, 124, 315 "the behaviour of the moduli of powers", "X78D5DC93845CA6A0" ], 316 [ 317 "\033[1X\033[33X\033[0;-2YImages and preimages under the Collatz mapping\\ 318033[133X\033[101X", "7.17", [ 7, 17, 0 ], 2509, 125, 319 "images and preimages under the collatz mapping", "X855A3CD88459958B" ], 320 [ "\033[1X\033[33X\033[0;-2YAn extension of the Collatz mapping T to a permu\ 321tation of \033[22X\342\204\244^2\033[122X\033[101X\027\033[1X\027\033[133X\033\ 322[101X", "7.18", [ 7, 18, 0 ], 2616, 127, 323 "an extension of the collatz mapping t to a permutation of a\204\244^2", 324 "X84B6A498838A5509" ], 325 [ 326 "\033[1X\033[33X\033[0;-2YFinite quotients of Grigorchuk groups\033[133X\\ 327033[101X", "7.19", [ 7, 19, 0 ], 2788, 130, 328 "finite quotients of grigorchuk groups", "X81EB8D397898C6B2" ], 329 [ 330 "\033[1X\033[33X\033[0;-2YForward orbits of a monoid with 2 generators\033[\ 331133X\033[101X", "7.20", [ 7, 20, 0 ], 2873, 131, 332 "forward orbits of a monoid with 2 generators", "X7DD9502F80364631" ], 333 [ "\033[1X\033[33X\033[0;-2YThe free group of rank 2 and the modular group P\ 334SL(2,\342\204\244)\033[133X\033[101X", "7.21", [ 7, 21, 0 ], 2957, 132, 335 "the free group of rank 2 and the modular group psl 2 a\204\244", 336 "X815800ED820C6ECF" ], 337 [ 338 "\033[1X\033[33X\033[0;-2YThe Algorithms Implemented in RCWA\033[133X\033[1\ 33901X", "8", [ 8, 0, 0 ], 1, 135, "the algorithms implemented in rcwa", 340 "X79EA0B717B045756" ], 341 [ 342 "\033[1X\033[33X\033[0;-2YInstallation and Auxiliary Functions\033[133X\\ 343033[101X", "9", [ 9, 0, 0 ], 1, 150, "installation and auxiliary functions", 344 "X859F6BF88754E5CC" ], 345 [ "\033[1X\033[33X\033[0;-2YRequirements\033[133X\033[101X", "9.1", 346 [ 9, 1, 0 ], 4, 150, "requirements", "X85A08CF187A6D986" ], 347 [ "\033[1X\033[33X\033[0;-2YInstallation\033[133X\033[101X", "9.2", 348 [ 9, 2, 0 ], 15, 150, "installation", "X8360C04082558A12" ], 349 [ "\033[1X\033[33X\033[0;-2YBuilding the manual\033[133X\033[101X", "9.3", 350 [ 9, 3, 0 ], 23, 150, "building the manual", "X854E65D281B80D3B" ], 351 [ "\033[1X\033[33X\033[0;-2YThe testing routines\033[133X\033[101X", "9.4", 352 [ 9, 4, 0 ], 39, 151, "the testing routines", "X865D6A49826B92EC" ], 353 [ "\033[1X\033[33X\033[0;-2YThe Info class of the package\033[133X\033[101X" 354 , "9.5", [ 9, 5, 0 ], 83, 151, "the info class of the package", 355 "X7A31FA44791E93C5" ], 356 [ "Bibliography", "bib", [ "Bib", 0, 0 ], 1, 152, "bibliography", 357 "X7A6F98FD85F02BFE" ], 358 [ "References", "bib", [ "Bib", 0, 0 ], 1, 152, "references", 359 "X7A6F98FD85F02BFE" ], 360 [ "Index", "ind", [ "Ind", 0, 0 ], 1, 154, "index", "X83A0356F839C696F" ], 361 [ "Collatz conjecture", "1.", [ 1, 0, 0 ], 1, 5, "collatz conjecture", 362 "X83A8C2927FAE2C23" ], 363 [ "Collatz mapping", "1.", [ 1, 0, 0 ], 1, 5, "collatz mapping", 364 "X83A8C2927FAE2C23" ], 365 [ "rcwa mapping definition", "2.1", [ 2, 1, 0 ], 12, 7, 366 "rcwa mapping definition", "X78ED07E37FC2BD46" ], 367 [ "rcwa group definition", "2.1", [ 2, 1, 0 ], 12, 7, 368 "rcwa group definition", "X78ED07E37FC2BD46" ], 369 [ "modulus definition", "2.1", [ 2, 1, 0 ], 12, 7, "modulus definition", 370 "X78ED07E37FC2BD46" ], 371 [ "rcwa mapping modulus", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa mapping modulus", 372 "X78ED07E37FC2BD46" ], 373 [ "multiplier definition", "2.1", [ 2, 1, 0 ], 12, 7, 374 "multiplier definition", "X78ED07E37FC2BD46" ], 375 [ "rcwa mapping multiplier", "2.1", [ 2, 1, 0 ], 12, 7, 376 "rcwa mapping multiplier", "X78ED07E37FC2BD46" ], 377 [ "divisor definition", "2.1", [ 2, 1, 0 ], 12, 7, "divisor definition", 378 "X78ED07E37FC2BD46" ], 379 [ "rcwa mapping divisor", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa mapping divisor", 380 "X78ED07E37FC2BD46" ], 381 [ "tame rcwa mapping", "2.1", [ 2, 1, 0 ], 12, 7, "tame rcwa mapping", 382 "X78ED07E37FC2BD46" ], 383 [ "tame rcwa group", "2.1", [ 2, 1, 0 ], 12, 7, "tame rcwa group", 384 "X78ED07E37FC2BD46" ], 385 [ "wild rcwa mapping", "2.1", [ 2, 1, 0 ], 12, 7, "wild rcwa mapping", 386 "X78ED07E37FC2BD46" ], 387 [ "wild rcwa group", "2.1", [ 2, 1, 0 ], 12, 7, "wild rcwa group", 388 "X78ED07E37FC2BD46" ], 389 [ "rcwa mapping tame", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa mapping tame", 390 "X78ED07E37FC2BD46" ], 391 [ "rcwa group tame", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa group tame", 392 "X78ED07E37FC2BD46" ], 393 [ "rcwa mapping wild", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa mapping wild", 394 "X78ED07E37FC2BD46" ], 395 [ "rcwa group wild", "2.1", [ 2, 1, 0 ], 12, 7, "rcwa group wild", 396 "X78ED07E37FC2BD46" ], 397 [ "\033[2XClassShift\033[102X r, m", "2.2-1", [ 2, 2, 1 ], 117, 9, 398 "classshift r m", "X86B611BD7EED62A1" ], 399 [ "\033[2XClassShift\033[102X cl", "2.2-1", [ 2, 2, 1 ], 117, 9, 400 "classshift cl", "X86B611BD7EED62A1" ], 401 [ "\033[2XClassReflection\033[102X r, m", "2.2-2", [ 2, 2, 2 ], 143, 9, 402 "classreflection r m", "X7896C5417E3692B4" ], 403 [ "\033[2XClassReflection\033[102X cl", "2.2-2", [ 2, 2, 2 ], 143, 9, 404 "classreflection cl", "X7896C5417E3692B4" ], 405 [ "\033[2XClassTransposition\033[102X r1, m1, r2, m2", "2.2-3", 406 [ 2, 2, 3 ], 170, 10, "classtransposition r1 m1 r2 m2", 407 "X8716A75F7DD1C46B" ], 408 [ "\033[2XClassTransposition\033[102X cl1, cl2", "2.2-3", [ 2, 2, 3 ], 170, 409 10, "classtransposition cl1 cl2", "X8716A75F7DD1C46B" ], 410 [ "\033[10XTransposedClasses\033[110X of a class transposition", "2.2-3", 411 [ 2, 2, 3 ], 170, 10, "transposedclasses of a class transposition", 412 "X8716A75F7DD1C46B" ], 413 [ "\033[10XClassPairs\033[110X m", "2.2-3", [ 2, 2, 3 ], 170, 10, 414 "classpairs m", "X8716A75F7DD1C46B" ], 415 [ "\033[10XNrClassPairs\033[110X m", "2.2-3", [ 2, 2, 3 ], 170, 10, 416 "nrclasspairs m", "X8716A75F7DD1C46B" ], 417 [ "\033[10XExtRepOfObj\033[110X for a class transposition", "2.2-3", 418 [ 2, 2, 3 ], 170, 10, "extrepofobj for a class transposition", 419 "X8716A75F7DD1C46B" ], 420 [ 421 "\033[10XSplittedClassTransposition\033[110X for a class transposition and \ 422a number of factors", "2.2-3", [ 2, 2, 3 ], 170, 10, 423 "splittedclasstransposition for a class transposition and a number of fa\ 424ctors", "X8716A75F7DD1C46B" ], 425 [ "\033[2XClassRotation\033[102X r, m, u", "2.2-4", [ 2, 2, 4 ], 251, 11, 426 "classrotation r m u", "X87EB8C1C87F78A17" ], 427 [ "\033[2XClassRotation\033[102X cl, u", "2.2-4", [ 2, 2, 4 ], 251, 11, 428 "classrotation cl u", "X87EB8C1C87F78A17" ], 429 [ "\033[10XRotationFactor\033[110X of a class rotation", "2.2-4", 430 [ 2, 2, 4 ], 251, 11, "rotationfactor of a class rotation", 431 "X87EB8C1C87F78A17" ], 432 [ "\033[10XIsClassShift\033[110X for an rcwa mapping", "2.2-4", 433 [ 2, 2, 4 ], 251, 11, "isclassshift for an rcwa mapping", 434 "X87EB8C1C87F78A17" ], 435 [ "\033[10XIsClassReflection\033[110X for an rcwa mapping", "2.2-4", 436 [ 2, 2, 4 ], 251, 11, "isclassreflection for an rcwa mapping", 437 "X87EB8C1C87F78A17" ], 438 [ "\033[10XIsClassRotation\033[110X for an rcwa mapping", "2.2-4", 439 [ 2, 2, 4 ], 251, 11, "isclassrotation for an rcwa mapping", 440 "X87EB8C1C87F78A17" ], 441 [ "\033[10XIsClassTransposition\033[110X for an rcwa mapping", "2.2-4", 442 [ 2, 2, 4 ], 251, 11, "isclasstransposition for an rcwa mapping", 443 "X87EB8C1C87F78A17" ], 444 [ "\033[10XIsGeneralizedClassTransposition\033[110X for an rcwa mapping", 445 "2.2-4", [ 2, 2, 4 ], 251, 11, 446 "isgeneralizedclasstransposition for an rcwa mapping", 447 "X87EB8C1C87F78A17" ], 448 [ "\033[2XRcwaMapping\033[102X by ring, modulus and list of coefficients", 449 "2.2-5", [ 2, 2, 5 ], 304, 12, 450 "rcwamapping by ring modulus and list of coefficients", 451 "X8799551B83644B37" ], 452 [ "\033[2XRcwaMapping\033[102X by ring and list of coefficients", "2.2-5", 453 [ 2, 2, 5 ], 304, 12, "rcwamapping by ring and list of coefficients", 454 "X8799551B83644B37" ], 455 [ "\033[2XRcwaMapping\033[102X by list of coefficients", "2.2-5", 456 [ 2, 2, 5 ], 304, 12, "rcwamapping by list of coefficients", 457 "X8799551B83644B37" ], 458 [ "\033[2XRcwaMapping\033[102X by permutation and range", "2.2-5", 459 [ 2, 2, 5 ], 304, 12, "rcwamapping by permutation and range", 460 "X8799551B83644B37" ], 461 [ "\033[2XRcwaMapping\033[102X by modulus and list of values", "2.2-5", 462 [ 2, 2, 5 ], 304, 12, "rcwamapping by modulus and list of values", 