1 /* glpssx.h (simplex method, rational arithmetic) */
2 
3 /***********************************************************************
4 *  This code is part of GLPK (GNU Linear Programming Kit).
5 *  Copyright (C) 2003-2013 Free Software Foundation, Inc.
6 *  Written by Andrew Makhorin <mao@gnu.org>.
7 *
8 *  GLPK is free software: you can redistribute it and/or modify it
9 *  under the terms of the GNU General Public License as published by
10 *  the Free Software Foundation, either version 3 of the License, or
11 *  (at your option) any later version.
12 *
13 *  GLPK is distributed in the hope that it will be useful, but WITHOUT
14 *  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 *  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
16 *  License for more details.
17 *
18 *  You should have received a copy of the GNU General Public License
19 *  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
20 ***********************************************************************/
21 
22 #ifndef GLPSSX_H
23 #define GLPSSX_H
24 
25 #include "bfx.h"
26 #include "env.h"
27 #if 1 /* 25/XI-2017 */
28 #include "glpk.h"
29 #endif
30 
31 typedef struct SSX SSX;
32 
33 struct SSX
34 {     /* simplex solver workspace */
35 /*----------------------------------------------------------------------
36 // LP PROBLEM DATA
37 //
38 // It is assumed that LP problem has the following statement:
39 //
40 //    minimize (or maximize)
41 //
42 //       z = c[1]*x[1] + ... + c[m+n]*x[m+n] + c[0]                  (1)
43 //
44 //    subject to equality constraints
45 //
46 //       x[1] - a[1,1]*x[m+1] - ... - a[1,n]*x[m+n] = 0
47 //
48 //          .  .  .  .  .  .  .                                      (2)
49 //
50 //       x[m] - a[m,1]*x[m+1] + ... - a[m,n]*x[m+n] = 0
51 //
52 //    and bounds of variables
53 //
54 //         l[1] <= x[1]   <= u[1]
55 //
56 //          .  .  .  .  .  .  .                                      (3)
57 //
58 //       l[m+n] <= x[m+n] <= u[m+n]
59 //
60 // where:
61 // x[1], ..., x[m]      - auxiliary variables;
62 // x[m+1], ..., x[m+n]  - structural variables;
63 // z                    - objective function;
64 // c[1], ..., c[m+n]    - coefficients of the objective function;
65 // c[0]                 - constant term of the objective function;
66 // a[1,1], ..., a[m,n]  - constraint coefficients;
67 // l[1], ..., l[m+n]    - lower bounds of variables;
68 // u[1], ..., u[m+n]    - upper bounds of variables.
69 //
70 // Bounds of variables can be finite as well as inifinite. Besides,
71 // lower and upper bounds can be equal to each other. So the following
72 // five types of variables are possible:
73 //
74 //    Bounds of variable      Type of variable
75 //    -------------------------------------------------
76 //    -inf <  x[k] <  +inf    Free (unbounded) variable
77 //    l[k] <= x[k] <  +inf    Variable with lower bound
78 //    -inf <  x[k] <= u[k]    Variable with upper bound
79 //    l[k] <= x[k] <= u[k]    Double-bounded variable
80 //    l[k] =  x[k] =  u[k]    Fixed variable
81 //
82 // Using vector-matrix notations the LP problem (1)-(3) can be written
83 // as follows:
84 //
85 //    minimize (or maximize)
86 //
87 //       z = c * x + c[0]                                            (4)
88 //
89 //    subject to equality constraints
90 //
91 //       xR - A * xS = 0                                             (5)
92 //
93 //    and bounds of variables
94 //
95 //       l <= x <= u                                                 (6)
96 //
97 // where:
98 // xR                   - vector of auxiliary variables;
99 // xS                   - vector of structural variables;
100 // x = (xR, xS)         - vector of all variables;
101 // z                    - objective function;
102 // c                    - vector of objective coefficients;
103 // c[0]                 - constant term of the objective function;
104 // A                    - matrix of constraint coefficients (has m rows
105 //                        and n columns);
106 // l                    - vector of lower bounds of variables;
107 // u                    - vector of upper bounds of variables.
108 //
109 // The simplex method makes no difference between auxiliary and
110 // structural variables, so it is convenient to think the system of
111 // equality constraints (5) written in a homogeneous form:
112 //
113 //    (I | -A) * x = 0,                                              (7)
114 //
115 // where (I | -A) is an augmented (m+n)xm constraint matrix, I is mxm
116 // unity matrix whose columns correspond to auxiliary variables, and A
117 // is the original mxn constraint matrix whose columns correspond to
118 // structural variables. Note that only the matrix A is stored.