463 "X8799551B83644B37" ], 464 [ 465 "\033[2XRcwaMapping\033[102X by set of non-invertible primes and list of co\ 466efficients", "2.2-5", [ 2, 2, 5 ], 304, 12, 467 "rcwamapping by set of non-invertible primes and list of coefficients", 468 "X8799551B83644B37" ], 469 [ 470 "\033[2XRcwaMapping\033[102X by finite field size, modulus and list of coef\ 471ficients", "2.2-5", [ 2, 2, 5 ], 304, 12, 472 "rcwamapping by finite field size modulus and list of coefficients", 473 "X8799551B83644B37" ], 474 [ 475 "\033[2XRcwaMapping\033[102X by two partitions of a ring into residue class\ 476es", "2.2-5", [ 2, 2, 5 ], 304, 12, 477 "rcwamapping by two partitions of a ring into residue classes", 478 "X8799551B83644B37" ], 479 [ "\033[2XRcwaMapping\033[102X by residue class cycles", "2.2-5", 480 [ 2, 2, 5 ], 304, 12, "rcwamapping by residue class cycles", 481 "X8799551B83644B37" ], 482 [ "\033[2XRcwaMapping\033[102X by arithmetical expression", "2.2-5", 483 [ 2, 2, 5 ], 304, 12, "rcwamapping by arithmetical expression", 484 "X8799551B83644B37" ], 485 [ 486 "\033[2XLocalizedRcwaMapping\033[102X for an rcwa mapping of z and a prime" 487 , "2.2-6", [ 2, 2, 6 ], 415, 13, 488 "localizedrcwamapping for an rcwa mapping of z and a prime", 489 "X7F1A559387D0226E" ], 490 [ 491 "\033[2XSemilocalizedRcwaMapping\033[102X for an rcwa mapping of z and a se\ 492t of primes", "2.2-6", [ 2, 2, 6 ], 415, 13, 493 "semilocalizedrcwamapping for an rcwa mapping of z and a set of primes", 494 "X7F1A559387D0226E" ], 495 [ "\033[10XView\033[110X for an rcwa mapping", "2.2-6", [ 2, 2, 6 ], 415, 496 13, "view for an rcwa mapping", "X7F1A559387D0226E" ], 497 [ "\033[10XDisplay\033[110X for an rcwa mapping", "2.2-6", [ 2, 2, 6 ], 498 415, 13, "display for an rcwa mapping", "X7F1A559387D0226E" ], 499 [ "\033[10XPrint\033[110X for an rcwa mapping", "2.2-6", [ 2, 2, 6 ], 415, 500 13, "print for an rcwa mapping", "X7F1A559387D0226E" ], 501 [ "\033[10XString\033[110X for an rcwa mapping", "2.2-6", [ 2, 2, 6 ], 415, 502 13, "string for an rcwa mapping", "X7F1A559387D0226E" ], 503 [ "\033[10XLaTeXStringRcwaMapping\033[110X for an rcwa mapping", "2.2-6", 504 [ 2, 2, 6 ], 415, 13, "latexstringrcwamapping for an rcwa mapping", 505 "X7F1A559387D0226E" ], 506 [ "\033[10XLaTeXAndXDVI\033[110X for an rcwa mapping", "2.2-6", 507 [ 2, 2, 6 ], 415, 13, "latexandxdvi for an rcwa mapping", 508 "X7F1A559387D0226E" ], 509 [ "rcwa mapping arithmetic operations", "2.3", [ 2, 3, 0 ], 481, 14, 510 "rcwa mapping arithmetic operations", "X78E796B8824C4FC8" ], 511 [ "\033[10XOrder\033[110X of an rcwa permutation", "2.3", [ 2, 3, 0 ], 481, 512 14, "order of an rcwa permutation", "X78E796B8824C4FC8" ], 513 [ "\033[10XIsTame\033[110X for an rcwa mapping", "2.3", [ 2, 3, 0 ], 481, 514 14, "istame for an rcwa mapping", "X78E796B8824C4FC8" ], 515 [ "\033[10XIsInjective\033[110X for an rcwa mapping", "2.3", [ 2, 3, 0 ], 516 481, 14, "isinjective for an rcwa mapping", "X78E796B8824C4FC8" ], 517 [ "\033[10XIsSurjective\033[110X for an rcwa mapping", "2.3", [ 2, 3, 0 ], 518 481, 14, "issurjective for an rcwa mapping", "X78E796B8824C4FC8" ], 519 [ "\033[10XIsBijective\033[110X for an rcwa mapping", "2.3", [ 2, 3, 0 ], 520 481, 14, "isbijective for an rcwa mapping", "X78E796B8824C4FC8" ], 521 [ "\033[10XImage\033[110X of an rcwa mapping", "2.3", [ 2, 3, 0 ], 481, 14, 522 "image of an rcwa mapping", "X78E796B8824C4FC8" ], 523 [ "rcwa mapping images under", "2.3", [ 2, 3, 0 ], 481, 14, 524 "rcwa mapping images under", "X78E796B8824C4FC8" ], 525 [ "\033[10XPreImageElm\033[110X of a ring element under an rcwa mapping", 526 "2.3", [ 2, 3, 0 ], 481, 14, 527 "preimageelm of a ring element under an rcwa mapping", 528 "X78E796B8824C4FC8" ], 529 [ "\033[10XPreImagesElm\033[110X of a ring element under an rcwa mapping", 530 "2.3", [ 2, 3, 0 ], 481, 14, 531 "preimageselm of a ring element under an rcwa mapping", 532 "X78E796B8824C4FC8" ], 533 [ 534 "\033[10XPreImage\033[110X of a set of ring elements under an rcwa mapping" 535 , "2.3", [ 2, 3, 0 ], 481, 14, 536 "preimage of a set of ring elements under an rcwa mapping", 537 "X78E796B8824C4FC8" ], 538 [ "\033[10XPreImage\033[110X of a residue class union under an rcwa mapping" 539 , "2.3", [ 2, 3, 0 ], 481, 14, 540 "preimage of a residue class union under an rcwa mapping", 541 "X78E796B8824C4FC8" ], 542 [ "\033[10XSupport\033[110X of an rcwa mapping", "2.3", [ 2, 3, 0 ], 481, 543 14, "support of an rcwa mapping", "X78E796B8824C4FC8" ], 544 [ "\033[10XMovedPoints\033[110X of an rcwa mapping", "2.3", [ 2, 3, 0 ], 545 481, 14, "movedpoints of an rcwa mapping", "X78E796B8824C4FC8" ], 546 [ 547 "\033[10XRestrictedPerm\033[110X for an rcwa permutation and a residue clas\ 548s union", "2.3", [ 2, 3, 0 ], 481, 14, 549 "restrictedperm for an rcwa permutation and a residue class union", 550 "X78E796B8824C4FC8" ], 551 [ "\033[10XDensityOfSupport\033[110X of an rcwa mapping", "2.3", 552 [ 2, 3, 0 ], 481, 14, "densityofsupport of an rcwa mapping", 553 "X78E796B8824C4FC8" ], 554 [ "\033[10XDensityOfSetOfFixedPoints\033[110X of an rcwa mapping", "2.3", 555 [ 2, 3, 0 ], 481, 14, "densityofsetoffixedpoints of an rcwa mapping", 556 "X78E796B8824C4FC8" ], 557 [ "\033[10XModulus\033[110X of an rcwa mapping", "2.3", [ 2, 3, 0 ], 481, 558 14, "modulus of an rcwa mapping", "X78E796B8824C4FC8" ], 559 [ "\033[10XMod\033[110X for an rcwa mapping", "2.3", [ 2, 3, 0 ], 481, 14, 560 "mod for an rcwa mapping", "X78E796B8824C4FC8" ], 561 [ "\033[10XCoefficients\033[110X of an rcwa mapping", "2.3", [ 2, 3, 0 ], 562 481, 14, "coefficients of an rcwa mapping", "X78E796B8824C4FC8" ], 563 [ "rcwa mapping coercion", "2.3", [ 2, 3, 0 ], 481, 14, 564 "rcwa mapping coercion", "X78E796B8824C4FC8" ], 565 [ "rcwa group coercion", "2.3", [ 2, 3, 0 ], 481, 14, "rcwa group coercion", 566 "X78E796B8824C4FC8" ], 567 [ "class-wise translating definition", "2.4", [ 2, 4, 0 ], 605, 16, 568 "class-wise translating definition", "X7C16D22C7BD40FDC" ], 569 [ "integral definition", "2.4", [ 2, 4, 0 ], 605, 16, "integral definition", 570 "X7C16D22C7BD40FDC" ], 571 [ "balanced definition", "2.4", [ 2, 4, 0 ], 605, 16, "balanced definition", 572 "X7C16D22C7BD40FDC" ], 573 [ "sign-preserving definition", "2.4", [ 2, 4, 0 ], 605, 16, 574 "sign-preserving definition", "X7C16D22C7BD40FDC" ], 575 [ "maximal shift definition", "2.4", [ 2, 4, 0 ], 605, 16, 576 "maximal shift definition", "X7C16D22C7BD40FDC" ], 577 [ "rcwa mapping prime set", "2.4", [ 2, 4, 0 ], 605, 16, 578 "rcwa mapping prime set", "X7C16D22C7BD40FDC" ], 579 [ "rcwa mapping maximal shift", "2.4", [ 2, 4, 0 ], 605, 16, 580 "rcwa mapping maximal shift", "X7C16D22C7BD40FDC" ], 581 [ "rcwa mapping class-wise translating", "2.4", [ 2, 4, 0 ], 605, 16, 582 "rcwa mapping class-wise translating", "X7C16D22C7BD40FDC" ], 583 [ "rcwa mapping integral", "2.4", [ 2, 4, 0 ], 605, 16, 584 "rcwa mapping integral", "X7C16D22C7BD40FDC" ], 585 [ "rcwa mapping balanced", "2.4", [ 2, 4, 0 ], 605, 16, 586 "rcwa mapping balanced", "X7C16D22C7BD40FDC" ], 587 [ "rcwa mapping class-wise order-preserving", "2.4", [ 2, 4, 0 ], 605, 16, 588 "rcwa mapping class-wise order-preserving", "X7C16D22C7BD40FDC" ], 589 [ "rcwa mapping sign-preserving", "2.4", [ 2, 4, 0 ], 605, 16, 590 "rcwa mapping sign-preserving", "X7C16D22C7BD40FDC" ], 591 [ "\033[10XMultiplier\033[110X of an rcwa mapping", "2.4", [ 2, 4, 0 ], 592 605, 16, "multiplier of an rcwa mapping", "X7C16D22C7BD40FDC" ], 593 [ "\033[10XMult\033[110X for an rcwa mapping", "2.4", [ 2, 4, 0 ], 605, 16, 594 "mult for an rcwa mapping", "X7C16D22C7BD40FDC" ], 595 [ "\033[10XDivisor\033[110X of an rcwa mapping", "2.4", [ 2, 4, 0 ], 605, 596 16, "divisor of an rcwa mapping", "X7C16D22C7BD40FDC" ], 597 [ "\033[10XDiv\033[110X for an rcwa mapping", "2.4", [ 2, 4, 0 ], 605, 16, 598 "div for an rcwa mapping", "X7C16D22C7BD40FDC" ], 599 [ "\033[10XPrimeSet\033[110X of an rcwa mapping", "2.4", [ 2, 4, 0 ], 605, 600 16, "primeset of an rcwa mapping", "X7C16D22C7BD40FDC" ], 601 [ "\033[10XMaximalShift\033[110X of an rcwa mapping of Z", "2.4", 602 [ 2, 4, 0 ], 605, 16, "maximalshift of an rcwa mapping of z", 603 "X7C16D22C7BD40FDC" ], 604 [ "\033[10XIsClassWiseTranslating\033[110X for an rcwa mapping", "2.4", 605 [ 2, 4, 0 ], 605, 16, "isclasswisetranslating for an rcwa mapping", 606 "X7C16D22C7BD40FDC" ], 607 [ "\033[10XIsIntegral\033[110X for an rcwa mapping", "2.4", [ 2, 4, 0 ], 608 605, 16, "isintegral for an rcwa mapping", "X7C16D22C7BD40FDC" ], 609 [ "\033[10XIsBalanced\033[110X for an rcwa mapping", "2.4", [ 2, 4, 0 ], 610 605, 16, "isbalanced for an rcwa mapping", "X7C16D22C7BD40FDC" ], 611 [ "\033[10XIsClassWiseOrderPreserving\033[110X for an rcwa mapping", "2.4", 612 [ 2, 4, 0 ], 605, 16, "isclasswiseorderpreserving for an rcwa mapping", 613 "X7C16D22C7BD40FDC" ], 614 [ "\033[10XIsSignPreserving\033[110X for an rcwa mapping", "2.4", 615 [ 2, 4, 0 ], 605, 16, "issignpreserving for an rcwa mapping", 616 "X7C16D22C7BD40FDC" ], 617 [ "\033[2XLargestSourcesOfAffineMappings\033[102X for an rcwa mapping", 618 "2.4-1", [ 2, 4, 1 ], 663, 17, 619 "largestsourcesofaffinemappings for an rcwa mapping", 620 "X7C21406085B69C30" ], 621 [ "\033[2XFixedPointsOfAffinePartialMappings\033[102X for an rcwa mapping", 622 "2.4-2", [ 2, 4, 2 ], 686, 18, 623 "fixedpointsofaffinepartialmappings for an rcwa mapping", 624 "X7D6D0F2783AD02F4" ], 625 [ "\033[2XMultpk\033[102X for an rcwa mapping, a prime and an exponent", 626 "2.4-3", [ 2, 4, 3 ], 707, 18, 627 "multpk for an rcwa mapping a prime and an exponent", 628 "X7A2E308C860B46E3" ], 629 [ "\033[10XClassWiseOrderPreservingOn\033[110X", "2.4-3", [ 2, 4, 3 ], 707, 630 18, "classwiseorderpreservingon", "X7A2E308C860B46E3" ], 631 [ "\033[10XClassWiseConstantOn\033[110X", "2.4-3", [ 2, 4, 3 ], 707, 18, 632 "classwiseconstanton", "X7A2E308C860B46E3" ], 633 [ "\033[10XClassWiseOrderReversingOn\033[110X", "2.4-3", [ 2, 4, 3 ], 707, 634 18, "classwiseorderreversingon", "X7A2E308C860B46E3" ], 635 [ "\033[10XShiftsUpOn\033[110X", "2.4-3", [ 2, 4, 3 ], 707, 18, 636 "shiftsupon", "X7A2E308C860B46E3" ], 637 [ "\033[10XShiftsDownOn\033[110X", "2.4-3", [ 2, 4, 3 ], 707, 18, 638 "shiftsdownon", "X7A2E308C860B46E3" ], 639 [ "\033[2XDeterminant\033[102X of an rcwa mapping of z", "2.4-4", 640 [ 2, 4, 4 ], 749, 19, "determinant of an rcwa mapping of z", 641 "X7B1E53127D9AE52F" ], 642 [ "\033[2XSign\033[102X of an rcwa permutation of z", "2.4-5", [ 2, 4, 5 ], 643 783, 19, "sign of an rcwa permutation of z", "X8365EEEB82C946FD" ], 644 [ "\033[2XCTCSCRSplit\033[102X for an rcwa permutation of z", "2.5-1", 645 [ 2, 5, 1 ], 823, 20, "ctcscrsplit for an rcwa permutation of z", 646 "X829BA0537F2372FF" ], 647 [ "\033[2XFactorizationIntoCSCRCT\033[102X for an rcwa permutation of z", 648 "2.5-2", [ 2, 5, 2 ], 852, 20, 649 "factorizationintocscrct for an rcwa permutation of z", 650 "X853885A182EC5104" ], 651 [ "\033[2XFactorization\033[102X for an rcwa permutation of z", "2.5-2", 652 [ 2, 5, 2 ], 852, 20, "factorization for an rcwa permutation of z", 653 "X853885A182EC5104" ], 654 [ "\033[2XPrimeSwitch\033[102X p", "2.5-3", [ 2, 5, 3 ], 903, 21, 655 "primeswitch p", "X861C74E97AE5DA3B" ], 656 [ "\033[2XPrimeSwitch\033[102X p, k", "2.5-3", [ 2, 5, 3 ], 903, 21, 657 "primeswitch p k", "X861C74E97AE5DA3B" ], 658 [ "\033[2XPrimeSwitch\033[102X p, r, m", "2.5-3", [ 2, 5, 3 ], 903, 21, 659 "primeswitch p r m", "X861C74E97AE5DA3B" ], 660 [ "\033[2XPrimeSwitch\033[102X p, cl", "2.5-3", [ 2, 5, 3 ], 903, 21, 661 "primeswitch p cl", "X861C74E97AE5DA3B" ], 662 [ "\033[10XIsPrimeSwitch\033[110X for an rcwa mapping", "2.5-3", 663 [ 2, 5, 3 ], 903, 21, "isprimeswitch for an rcwa mapping", 664 "X861C74E97AE5DA3B" ], 665 [ "\033[2XmKnot\033[102X for an odd integer", "2.5-4", [ 2, 5, 4 ], 985, 666 23, "mknot for an odd integer", "X789CB69C7D97B0C4" ], 667 [ "\033[2XRoot\033[102X k-th root of an rcwa mapping", "2.6-1", 668 [ 2, 6, 1 ], 1014, 23, "root k-th root of an rcwa mapping", 669 "X873692CE78433859" ], 670 [ "\033[2XRightInverse\033[102X of an injective rcwa mapping", "2.7-1", 671 [ 2, 7, 1 ], 1046, 24, "rightinverse of an injective rcwa mapping", 672 "X7AEFF16E86533633" ], 673 [ "\033[2XCommonRightInverse\033[102X of two injective rcwa mappings", 674 "2.7-2", [ 2, 7, 2 ], 1061, 24, 675 "commonrightinverse of two injective rcwa mappings", 676 "X87C5B9CA7E319233" ], 677 [ "\033[2XImageDensity\033[102X of an rcwa mapping", "2.7-3", [ 2, 7, 3 ], 678 1086, 24, "imagedensity of an rcwa mapping", "X808D9EDF7BA27467" ], 679 [ "\033[10XInjectiveAsMappingFrom\033[110X for an rcwa mapping", "2.7-3", 680 [ 2, 7, 3 ], 1086, 24, "injectiveasmappingfrom for an rcwa mapping", 681 "X808D9EDF7BA27467" ], 682 [ "\033[2XTrajectory\033[102X for rcwa mapping, starting point, length", 683 "2.8-1", [ 2, 8, 1 ], 1122, 25, 684 "trajectory for rcwa mapping starting point length", 685 "X7C72174D7CCB6348" ], 686 [ 687 "\033[2XTrajectory\033[102X for rcwa mapping, starting point, length, modul\ 688us", "2.8-1", [ 2, 8, 1 ], 1122, 25, 689 "trajectory for rcwa mapping starting point length modulus", 690 "X7C72174D7CCB6348" ], 691 [ 692 "\033[2XTrajectory\033[102X for rcwa mapping, starting point, set of end po\ 693ints", "2.8-1", [ 2, 8, 1 ], 1122, 25, 694 "trajectory for rcwa mapping starting point set of end points", 695 "X7C72174D7CCB6348" ], 696 [ 697 "\033[2XTrajectory\033[102X for rcwa mapping, starting point, set of end po\ 698ints, modulus", "2.8-1", [ 2, 8, 1 ], 1122, 25, 699 "trajectory for rcwa mapping starting point set of end points modulus", 700 "X7C72174D7CCB6348" ], 701 [ 702 "\033[2XTrajectory\033[102X for rcwa mapping, starting point, length, coeff\ 703.-spec.", "2.8-2", [ 2, 8, 2 ], 1156, 25, 704 "trajectory for rcwa mapping starting point length coeff.-spec.", 705 "X7FFD09837E934853" ], 706 [ 707 "\033[2XTrajectory\033[102X for rcwa mapping, starting point, set of end po\ 708ints, coeff.-spec.", "2.8-2", [ 2, 8, 2 ], 1156, 25, 709 "trajectory for rcwa mapping starting point set of end points coeff.-spe\ 710c.", "X7FFD09837E934853" ], 711 [ "\033[2XIncreasingOn\033[102X for an rcwa mapping", "2.8-3", [ 2, 8, 3 ], 712 1185, 26, "increasingon for an rcwa mapping", "X7E0244A386744185" ], 713 [ "\033[2XDecreasingOn\033[102X for an rcwa mapping", "2.8-3", [ 2, 8, 3 ], 714 1185, 26, "decreasingon for an rcwa mapping", "X7E0244A386744185" ], 715 [ "\033[2XTransitionGraph\033[102X for an rcwa mapping and a modulus", 716 "2.8-4", [ 2, 8, 4 ], 1216, 26, 717 "transitiongraph for an rcwa mapping and a modulus", 718 "X780841E07CAE7543" ], 719 [ "rcwa mapping transition graph", "2.8-4", [ 2, 8, 4 ], 1216, 26, 720 "rcwa mapping transition graph", "X780841E07CAE7543" ], 721 [ "\033[2XOrbitsModulo\033[102X for an rcwa mapping and a modulus", 722 "2.8-5", [ 2, 8, 5 ], 1235, 27, 723 "orbitsmodulo for an rcwa mapping and a modulus", "X7F03CC4179424AA9" ], 724 [ "\033[2XFactorizationOnConnectedComponents\033[102X for an rcwa mapping an\ 725d a modulus", "2.8-6", [ 2, 8, 6 ], 1249, 27, 726 "factorizationonconnectedcomponents for an rcwa mapping and a modulus", 727 "X7F11051E866C197F" ], 728 [ "\033[2XTransitionMatrix\033[102X for an rcwa mapping and a modulus", 729 "2.8-7", [ 2, 8, 7 ], 1268, 27, 730 "transitionmatrix for an rcwa mapping and a modulus", 731 "X7B6833D67D916EF9" ], 732 [ "\033[2XSources\033[102X of an rcwa mapping", "2.8-8", [ 2, 8, 8 ], 1295, 733 28, "sources of an rcwa mapping", "X81DBA2D58526BE7E" ], 734 [ "\033[2XSinks\033[102X of an rcwa mapping", "2.8-8", [ 2, 8, 8 ], 1295, 735 28, "sinks of an rcwa mapping", "X81DBA2D58526BE7E" ], 736 [ "\033[2XLoops\033[102X of an rcwa mapping", "2.8-9", [ 2, 8, 9 ], 1318, 737 28, "loops of an rcwa mapping", "X80221A4D81AF7453" ], 738 [ "\033[2XGluckTaylorInvariant\033[102X of a trajectory", "2.8-10", 739 [ 2, 8, 10 ], 1338, 28, "glucktaylorinvariant of a trajectory", 740 "X8773152E81A30123" ], 741 [ "\033[2XLikelyContractionCentre\033[102X of an rcwa mapping", "2.8-11", 742 [ 2, 8, 11 ], 1370, 29, "likelycontractioncentre of an rcwa mapping", 743 "X84F6A29280E2F925" ], 744 [ "\033[2XGuessedDivergence\033[102X of an rcwa mapping", "2.8-12", 745 [ 2, 8, 12 ], 1398, 29, "guesseddivergence of an rcwa mapping", 746 "X81E0D8E3817B3D16" ], 747 [ "rcwa mapping sparse representation", "2.9", [ 2, 9, 0 ], 1415, 30, 748 "rcwa mapping sparse representation", "X86F0E0D17E6A9663" ], 749 [ 750 "\033[10XRcwaMapping\033[110X by list of coefficients, sparse representatio\ 751n", "2.9", [ 2, 9, 0 ], 1415, 30, 752 "rcwamapping by list of coefficients sparse representation", 753 "X86F0E0D17E6A9663" ], 754 [ "\033[2XSparseRepresentation\033[102X of an rcwa mapping", "2.9-1", 755 [ 2, 9, 1 ], 1448, 30, "sparserepresentation of an rcwa mapping", 756 "X879451B17AD78B07" ], 757 [ "\033[2XSparseRep\033[102X of an rcwa mapping", "2.9-1", [ 2, 9, 1 ], 758 1448, 30, "sparserep of an rcwa mapping", "X879451B17AD78B07" ], 759 [ "\033[2XStandardRepresentation\033[102X of an rcwa mapping", "2.9-1", 760 [ 2, 9, 1 ], 1448, 30, "standardrepresentation of an rcwa mapping", 761 "X879451B17AD78B07" ], 762 [ "\033[2XStandardRep\033[102X of an rcwa mapping", "2.9-1", [ 2, 9, 1 ], 763 1448, 30, "standardrep of an rcwa mapping", "X879451B17AD78B07" ], 764 [ "\033[2XIsRcwaMapping\033[102X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 765 "isrcwamapping", "X7927C13782729CE9" ], 766 [ "\033[2XIsRcwaMappingOfZ\033[102X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 767 "isrcwamappingofz", "X7927C13782729CE9" ], 768 [ "\033[2XIsRcwaMappingOfZ_pi\033[102X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 769 "isrcwamappingofz_pi", "X7927C13782729CE9" ], 770 [ "\033[2XIsRcwaMappingOfGFqx\033[102X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 771 "isrcwamappingofgfqx", "X7927C13782729CE9" ], 772 [ "\033[10XIsRcwaMappingOfZOrZ_pi\033[110X", "2.10-1", [ 2, 10, 1 ], 1502, 773 31, "isrcwamappingofzorz_pi", "X7927C13782729CE9" ], 774 [ "\033[10XIsRcwaMappingStandardRep\033[110X", "2.10-1", [ 2, 10, 1 ], 775 1502, 31, "isrcwamappingstandardrep", "X7927C13782729CE9" ], 776 [ "\033[10XExtRepOfObj\033[110X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 777 "extrepofobj", "X7927C13782729CE9" ], 778 [ "\033[10XObjByExtRep\033[110X", "2.10-1", [ 2, 10, 1 ], 1502, 31, 779 "objbyextrep", "X7927C13782729CE9" ], 780 [ "\033[2XRcwaMappingsFamily\033[102X of a ring", "2.10-2", [ 2, 10, 2 ], 781 1520, 31, "rcwamappingsfamily of a ring", "X825DD365822934AF" ], 782 [ "\033[10XGroup\033[110X", "3.1", [ 3, 1, 0 ], 7, 32, "group", 783 "X81242A6586A604A3" ], 784 [ "\033[10XGroupByGenerators\033[110X", "3.1", [ 3, 1, 0 ], 7, 32, 785 "groupbygenerators", "X81242A6586A604A3" ], 786 [ "\033[10XGroupWithGenerators\033[110X", "3.1", [ 3, 1, 0 ], 7, 32, 787 "groupwithgenerators", "X81242A6586A604A3" ], 788 [ "\033[2XIsomorphismRcwaGroup\033[102X for a group, over a given ring", 789 "3.1-1", [ 3, 1, 1 ], 28, 32, 790 "isomorphismrcwagroup for a group over a given ring", 791 "X7EB8A301790290C7" ], 792 [ "\033[2XIsomorphismRcwaGroup\033[102X for a group", "3.1-1", [ 3, 1, 1 ], 793 28, 32, "isomorphismrcwagroup for a group", "X7EB8A301790290C7" ], 794 [ "\033[2XDirectProduct\033[102X for rcwa groups over z", "3.1-2", 795 [ 3, 1, 2 ], 65, 33, "directproduct for rcwa groups over z", 796 "X79CAE48981C11FE8" ], 797 [ 798 "\033[2XWreathProduct\033[102X for an rcwa group over z and a permutation g\ 799roup", "3.1-3", [ 3, 1, 3 ], 86, 33, 800 "wreathproduct for an rcwa group over z and a permutation group", 801 "X80D13D2A7AD73C2C" ], 802 [ 803 "\033[2XWreathProduct\033[102X for an rcwa group over z and the infinite cy\ 804clic group", "3.1-3", [ 3, 1, 3 ], 86, 33, 805 "wreathproduct for an rcwa group over z and the infinite cyclic group", 806 "X80D13D2A7AD73C2C" ], 807 [ "\033[2XMergerExtension\033[102X for finite permutation groups", "3.1-4", 808 [ 3, 1, 4 ], 128, 34, "mergerextension for finite permutation groups", 809 "X8794913B878DD5C4" ], 810 [ 811 "\033[2XGroupByResidueClasses\033[102X the group `permuting a given list of\ 812 residue classes'", "3.1-5", [ 3, 1, 5 ], 180, 35, 813 "groupbyresidueclasses the group permuting a given list of residue class\ 814es", "X8143AB647801F438" ], 815 [ 816 "\033[2XRestriction\033[102X of an rcwa mapping, by an injective rcwa mappi\ 817ng", "3.1-6", [ 3, 1, 6 ], 214, 35, 818 "restriction of an rcwa mapping by an injective rcwa mapping", 819 "X852EF2C079E4D7FF" ], 820 [ 821 "\033[2XRestriction\033[102X of an rcwa group, by an injective rcwa mapping\ 822", "3.1-6", [ 3, 1, 6 ], 214, 35, 823 "restriction of an rcwa group by an injective rcwa mapping", 824 "X852EF2C079E4D7FF" ], 825 [ 826 "\033[2XInduction\033[102X of an rcwa mapping, by an injective rcwa mapping\ 827", "3.1-7", [ 3, 1, 7 ], 242, 36, 828 "induction of an rcwa mapping by an injective rcwa mapping", 829 "X82171D7287CBED95" ], 830 [ "\033[2XInduction\033[102X of an rcwa group, by an injective rcwa mapping" 831 , "3.1-7", [ 3, 1, 7 ], 242, 36, 832 "induction of an rcwa group by an injective rcwa mapping", 833 "X82171D7287CBED95" ], 834 [ "\033[10XSmallGeneratingSet\033[110X", "3.1-7", [ 3, 1, 7 ], 242, 36, 835 "smallgeneratingset", "X82171D7287CBED95" ], 836 [ "\033[10XView\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 36, 837 "view for an rcwa group", "X82171D7287CBED95" ], 838 [ "\033[10XDisplay\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 839 36, "display for an rcwa group", "X82171D7287CBED95" ], 840 [ "\033[10XPrint\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 841 36, "print for an rcwa group", "X82171D7287CBED95" ], 842 [ "\033[10XString\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 843 36, "string for an rcwa group", "X82171D7287CBED95" ], 844 [ "rcwa group modulus", "3.1-7", [ 3, 1, 7 ], 242, 36, "rcwa group modulus", 845 "X82171D7287CBED95" ], 846 [ "rcwa group multiplier", "3.1-7", [ 3, 1, 7 ], 242, 36, 847 "rcwa group multiplier", "X82171D7287CBED95" ], 848 [ "rcwa group divisor", "3.1-7", [ 3, 1, 7 ], 242, 36, "rcwa group divisor", 849 "X82171D7287CBED95" ], 850 [ "rcwa group prime set", "3.1-7", [ 3, 1, 7 ], 242, 36, 851 "rcwa group prime set", "X82171D7287CBED95" ], 852 [ "rcwa group class-wise translating", "3.1-7", [ 3, 1, 7 ], 242, 36, 853 "rcwa group class-wise translating", "X82171D7287CBED95" ], 854 [ "rcwa group integral", "3.1-7", [ 3, 1, 7 ], 242, 36, 855 "rcwa group integral", "X82171D7287CBED95" ], 856 [ "rcwa group class-wise order-preserving", "3.1-7", [ 3, 1, 7 ], 242, 36, 857 "rcwa group class-wise order-preserving", "X82171D7287CBED95" ], 858 [ "rcwa group sign-preserving", "3.1-7", [ 3, 1, 7 ], 242, 36, 859 "rcwa group sign-preserving", "X82171D7287CBED95" ], 860 [ "\033[10XModulus\033[110X of an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 861 36, "modulus of an rcwa group", "X82171D7287CBED95" ], 862 [ "\033[10XMod\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 36, 863 "mod for an rcwa group", "X82171D7287CBED95" ], 864 [ "\033[10XModulusOfRcwaMonoid\033[110X for an rcwa group", "3.1-7", 865 [ 3, 1, 7 ], 242, 36, "modulusofrcwamonoid for an rcwa group", 866 "X82171D7287CBED95" ], 867 [ "\033[10XMultiplier\033[110X of an rcwa group", "3.1-7", [ 3, 1, 7 ], 868 242, 36, "multiplier of an rcwa group", "X82171D7287CBED95" ], 869 [ "\033[10XMult\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 36, 870 "mult for an rcwa group", "X82171D7287CBED95" ], 871 [ "\033[10XDivisor\033[110X of an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 872 36, "divisor of an rcwa group", "X82171D7287CBED95" ], 873 [ "\033[10XDiv\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 36, 874 "div for an rcwa group", "X82171D7287CBED95" ], 875 [ "\033[10XPrimeSet\033[110X of an rcwa group", "3.1-7", [ 3, 1, 7 ], 242, 876 36, "primeset of an rcwa group", "X82171D7287CBED95" ], 877 [ "\033[10XIsClassWiseTranslating\033[110X for an rcwa group", "3.1-7", 878 [ 3, 1, 7 ], 242, 36, "isclasswisetranslating for an rcwa group", 879 "X82171D7287CBED95" ], 880 [ "\033[10XIsIntegral\033[110X for an rcwa group", "3.1-7", [ 3, 1, 7 ], 881 242, 36, "isintegral for an rcwa group", "X82171D7287CBED95" ], 882 [ "\033[10XIsClassWiseOrderPreserving\033[110X for an rcwa group", "3.1-7", 883 [ 3, 1, 7 ], 242, 36, "isclasswiseorderpreserving for an rcwa group", 884 "X82171D7287CBED95" ], 885 [ "\033[10XIsSignPreserving\033[110X for an rcwa group", "3.1-7", 886 [ 3, 1, 7 ], 242, 36, "issignpreserving for an rcwa group", 887 "X82171D7287CBED95" ], 888 [ "\033[2XRCWA\033[102X the group formed by all rcwa permutations of a ring" 889 , "3.1-8", [ 3, 1, 8 ], 299, 37, 890 "rcwa the group formed by all rcwa permutations of a ring", 891 "X79450C1C8756FEB3" ], 892 [ "\033[10XNrConjugacyClassesOfRCWAZOfOrder\033[110X", "3.1-8", 893 [ 3, 1, 8 ], 299, 37, "nrconjugacyclassesofrcwazoforder", 894 "X79450C1C8756FEB3" ], 895 [ 896 "\033[2XCT\033[102X the group generated by all class transpositions of a ri\ 897ng", "3.1-9", [ 3, 1, 9 ], 329, 37, 898 "ct the group generated by all class transpositions of a ring", 899 "X7BD42D8481300E25" ], 900 [ "\033[2XCT\033[102X subgroup of ct(z)", "3.1-9", [ 3, 1, 9 ], 329, 37, 901 "ct subgroup of ct z", "X7BD42D8481300E25" ], 902 [ "\033[10XMirrored\033[110X", "3.1-9", [ 3, 1, 9 ], 329, 37, "mirrored", 903 "X7BD42D8481300E25" ], 904 [ "\033[10XAllElementsOfCTZWithGivenModulus\033[110X", "3.1-9", 905 [ 3, 1, 9 ], 329, 37, "allelementsofctzwithgivenmodulus", 906 "X7BD42D8481300E25" ], 907 [ "\033[10XNrElementsOfCTZWithGivenModulus\033[110X", "3.1-9", [ 3, 1, 9 ], 908 329, 37, "nrelementsofctzwithgivenmodulus", "X7BD42D8481300E25" ], 909 [ "\033[10XNrConjugacyClassesOfCTZOfOrder\033[110X", "3.1-9", [ 3, 1, 9 ], 910 329, 37, "nrconjugacyclassesofctzoforder", "X7BD42D8481300E25" ], 911 [ "\033[2XStructureDescription\033[102X for an rcwa group", "3.2-1", 912 [ 3, 2, 1 ], 405, 38, "structuredescription for an rcwa group", 913 "X864A7E3E87F366A8" ], 914 [ "\033[10XSize\033[110X for an rcwa group", "3.2-1", [ 3, 2, 1 ], 405, 38, 915 "size for an rcwa group", "X864A7E3E87F366A8" ], 916 [ "\033[10XIsomorphismPermGroup\033[110X for a finite rcwa group", "3.2-1", 917 [ 3, 2, 1 ], 405, 38, "isomorphismpermgroup for a finite rcwa group", 918 "X864A7E3E87F366A8" ], 919 [ "rcwa group membership test", "3.2-1", [ 3, 2, 1 ], 405, 38, 920 "rcwa group membership test", "X864A7E3E87F366A8" ], 921 [ "\033[10XOrbitLengthBound\033[110X", "3.2-1", [ 3, 2, 1 ], 405, 38, 922 "orbitlengthbound", "X864A7E3E87F366A8" ], 923 [ "rcwa group conjugacy problem", "3.2-1", [ 3, 2, 1 ], 405, 38, 924 "rcwa group conjugacy problem", "X864A7E3E87F366A8" ], 925 [ "\033[10XIsConjugate\033[110X for elements of RCWA(R)", "3.2-1", 926 [ 3, 2, 1 ], 405, 38, "isconjugate for elements of rcwa r", 927 "X864A7E3E87F366A8" ], 928 [ "\033[10XIsConjugate\033[110X for elements of CT(R)", "3.2-1", 929 [ 3, 2, 1 ], 405, 38, "isconjugate for elements of ct r", 930 "X864A7E3E87F366A8" ], 931 [ "\033[10XIsTame\033[110X for an rcwa group", "3.2-1", [ 3, 2, 1 ], 405, 932 38, "istame for an rcwa group", "X864A7E3E87F366A8" ], 933 [ "\033[10XIsSolvable\033[110X for an rcwa group", "3.2-1", [ 3, 2, 1 ], 934 405, 38, "issolvable for an rcwa group", "X864A7E3E87F366A8" ], 935 [ "\033[10XIsPerfect\033[110X for an rcwa group", "3.2-1", [ 3, 2, 1 ], 936 405, 38, "isperfect for an rcwa group", "X864A7E3E87F366A8" ], 937 [ "\033[10XDerivedSubgroup\033[110X of an rcwa group", "3.2-1", 938 [ 3, 2, 1 ], 405, 38, "derivedsubgroup of an rcwa group", 939 "X864A7E3E87F366A8" ], 940 [ "\033[10XIndex\033[110X for rcwa groups", "3.2-1", [ 3, 2, 1 ], 405, 38, 941 "index for rcwa groups", "X864A7E3E87F366A8" ], 942 [ "\033[10XIsomorphismMatrixGroup\033[110X for an rcwa group", "3.2-1", 943 [ 3, 2, 1 ], 405, 38, "isomorphismmatrixgroup for an rcwa group", 944 "X864A7E3E87F366A8" ], 945 [ "\033[10XExponent\033[110X of an rcwa group", "3.2-1", [ 3, 2, 1 ], 405, 946 38, "exponent of an rcwa group", "X864A7E3E87F366A8" ], 947 [ 948 "\033[2XEpimorphismFromFpGroup\033[102X for an rcwa group and a search radi\ 949us", "3.2-2", [ 3, 2, 2 ], 599, 42, 950 "epimorphismfromfpgroup for an rcwa group and a search radius", 951 "X83527DA37C5CB2C7" ], 952 [ 953 "\033[2XEpimorphismFromFpGroup\033[102X for rcwa group, search radius and b\ 954ound on number of affine parts", "3.2-2", [ 3, 2, 2 ], 599, 42, 955 "epimorphismfromfpgroup for rcwa group search radius and bound on number\ 956 of affine parts", "X83527DA37C5CB2C7" ], 957 [ 958 "\033[2XPreImagesRepresentative\033[102X for an epi. from a free group to a\ 959n rcwa group", "3.2-3", [ 3, 2, 3 ], 632, 42, 960 "preimagesrepresentative for an epi. from a free group to an rcwa group" 961 , "X8463E34286344F06" ], 962 [ 963 "\033[10XPreImagesRepresentatives\033[110X for an epi. from a free group to\ 964 an rcwa group", "3.2-3", [ 3, 2, 3 ], 632, 42, 965 "preimagesrepresentatives for an epi. from a free group to an rcwa group\ 966", "X8463E34286344F06" ], 967 [ "\033[10XSupport\033[110X of an rcwa group", "3.3", [ 3, 3, 0 ], 675, 43, 968 "support of an rcwa group", "X8151BE577FFDCE87" ], 969 [ "\033[10XMovedPoints\033[110X of an rcwa group", "3.3", [ 3, 3, 0 ], 675, 970 43, "movedpoints of an rcwa group", "X8151BE577FFDCE87" ], 971 [ "\033[10XIsTransitive\033[110X for an rcwa group, on its underlying ring", 972 "3.3", [ 3, 3, 0 ], 675, 43, 973 "istransitive for an rcwa group on its underlying ring", 974 "X8151BE577FFDCE87" ], 975 [ 976 "\033[10XIsTransitiveOnNonnegativeIntegersInSupport\033[110X for an rcwa gr\ 977oup over Z", "3.3", [ 3, 3, 0 ], 675, 43, 978 "istransitiveonnonnegativeintegersinsupport for an rcwa group over z", 979 "X8151BE577FFDCE87" ], 980 [ 981 "\033[10XTryIsTransitiveOnNonnegativeIntegersInSupport\033[110X for an rcwa\ 982 group over Z and a search limit", "3.3", [ 3, 3, 0 ], 675, 43, 983 "tryistransitiveonnonnegativeintegersinsupport for an rcwa group over z \ 984and a search limit", "X8151BE577FFDCE87" ], 985 [ 986 "\033[10XTransitivityCertificate\033[110X for an rcwa group over Z and a se\ 987arch limit", "3.3", [ 3, 3, 0 ], 675, 43, 988 "transitivitycertificate for an rcwa group over z and a search limit", 989 "X8151BE577FFDCE87" ], 990 [ 991 "\033[10XTryToComputeTransitivityCertificate\033[110X for an rcwa group ove\ 992r Z and a search limit", "3.3", [ 3, 3, 0 ], 675, 43, 993 "trytocomputetransitivitycertificate for an rcwa group over z and a sear\ 994ch limit", "X8151BE577FFDCE87" ], 995 [ 996 "\033[10XSimplifiedCertificate\033[110X for a transitivity certificate of a\ 997n rcwa groups over Z", "3.3", [ 3, 3, 0 ], 675, 43, 998 "simplifiedcertificate for a transitivity certificate of an rcwa groups \ 999over z", "X8151BE577FFDCE87" ], 1000 [ "\033[2XOrbit\033[102X for an rcwa group and a point", "3.3-1", 1001 [ 3, 3, 1 ], 797, 45, "orbit for an rcwa group and a point", 1002 "X7C046BE97EE53692" ], 1003 [ "\033[2XOrbit\033[102X for an rcwa group and a set", "3.3-1", 1004 [ 3, 3, 1 ], 797, 45, "orbit for an rcwa group and a set", 1005 "X7C046BE97EE53692" ], 1006 [ 1007 "\033[2XGrowthFunctionOfOrbit\033[102X for an rcwa group, a point and bound\ 1008s on radius and sphere size", "3.3-2", [ 3, 3, 2 ], 840, 46, 1009 "growthfunctionoforbit for an rcwa group a point and bounds on radius an\ 1010d sphere size", "X7B7A3AF97D195E33" ], 1011 [ 1012 "\033[2XGrowthFunctionOfOrbit\033[102X for an rcwa group orbit and bounds o\ 1013n radius and sphere size", "3.3-2", [ 3, 3, 2 ], 840, 46, 1014 "growthfunctionoforbit for an rcwa group orbit and bounds on radius and \ 1015sphere size", "X7B7A3AF97D195E33" ], 1016 [ "\033[10XDistanceToNextSmallerPointInOrbit\033[110X", "3.3-2", 1017 [ 3, 3, 2 ], 840, 46, "distancetonextsmallerpointinorbit", 1018 "X7B7A3AF97D195E33" ], 1019 [ 1020 "\033[2XDrawOrbitPicture\033[102X g, p0, bound, h, w, colored, palette, fil\ 1021ename", "3.3-3", [ 3, 3, 3 ], 891, 47, 1022 "draworbitpicture g p0 bound h w colored palette filename", 1023 "X7D9DFAC97F9F0891" ], 1024 [ 1025 "\033[2XShortOrbits\033[102X for rcwa group, set of points and bound on len\ 1026gth", "3.3-4", [ 3, 3, 4 ], 925, 47, 1027 "shortorbits for rcwa group set of points and bound on length", 1028 "X78F145197F63A25D" ], 1029 [ 1030 "\033[2XShortOrbits\033[102X for rcwa group, set of points and bounds on le\ 1031ngth and points", "3.3-4", [ 3, 3, 4 ], 925, 47, 1032 "shortorbits for rcwa group set of points and bounds on length and point\ 1033s", "X78F145197F63A25D" ], 1034 [ 1035 "\033[2XShortCycles\033[102X for rcwa permutation, set of points and bound \ 1036on length", "3.3-4", [ 3, 3, 4 ], 925, 47, 1037 "shortcycles for rcwa permutation set of points and bound on length", 1038 "X78F145197F63A25D" ], 1039 [ 1040 "\033[2XShortCycles\033[102X for rcwa permutation, set of points and bounds\ 1041 on length and points", "3.3-4", [ 3, 3, 4 ], 925, 47, 1042 "shortcycles for rcwa permutation set of points and bounds on length and\ 1043 points", "X78F145197F63A25D" ], 1044 [ "\033[2XShortCycles\033[102X for rcwa permutation and bound on length", 1045 "3.3-4", [ 3, 3, 4 ], 925, 47, 1046 "shortcycles for rcwa permutation and bound on length", 1047 "X78F145197F63A25D" ], 1048 [ "\033[10XCyclesOnFiniteOrbit\033[110X", "3.3-4", [ 3, 3, 4 ], 925, 47, 1049 "cyclesonfiniteorbit", "X78F145197F63A25D" ], 1050 [ 1051 "\033[2XShortResidueClassOrbits\033[102X for rcwa group and bounds on modul\ 1052us and length", "3.3-5", [ 3, 3, 5 ], 980, 48, 1053 "shortresidueclassorbits for rcwa group and bounds on modulus and length\ 1054", "X80D18D0778A96C16" ], 1055 [ 1056 "\033[2XShortResidueClassCycles\033[102X for rcwa permutation and bounds on\ 1057 modulus and length", "3.3-5", [ 3, 3, 5 ], 980, 48, 1058 "shortresidueclasscycles for rcwa permutation and bounds on modulus and \ 1059length", "X80D18D0778A96C16" ], 1060 [ "\033[2XComputeCycleLength\033[102X for an rcwa permutation and a point", 1061 "3.3-6", [ 3, 3, 6 ], 1025, 49, 1062 "computecyclelength for an rcwa permutation and a point", 1063 "X80C080287A355EFF" ], 1064 [ 1065 "\033[2XCycleRepresentativesAndLengths\033[102X for rcwa permutation and se\ 1066t of seed points", "3.3-7", [ 3, 3, 7 ], 1071, 50, 1067 "cyclerepresentativesandlengths for rcwa permutation and set of seed poi\ 1068nts", "X7F76B04E86C77B94" ], 1069 [ 1070 "\033[2XFixedResidueClasses\033[102X for rcwa mapping and bound on modulus" 1071 , "3.3-8", [ 3, 3, 8 ], 1121, 50, 1072 "fixedresidueclasses for rcwa mapping and bound on modulus", 1073 "X8777A62286597D53" ], 1074 [ "\033[2XFixedResidueClasses\033[102X for rcwa group and bound on modulus", 1075 "3.3-8", [ 3, 3, 8 ], 1121, 50, 1076 "fixedresidueclasses for rcwa group and bound on modulus", 1077 "X8777A62286597D53" ], 1078 [ "\033[2XBall\033[102X for group, element and radius", "3.3-9", 1079 [ 3, 3, 9 ], 1144, 51, "ball for group element and radius", 1080 "X8735855587CC029F" ], 1081 [ "\033[2XBall\033[102X for group, point, radius and action", "3.3-9", 1082 [ 3, 3, 9 ], 1144, 51, "ball for group point radius and action", 1083 "X8735855587CC029F" ], 1084 [ "\033[2XBall\033[102X for group, point and radius", "3.3-9", [ 3, 3, 9 ], 1085 1144, 51, "ball for group point and radius", "X8735855587CC029F" ], 1086 [ "\033[10XRestrictedBall\033[110X G, g, r, modulusbound", "3.3-9", 1087 [ 3, 3, 9 ], 1144, 51, "restrictedball g g r modulusbound", 1088 "X8735855587CC029F" ], 1089 [ "\033[2XRepresentativeAction\033[102X g, source, destination, action", 1090 "3.3-10", [ 3, 3, 10 ], 1190, 52, 1091 "representativeaction g source destination action", "X87A3462C82FD376E" 1092 ], 1093 [ 1094 "\033[10XRepresentativeActionPreImage\033[110X G, source, destination, acti\ 1095on, F", "3.3-10", [ 3, 3, 10 ], 1190, 52, 1096 "representativeactionpreimage g source destination action f", 1097 "X87A3462C82FD376E" ], 1098 [ 1099 "\033[2XProjectionsToInvariantUnionsOfResidueClasses\033[102X for rcwa grou\ 1100p and modulus", "3.3-11", [ 3, 3, 11 ], 1266, 53, 1101 "projectionstoinvariantunionsofresidueclasses for rcwa group and modulus\ 1102", "X8587246A7F890849" ], 1103 [ "\033[10XOrbitsModulo\033[110X for an rcwa group and a modulus", 1104 "3.3-11", [ 3, 3, 11 ], 1266, 53, 1105 "orbitsmodulo for an rcwa group and a modulus", "X8587246A7F890849" ], 1106 [ "\033[2XRepresentativeAction\033[102X for rcwa(r) and 2 partitions of r in\ 1107to residue classes", "3.3-12", [ 3, 3, 12 ], 1292, 53, 1108 "representativeaction for rcwa r and 2 partitions of r into residue clas\ 1109ses", "X866843D08213067E" ], 1110 [ 1111 "\033[2XCollatzLikeMappingByOrbitTree\033[102X for rcwa group, root point a\ 1112nd range of radii", "3.3-13", [ 3, 3, 13 ], 1333, 54, 1113 "collatzlikemappingbyorbittree for rcwa group root point and range of ra\ 1114dii", "X82DBAF35788FA239" ], 1115 [ "\033[2XRespectedPartition\033[102X of a tame rcwa group", "3.4-1", 1116 [ 3, 4, 1 ], 1396, 55, "respectedpartition of a tame rcwa group", 1117 "X7F523A6B87825AB8" ], 1118 [ "\033[2XRespectedPartition\033[102X of a tame rcwa permutation", "3.4-1", 1119 [ 3, 4, 1 ], 1396, 55, "respectedpartition of a tame rcwa permutation", 1120 "X7F523A6B87825AB8" ], 1121 [ "\033[10XRespectsPartition\033[110X for an rcwa group", "3.4-1", 1122 [ 3, 4, 1 ], 1396, 55, "respectspartition for an rcwa group", 1123 "X7F523A6B87825AB8" ], 1124 [ "\033[10XRespectsPartition\033[110X for an rcwa permutation", "3.4-1", 1125 [ 3, 4, 1 ], 1396, 55, "respectspartition for an rcwa permutation", 1126 "X7F523A6B87825AB8" ], 1127 [ "\033[10XPermutationOpNC\033[110X g, P, OnPoints", "3.4-1", [ 3, 4, 1 ], 1128 1396, 55, "permutationopnc g p onpoints", "X7F523A6B87825AB8" ], 1129 [ "\033[2XActionOnRespectedPartition\033[102X for a tame rcwa group", 1130 "3.4-2", [ 3, 4, 2 ], 1430, 56, 1131 "actiononrespectedpartition for a tame rcwa group", "X831ADC1584DE6113" 1132 ], 1133 [ "\033[2XKernelOfActionOnRespectedPartition\033[102X for a tame rcwa group" 1134 , "3.4-2", [ 3, 4, 2 ], 1430, 56, 1135 "kernelofactiononrespectedpartition for a tame rcwa group", 1136 "X831ADC1584DE6113" ], 1137 [ 1138 "\033[2XRankOfKernelOfActionOnRespectedPartition\033[102X for a tame rcwa g\ 1139roup", "3.4-2", [ 3, 4, 2 ], 1430, 56, 1140 "rankofkernelofactiononrespectedpartition for a tame rcwa group", 1141 "X831ADC1584DE6113" ], 1142 [ "\033[10XIntegralConjugate\033[110X of a tame rcwa group", "3.4-2", 1143 [ 3, 4, 2 ], 1430, 56, "integralconjugate of a tame rcwa group", 1144 "X831ADC1584DE6113" ], 1145 [ "\033[10XIntegralConjugate\033[110X of a tame rcwa permutation", "3.4-2", 1146 [ 3, 4, 2 ], 1430, 56, "integralconjugate of a tame rcwa permutation", 1147 "X831ADC1584DE6113" ], 1148 [ "\033[10XIntegralizingConjugator\033[110X of a tame rcwa group", "3.4-2", 1149 [ 3, 4, 2 ], 1430, 56, "integralizingconjugator of a tame rcwa group", 1150 "X831ADC1584DE6113" ], 1151 [ "\033[10XIntegralizingConjugator\033[110X of a tame rcwa permutation", 1152 "3.4-2", [ 3, 4, 2 ], 1430, 56, 1153 "integralizingconjugator of a tame rcwa permutation", 1154 "X831ADC1584DE6113" ], 1155 [ "\033[10XRandom\033[110X RCWA(R)", "3.5", [ 3, 5, 0 ], 1492, 57, 1156 "random rcwa r", "X81941A247942FB99" ], 1157 [ "\033[10XRandom\033[110X CT(R)", "3.5", [ 3, 5, 0 ], 1492, 57, 1158 "random ct r", "X81941A247942FB99" ], 1159 [ "\033[2XIsRcwaGroup\033[102X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1160 "isrcwagroup", "X84AFBB997B694A3D" ], 1161 [ "\033[2XIsRcwaGroupOverZ\033[102X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1162 "isrcwagroupoverz", "X84AFBB997B694A3D" ], 1163 [ "\033[2XIsRcwaGroupOverZ_pi\033[102X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1164 "isrcwagroupoverz_pi", "X84AFBB997B694A3D" ], 1165 [ "\033[2XIsRcwaGroupOverGFqx\033[102X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1166 "isrcwagroupovergfqx", "X84AFBB997B694A3D" ], 1167 [ "\033[10XIsRcwaGroupOverZOrZ_pi\033[110X", "3.6-1", [ 3, 6, 1 ], 1543, 1168 58, "isrcwagroupoverzorz_pi", "X84AFBB997B694A3D" ], 1169 [ "\033[10XIsNaturalRCWA\033[110X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1170 "isnaturalrcwa", "X84AFBB997B694A3D" ], 1171 [ "\033[10XIsNaturalCT\033[110X", "3.6-1", [ 3, 6, 1 ], 1543, 58, 1172 "isnaturalct", "X84AFBB997B694A3D" ], 1173 [ "rcwa monoid definition", "4.", [ 4, 0, 0 ], 1, 59, 1174 "rcwa monoid definition", "X81C90F7C7BA25BDF" ], 1175 [ "\033[10XMonoid\033[110X", "4.1", [ 4, 1, 0 ], 8, 59, "monoid", 1176 "X83D42E26849D5580" ], 1177 [ "\033[10XMonoidByGenerators\033[110X", "4.1", [ 4, 1, 0 ], 8, 59, 1178 "monoidbygenerators", "X83D42E26849D5580" ], 1179 [ "\033[10XView\033[110X for an rcwa monoid", "4.1", [ 4, 1, 0 ], 8, 59, 1180 "view for an rcwa monoid", "X83D42E26849D5580" ], 1181 [ "\033[10XDisplay\033[110X for an rcwa monoid", "4.1", [ 4, 1, 0 ], 8, 59, 1182 "display for an rcwa monoid", "X83D42E26849D5580" ], 1183 [ "\033[10XPrint\033[110X for an rcwa monoid", "4.1", [ 4, 1, 0 ], 8, 59, 1184 "print for an rcwa monoid", "X83D42E26849D5580" ], 1185 [ "\033[10XString\033[110X for an rcwa monoid", "4.1", [ 4, 1, 0 ], 8, 59, 1186 "string for an rcwa monoid", "X83D42E26849D5580" ], 1187 [ "\033[2XRcwa\033[102X the monoid formed by all rcwa mappings of a ring", 1188 "4.1-1", [ 4, 1, 1 ], 42, 60, 1189 "rcwa the monoid formed by all rcwa mappings of a ring", 1190 "X7B95FCA279E0D6CC" ], 1191 [ 1192 "\033[10XRestriction\033[110X for an rcwa monoid, by an injective rcwa mapp\ 1193ing", "4.1-1", [ 4, 1, 1 ], 42, 60, 1194 "restriction for an rcwa monoid by an injective rcwa mapping", 1195 "X7B95FCA279E0D6CC" ], 1196 [ 1197 "\033[10XInduction\033[110X for an rcwa monoid, by an injective rcwa mappin\ 1198g", "4.1-1", [ 4, 1, 1 ], 42, 60, 1199 "induction for an rcwa monoid by an injective rcwa mapping", 1200 "X7B95FCA279E0D6CC" ], 1201 [ "\033[10XSize\033[110X for an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 60, 1202 "size for an rcwa monoid", "X8759954F7EB1A658" ], 1203 [ "\033[10Xrcwa monoids\033[110X membership test", "4.2", [ 4, 2, 0 ], 78, 1204 60, "rcwa monoids membership test", "X8759954F7EB1A658" ], 1205 [ "\033[10XIsSubset\033[110X for two rcwa monoids", "4.2", [ 4, 2, 0 ], 78, 1206 60, "issubset for two rcwa monoids", "X8759954F7EB1A658" ], 1207 [ "\033[10XSupport\033[110X of an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 60, 1208 "support of an rcwa monoid", "X8759954F7EB1A658" ], 1209 [ "\033[10XModulus\033[110X of an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 60, 1210 "modulus of an rcwa monoid", "X8759954F7EB1A658" ], 1211 [ "\033[10XIsTame\033[110X for an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 60, 1212 "istame for an rcwa monoid", "X8759954F7EB1A658" ], 1213 [ "\033[10XPrimeSet\033[110X of an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 1214 60, "primeset of an rcwa monoid", "X8759954F7EB1A658" ], 1215 [ "\033[10XIsIntegral\033[110X for an rcwa monoid", "4.2", [ 4, 2, 0 ], 78, 1216 60, "isintegral for an rcwa monoid", "X8759954F7EB1A658" ], 1217 [ "\033[10XIsClassWiseOrderPreserving\033[110X for an rcwa monoid", "4.2", 1218 [ 4, 2, 0 ], 78, 60, "isclasswiseorderpreserving for an rcwa monoid", 1219 "X8759954F7EB1A658" ], 1220 [ "\033[10XIsSignPreserving\033[110X for an rcwa monoid", "4.2", 1221 [ 4, 2, 0 ], 78, 60, "issignpreserving for an rcwa monoid", 1222 "X8759954F7EB1A658" ], 1223 [ "rcwa monoid modulus", "4.2", [ 4, 2, 0 ], 78, 60, "rcwa monoid modulus", 1224 "X8759954F7EB1A658" ], 1225 [ "rcwa monoid tame", "4.2", [ 4, 2, 0 ], 78, 60, "rcwa monoid tame", 1226 "X8759954F7EB1A658" ], 1227 [ "rcwa monoid wild", "4.2", [ 4, 2, 0 ], 78, 60, "rcwa monoid wild", 1228 "X8759954F7EB1A658" ], 1229 [ "rcwa monoid prime set", "4.2", [ 4, 2, 0 ], 78, 60, 1230 "rcwa monoid prime set", "X8759954F7EB1A658" ], 1231 [ "rcwa monoid integral", "4.2", [ 4, 2, 0 ], 78, 60, 1232 "rcwa monoid integral", "X8759954F7EB1A658" ], 1233 [ "rcwa monoid class-wise order-preserving", "4.2", [ 4, 2, 0 ], 78, 60, 1234 "rcwa monoid class-wise order-preserving", "X8759954F7EB1A658" ], 1235 [ "rcwa monoid sign-preserving", "4.2", [ 4, 2, 0 ], 78, 60, 1236 "rcwa monoid sign-preserving", "X8759954F7EB1A658" ], 1237 [ 1238 "\033[2XShortOrbits\033[102X for rcwa monoid, set of points and bound on le\ 1239ngth", "4.2-1", [ 4, 2, 1 ], 136, 61, 1240 "shortorbits for rcwa monoid set of points and bound on length", 1241 "X87DB896687475084" ], 1242 [ "\033[2XBall\033[102X for monoid, element and radius", "4.2-2", 1243 [ 4, 2, 2 ], 165, 62, "ball for monoid element and radius", 1244 "X787848137DF1C245" ], 1245 [ "\033[2XBall\033[102X for monoid, point, radius and action", "4.2-2", 1246 [ 4, 2, 2 ], 165, 62, "ball for monoid point radius and action", 1247 "X787848137DF1C245" ], 1248 [ "rcwa mapping of Z x Z, definition", "5.1", [ 5, 1, 0 ], 22, 63, 1249 "rcwa mapping of z x z definition", "X781907CA785CC7AC" ], 1250 [ "rcwa mapping modulus", "5.1", [ 5, 1, 0 ], 22, 63, 1251 "rcwa mapping modulus", "X781907CA785CC7AC" ], 1252 [ "rcwa mapping class-wise translating", "5.1", [ 5, 1, 0 ], 22, 63, 1253 "rcwa mapping class-wise translating", "X781907CA785CC7AC" ], 1254 [ "class-wise translating definition", "5.1", [ 5, 1, 0 ], 22, 63, 1255 "class-wise translating definition", "X781907CA785CC7AC" ], 1256 [ "prime set definition", "5.1", [ 5, 1, 0 ], 22, 63, 1257 "prime set definition", "X781907CA785CC7AC" ], 1258 [ "\033[2XRcwaMapping\033[102X by ring = z x z, modulus and coefficients", 1259 "5.2-1", [ 5, 2, 1 ], 52, 64, 1260 "rcwamapping by ring = z x z modulus and coefficients", 1261 "X790649618012C606" ], 1262 [ 1263 "\033[2XRcwaMapping\033[102X by two partitions of z x z into residue classe\ 1264s", "5.2-1", [ 5, 2, 1 ], 52, 64, 1265 "rcwamapping by two partitions of z x z into residue classes", 1266 "X790649618012C606" ], 1267 [ "\033[2XRcwaMapping\033[102X of z x z, by residue class cycles", "5.2-1", 1268 [ 5, 2, 1 ], 52, 64, "rcwamapping of z x z by residue class cycles", 1269 "X790649618012C606" ], 1270 [ "\033[2XRcwaMapping\033[102X of z x z, by projections to coordinates", 1271 "5.2-1", [ 5, 2, 1 ], 52, 64, 1272 "rcwamapping of z x z by projections to coordinates", 1273 "X790649618012C606" ], 1274 [ "\033[2XClassTransposition\033[102X r1, l1, r2, l2 (for z x z)", "5.2-2", 1275 [ 5, 2, 2 ], 201, 66, "classtransposition r1 l1 r2 l2 for z x z", 1276 "X7B450EE17B465E02" ], 1277 [ "\033[2XClassTransposition\033[102X cl1, cl2 (for z x z)", "5.2-2", 1278 [ 5, 2, 2 ], 201, 66, "classtransposition cl1 cl2 for z x z", 1279 "X7B450EE17B465E02" ], 1280 [ "\033[10XTransposedClasses\033[110X of a class transposition of Z x Z", 1281 "5.2-2", [ 5, 2, 2 ], 201, 66, 1282 "transposedclasses of a class transposition of z x z", 1283 "X7B450EE17B465E02" ], 1284 [ 1285 "\033[10XSplittedClassTransposition\033[110X for a class transposition of Z\ 1286 x Z", "5.2-2", [ 5, 2, 2 ], 201, 66, 1287 "splittedclasstransposition for a class transposition of z x z", 1288 "X7B450EE17B465E02" ], 1289 [ "\033[2XClassRotation\033[102X r, l, u; for z x z", "5.2-3", [ 5, 2, 3 ], 1290 267, 67, "classrotation r l u for z x z", "X828438127DDAEBB4" ], 1291 [ "\033[2XClassRotation\033[102X cl, u; for z x z", "5.2-3", [ 5, 2, 3 ], 1292 267, 67, "classrotation cl u for z x z", "X828438127DDAEBB4" ], 1293 [ "\033[10XRotationFactor\033[110X of a class rotation of Z x Z", "5.2-3", 1294 [ 5, 2, 3 ], 267, 67, "rotationfactor of a class rotation of z x z", 1295 "X828438127DDAEBB4" ], 1296 [ "\033[2XClassShift\033[102X r, l, k; for z x z", "5.2-4", [ 5, 2, 4 ], 1297 304, 68, "classshift r l k for z x z", "X7A14A8F48247E651" ], 1298 [ "\033[2XClassShift\033[102X cl, k; for z x z", "5.2-4", [ 5, 2, 4 ], 304, 1299 68, "classshift cl k for z x z", "X7A14A8F48247E651" ], 1300 [ "\033[10XIsClassTransposition\033[110X for an rcwa mapping of Z x Z", 1301 "5.2-4", [ 5, 2, 4 ], 304, 68, 1302 "isclasstransposition for an rcwa mapping of z x z", 1303 "X7A14A8F48247E651" ], 1304 [ "\033[10XIsClassRotation\033[110X for an rcwa mapping of Z x Z", "5.2-4", 1305 [ 5, 2, 4 ], 304, 68, "isclassrotation for an rcwa mapping of z x z", 1306 "X7A14A8F48247E651" ], 1307 [ "\033[10XIsClassShift\033[110X for an rcwa mapping of Z x Z", "5.2-4", 1308 [ 5, 2, 4 ], 304, 68, "isclassshift for an rcwa mapping of z x z", 1309 "X7A14A8F48247E651" ], 1310 [ "\033[10XView\033[110X for an rcwa mapping of Z x Z", "5.3", [ 5, 3, 0 ], 1311 342, 69, "view for an rcwa mapping of z x z", "X8531E39785FFF8A7" ], 1312 [ "\033[10XDisplay\033[110X for an rcwa mapping of Z x Z", "5.3", 1313 [ 5, 3, 0 ], 342, 69, "display for an rcwa mapping of z x z", 1314 "X8531E39785FFF8A7" ], 1315 [ "\033[10XPrint\033[110X for an rcwa mapping of Z x Z", "5.3", 1316 [ 5, 3, 0 ], 342, 69, "print for an rcwa mapping of z x z", 1317 "X8531E39785FFF8A7" ], 1318 [ "\033[10XString\033[110X for an rcwa mapping of Z x Z", "5.3", 1319 [ 5, 3, 0 ], 342, 69, "string for an rcwa mapping of z x z", 1320 "X8531E39785FFF8A7" ], 1321 [ "\033[10XLaTeXStringRcwaMapping\033[110X for an rcwa mapping of Z x Z", 1322 "5.3", [ 5, 3, 0 ], 342, 69, 1323 "latexstringrcwamapping for an rcwa mapping of z x z", 1324 "X8531E39785FFF8A7" ], 1325 [ "\033[10XLaTeXAndXDVI\033[110X for an rcwa mapping of Z x Z", "5.3", 1326 [ 5, 3, 0 ], 342, 69, "latexandxdvi for an rcwa mapping of z x z", 1327 "X8531E39785FFF8A7" ], 1328 [ "\033[10XModulus\033[110X of an rcwa mapping of Z x Z", "5.3", 1329 [ 5, 3, 0 ], 342, 69, "modulus of an rcwa mapping of z x z", 1330 "X8531E39785FFF8A7" ], 1331 [ "\033[10XCoefficients\033[110X of an rcwa mapping of Z x Z", "5.3", 1332 [ 5, 3, 0 ], 342, 69, "coefficients of an rcwa mapping of z x z", 1333 "X8531E39785FFF8A7" ], 1334 [ "\033[10XSupport\033[110X of an rcwa mapping of Z x Z", "5.3", 1335 [ 5, 3, 0 ], 342, 69, "support of an rcwa mapping of z x z", 1336 "X8531E39785FFF8A7" ], 1337 [ "\033[10XMovedPoints\033[110X of an rcwa mapping of Z x Z", "5.3", 1338 [ 5, 3, 0 ], 342, 69, "movedpoints of an rcwa mapping of z x z", 1339 "X8531E39785FFF8A7" ], 1340 [ "\033[10XOrder\033[110X of an rcwa mapping of Z x Z", "5.3", [ 5, 3, 0 ], 1341 342, 69, "order of an rcwa mapping of z x z", "X8531E39785FFF8A7" ], 1342 [ "\033[10XMultiplier\033[110X of an rcwa mapping of Z x Z", "5.3", 1343 [ 5, 3, 0 ], 342, 69, "multiplier of an rcwa mapping of z x z", 1344 "X8531E39785FFF8A7" ], 1345 [ "\033[10XDivisor\033[110X of an rcwa mapping of Z x Z", "5.3", 1346 [ 5, 3, 0 ], 342, 69, "divisor of an rcwa mapping of z x z", 1347 "X8531E39785FFF8A7" ], 1348 [ "\033[10XPrimeSet\033[110X of an rcwa mapping of Z x Z", "5.3", 1349 [ 5, 3, 0 ], 342, 69, "primeset of an rcwa mapping of z x z", 1350 "X8531E39785FFF8A7" ], 1351 [ "\033[10XOne\033[110X for an rcwa mapping of Z x Z", "5.3", [ 5, 3, 0 ], 1352 342, 69, "one for an rcwa mapping of z x z", "X8531E39785FFF8A7" ], 1353 [ "\033[10XZero\033[110X for an rcwa mapping of Z x Z", "5.3", [ 5, 3, 0 ], 1354 342, 69, "zero for an rcwa mapping of z x z", "X8531E39785FFF8A7" ], 1355 [ "\033[10XIsInjective\033[110X for an rcwa mapping of Z x Z", "5.3", 1356 [ 5, 3, 0 ], 342, 69, "isinjective for an rcwa mapping of z x z", 1357 "X8531E39785FFF8A7" ], 1358 [ "\033[10XIsSurjective\033[110X for an rcwa mapping of Z x Z", "5.3", 1359 [ 5, 3, 0 ], 342, 69, "issurjective for an rcwa mapping of z x z", 1360 "X8531E39785FFF8A7" ], 1361 [ "\033[10XIsBijective\033[110X for an rcwa mapping of Z x Z", "5.3", 1362 [ 5, 3, 0 ], 342, 69, "isbijective for an rcwa mapping of z x z", 1363 "X8531E39785FFF8A7" ], 1364 [ "\033[10XIsTame\033[110X for an rcwa mapping of Z x Z", "5.3", 1365 [ 5, 3, 0 ], 342, 69, "istame for an rcwa mapping of z x z", 1366 "X8531E39785FFF8A7" ], 1367 [ "\033[10XIsIntegral\033[110X for an rcwa mapping of Z x Z", "5.3", 1368 [ 5, 3, 0 ], 342, 69, "isintegral for an rcwa mapping of z x z", 1369 "X8531E39785FFF8A7" ], 1370 [ "\033[10XIsBalanced\033[110X for an rcwa mapping of Z x Z", "5.3", 1371 [ 5, 3, 0 ], 342, 69, "isbalanced for an rcwa mapping of z x z", 1372 "X8531E39785FFF8A7" ], 1373 [ "\033[10XIsClassWiseOrderPreserving\033[110X for an rcwa mapping of Z x Z" 1374 , "5.3", [ 5, 3, 0 ], 342, 69, 1375 "isclasswiseorderpreserving for an rcwa mapping of z x z", 1376 "X8531E39785FFF8A7" ], 1377 [ "\033[10XIsOne\033[110X for an rcwa mapping of Z x Z", "5.3", 1378 [ 5, 3, 0 ], 342, 69, "isone for an rcwa mapping of z x z", 1379 "X8531E39785FFF8A7" ], 1380 [ "\033[10XIsZero\033[110X for an rcwa mapping of Z x Z", "5.3", 1381 [ 5, 3, 0 ], 342, 69, "iszero for an rcwa mapping of z x z", 1382 "X8531E39785FFF8A7" ], 1383 [ "\033[10XTrajectory\033[110X for rcwa mappings of Z x Z", "5.3", 1384 [ 5, 3, 0 ], 342, 69, "trajectory for rcwa mappings of z x z", 1385 "X8531E39785FFF8A7" ], 1386 [ 1387 "\033[10XShortCycles\033[110X for rcwa perm. of Z x Z, set of points and ma\ 1388x. length", "5.3", [ 5, 3, 0 ], 342, 69, 1389 "shortcycles for rcwa perm. of z x z set of points and max. length", 1390 "X8531E39785FFF8A7" ], 1391 [ "\033[10XMultpk\033[110X for rcwa mapping of Z x Z, prime and exponent", 1392 "5.3", [ 5, 3, 0 ], 342, 69, 1393 "multpk for rcwa mapping of z x z prime and exponent", 1394 "X8531E39785FFF8A7" ], 1395 [ "\033[10XClassWiseOrderPreservingOn\033[110X for rcwa mappings of Z x Z", 1396 "5.3", [ 5, 3, 0 ], 342, 69, 1397 "classwiseorderpreservingon for rcwa mappings of z x z", 1398 "X8531E39785FFF8A7" ], 1399 [ "\033[10XClassWiseOrderReversingOn\033[110X for rcwa mappings of Z x Z", 1400 "5.3", [ 5, 3, 0 ], 342, 69, 1401 "classwiseorderreversingon for rcwa mappings of z x z", 1402 "X8531E39785FFF8A7" ], 1403 [ "\033[10XClassWiseConstantOn\033[110X for rcwa mappings of Z x Z", "5.3", 1404 [ 5, 3, 0 ], 342, 69, "classwiseconstanton for rcwa mappings of z x z", 1405 "X8531E39785FFF8A7" ], 1406 [ "\033[2XProjectionsToCoordinates\033[102X for an rcwa mapping of z x z", 1407 "5.3-1", [ 5, 3, 1 ], 376, 69, 1408 "projectionstocoordinates for an rcwa mapping of z x z", 1409 "X8408B7837C9EED36" ], 1410 [ 1411 "\033[10XRcwa\033[110X the monoid formed by all rcwa permutations of Z x Z" 1412 , "5.4", [ 5, 4, 0 ], 407, 70, 1413 "rcwa the monoid formed by all rcwa permutations of z x z", 1414 "X83A1752F7BE9CE85" ], 1415 [ "\033[10XRCWA\033[110X the group formed by all rcwa permutations of Z x Z" 1416 , "5.4", [ 5, 4, 0 ], 407, 70, 1417 "rcwa the group formed by all rcwa permutations of z x z", 1418 "X83A1752F7BE9CE85" ], 1419 [ 1420 "\033[10XCT\033[110X the group generated by all class transpositions of Z x\ 1421 Z", "5.4", [ 5, 4, 0 ], 407, 70, 1422 "ct the group generated by all class transpositions of z x z", 1423 "X83A1752F7BE9CE85" ], 1424 [ "\033[10XSize\033[110X for an rcwa group over Z x Z", "5.4", [ 5, 4, 0 ], 1425 407, 70, "size for an rcwa group over z x z", "X83A1752F7BE9CE85" ], 1426 [ "\033[10XIsIntegral\033[110X for an rcwa group over Z x Z", "5.4", 1427 [ 5, 4, 0 ], 407, 70, "isintegral for an rcwa group over z x z", 1428 "X83A1752F7BE9CE85" ], 1429 [ "\033[10XIsClassWiseTranslating\033[110X for an rcwa group over Z x Z", 1430 "5.4", [ 5, 4, 0 ], 407, 70, 1431 "isclasswisetranslating for an rcwa group over z x z", 1432 "X83A1752F7BE9CE85" ], 1433 [ "\033[10XIsTame\033[110X for an rcwa group over Z x Z", "5.4", 1434 [ 5, 4, 0 ], 407, 70, "istame for an rcwa group over z x z", 1435 "X83A1752F7BE9CE85" ], 1436 [ "\033[10XModulus\033[110X of an rcwa group over Z x Z", "5.4", 1437 [ 5, 4, 0 ], 407, 70, "modulus of an rcwa group over z x z", 1438 "X83A1752F7BE9CE85" ], 1439 [ "\033[10XMultiplier\033[110X of an rcwa group over Z x Z", "5.4", 1440 [ 5, 4, 0 ], 407, 70, "multiplier of an rcwa group over z x z", 1441 "X83A1752F7BE9CE85" ], 1442 [ "\033[10XDivisor\033[110X of an rcwa group over Z x Z", "5.4", 1443 [ 5, 4, 0 ], 407, 70, "divisor of an rcwa group over z x z", 1444 "X83A1752F7BE9CE85" ], 1445 [ "\033[2XIsomorphismRcwaGroup\033[102X for sl(2,z) and a residue class", 1446 "5.4-1", [ 5, 4, 1 ], 424, 70, 1447 "isomorphismrcwagroup for sl 2 z and a residue class", 1448 "X79A8F9AD7E839862" ], 1449 [ "\033[2XIsomorphismRcwaGroup\033[102X for gl(2,z) and a residue class", 1450 "5.4-1", [ 5, 4, 1 ], 424, 70, 1451 "isomorphismrcwagroup for gl 2 z and a residue class", 1452 "X79A8F9AD7E839862" ], 1453 [ "\033[10XDrawOrbitPicture\033[110X for rcwa groups over Z x Z", "5.4-1", 1454 [ 5, 4, 1 ], 424, 70, "draworbitpicture for rcwa groups over z x z", 1455 "X79A8F9AD7E839862" ], 1456 [ "\033[2XDrawGrid\033[102X u, yrange, xrange, filename", "5.4-2", 1457 [ 5, 4, 2 ], 469, 71, "drawgrid u yrange xrange filename", 1458 "X812135EB87527F01" ], 1459 [ "\033[2XDrawGrid\033[102X p, yrange, xrange, filename", "5.4-2", 1460 [ 5, 4, 2 ], 469, 71, "drawgrid p yrange xrange filename", 1461 "X812135EB87527F01" ], 1462 [ "\033[2XLoadRCWAExamples\033[102X", "6.1-1", [ 6, 1, 1 ], 11, 72, 1463 "loadrcwaexamples", "X8714254784AFD64B" ], 1464 [ 1465 "\033[2XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions\033[102X small \ 1466database", "6.2-1", [ 6, 2, 1 ], 48, 73, 1467 "loaddatabaseofgroupsgeneratedby3classtranspositions small database", 1468 "X793E2C5C7FC935B8" ], 1469 [ 1470 "\033[2XLoadDatabaseOfGroupsGeneratedBy3ClassTranspositions\033[102X both d\ 1471atabases", "6.2-2", [ 6, 2, 2 ], 271, 76, 1472 "loaddatabaseofgroupsgeneratedby3classtranspositions both databases", 1473 "X7A77F7D57B08E4A5" ], 1474 [ "\033[2XLoadDatabaseOfGroupsGeneratedBy4ClassTranspositions\033[102X", 1475 "6.2-3", [ 6, 2, 3 ], 325, 77, 1476 "loaddatabaseofgroupsgeneratedby4classtranspositions", 1477 "X792C90B48692D0D7" ], 1478 [ "\033[2XLoadDatabaseOfProductsOf2ClassTranspositions\033[102X", "6.3-1", 1479 [ 6, 3, 1 ], 407, 79, "loaddatabaseofproductsof2classtranspositions", 1480 "X843E94467A1BB86C" ], 1481 [ "\033[2XLoadDatabaseOfNonbalancedProductsOfClassTranspositions\033[102X", 1482 "6.3-2", [ 6, 3, 2 ], 448, 79, 1483 "loaddatabaseofnonbalancedproductsofclasstranspositions", 1484 "X85B492697ACC4A54" ], 1485 [ "\033[10XLoadRCWAExamples\033[110X", "7.", [ 7, 0, 0 ], 1, 81, 1486 "loadrcwaexamples", "X7A489A5D79DA9E5C" ], 1487 [ "\033[10XAssignGlobals\033[110X", "7.", [ 7, 0, 0 ], 1, 81, 1488 "assignglobals", "X7A489A5D79DA9E5C" ], 1489 [ "\033[2XRCWABuildManual\033[102X", "9.3-1", [ 9, 3, 1 ], 29, 150, 1490 "rcwabuildmanual", "X7AA556D17F61A44C" ], 1491 [ "\033[2XRCWATestInstall\033[102X", "9.4-1", [ 9, 4, 1 ], 42, 151, 1492 "rcwatestinstall", "X8314E1597BF1555B" ], 1493 [ "\033[2XRCWATestAll\033[102X", "9.4-2", [ 9, 4, 2 ], 52, 151, 1494 "rcwatestall", "X877DDD787E4ABDC2" ], 1495 [ "\033[2XRCWATestExamples\033[102X", "9.4-3", [ 9, 4, 3 ], 75, 151, 1496 "rcwatestexamples", "X799793987AA3F34C" ], 1497 [ "\033[2XInfoRCWA\033[102X", "9.5-1", [ 9, 5, 1 ], 86, 151, "inforcwa", 1498 "X7BAF5F4986288983" ], 1499 [ "\033[10XRCWAInfo\033[110X", "9.5-1", [ 9, 5, 1 ], 86, 151, "rcwainfo", 1500 "X7BAF5F4986288983" ] ] 1501); 1502