119 ----------------------------------------------------------------------*/
120       int m;
121       /* number of rows (auxiliary variables), m > 0 */
122       int n;
123       /* number of columns (structural variables), n > 0 */
124       int *type; /* int type[1+m+n]; */
125       /* type[0] is not used;
126          type[k], 1 <= k <= m+n, is the type of variable x[k]: */
127 #define SSX_FR          0     /* free (unbounded) variable */
128 #define SSX_LO          1     /* variable with lower bound */
129 #define SSX_UP          2     /* variable with upper bound */
130 #define SSX_DB          3     /* double-bounded variable */
131 #define SSX_FX          4     /* fixed variable */
132       mpq_t *lb; /* mpq_t lb[1+m+n]; alias: l */
133       /* lb[0] is not used;
134          lb[k], 1 <= k <= m+n, is an lower bound of variable x[k];
135          if x[k] has no lower bound, lb[k] is zero */
136       mpq_t *ub; /* mpq_t ub[1+m+n]; alias: u */
137       /* ub[0] is not used;
138          ub[k], 1 <= k <= m+n, is an upper bound of variable x[k];
139          if x[k] has no upper bound, ub[k] is zero;
140          if x[k] is of fixed type, ub[k] is equal to lb[k] */
141       int dir;
142       /* optimization direction (sense of the objective function): */
143 #define SSX_MIN         0     /* minimization */
144 #define SSX_MAX         1     /* maximization */
145       mpq_t *coef; /* mpq_t coef[1+m+n]; alias: c */
146       /* coef[0] is a constant term of the objective function;
147          coef[k], 1 <= k <= m+n, is a coefficient of the objective
148          function at variable x[k];
149          note that auxiliary variables also may have non-zero objective
150          coefficients */
151       int *A_ptr; /* int A_ptr[1+n+1]; */
152       int *A_ind; /* int A_ind[A_ptr[n+1]]; */
153       mpq_t *A_val; /* mpq_t A_val[A_ptr[n+1]]; */
154       /* constraint matrix A (see (5)) in storage-by-columns format */
155 /*----------------------------------------------------------------------
156 // LP BASIS AND CURRENT BASIC SOLUTION
157 //
158 // The LP basis is defined by the following partition of the augmented
159 // constraint matrix (7):
160 //
161 //    (B | N) = (I | -A) * Q,                                        (8)
162 //
163 // where B is a mxm non-singular basis matrix whose columns correspond
164 // to basic variables xB, N is a mxn matrix whose columns correspond to
165 // non-basic variables xN, and Q is a permutation (m+n)x(m+n) matrix.
166 //
167 // From (7) and (8) it follows that
168 //
169 //    (I | -A) * x = (I | -A) * Q * Q' * x = (B | N) * (xB, xN),
170 //
171 // therefore
172 //
173 //    (xB, xN) = Q' * x,                                             (9)
174 //
175 // where x is the vector of all variables in the original order, xB is
176 // a vector of basic variables, xN is a vector of non-basic variables,
177 // Q' = inv(Q) is a matrix transposed to Q.
178 //
179 // Current values of non-basic variables xN[j], j = 1, ..., n, are not
180 // stored; they are defined implicitly by their statuses as follows:
181 //
182 //    0,             if xN[j] is free variable
183 //    lN[j],         if xN[j] is on its lower bound                 (10)
184 //    uN[j],         if xN[j] is on its upper bound
185 //    lN[j] = uN[j], if xN[j] is fixed variable
186 //
187 // where lN[j] and uN[j] are lower and upper bounds of xN[j].
188 //
189 // Current values of basic variables xB[i], i = 1, ..., m, are computed
190 // as follows:
191 //
192 //    beta = - inv(B) * N * xN,                                     (11)
193 //
194 // where current values of xN are defined by (10).
195 //
196 // Current values of simplex multipliers pi[i], i = 1, ..., m (which
197 // are values of Lagrange multipliers for equality constraints (7) also
198 // called shadow prices) are computed as follows:
199 //
200 //    pi = inv(B') * cB,                                            (12)
201 //
202 // where B' is a matrix transposed to B, cB is a vector of objective
203 // coefficients at basic variables xB.
204 //
205 // Current values of reduced costs d[j], j = 1, ..., n, (which are
206 // values of Langrange multipliers for active inequality constraints
207 // corresponding to non-basic variables) are computed as follows:
208 //
209 //    d = cN - N' * pi,                                             (13)
210 //
211 // where N' is a matrix transposed to N, cN is a vector of objective
212 // coefficients at non-basic variables xN.
213 ----------------------------------------------------------------------*/
214       int *stat; /* int stat[1+m+n]; */
215       /* stat[0] is not used;
216          stat[k], 1 <= k <= m+n, is the status of variable x[k]: */
217 #define SSX_BS          0     /* basic variable */
218 #define SSX_NL          1     /* non-basic variable on lower bound */
219 #define SSX_NU          2     /* non-basic variable on upper bound */
220 #define SSX_NF          3     /* non-basic free variable */
221 #define SSX_NS          4     /* non-basic fixed variable */
222       int *Q_row; /* int Q_row[1+m+n]; */
223       /* matrix Q in row-like format;
224          Q_row[0] is not used;
225          Q_row[i] = j means that q[i,j] = 1 */
226       int *Q_col; /* int Q_col[1+m+n]; */
227       /* matrix Q in column-like format;
228          Q_col[0] is not used;
229          Q_col[j] = i means that q[i,j] = 1 */
230       /* if k-th column of the matrix (I | A) is k'-th column of the
231          matrix (B | N), then Q_row[k] = k' and Q_col[k'] = k;
232          if x[k] is xB[i], then Q_row[k] = i and Q_col[i] = k;
233          if x[k] is xN[j], then Q_row[k] = m+j and Q_col[m+j] = k */
234       BFX *binv;
235       /* invertable form of the basis matrix B */
236       mpq_t *bbar; /* mpq_t bbar[1+m]; alias: beta */
237       /* bbar[0] is a value of the objective function;
238          bbar[i], 1 <= i <= m, is a value of basic variable xB[i] */
239       mpq_t *pi; /* mpq_t pi[1+m]; */
240       /* pi[0] is not used;
241          pi[i], 1 <= i <= m, is a simplex multiplier corresponding to
242          i-th row (equality constraint) */
243       mpq_t *cbar; /* mpq_t cbar[1+n]; alias: d */
244       /* cbar[0] is not used;
245          cbar[j], 1 <= j <= n, is a reduced cost of non-basic variable
246          xN[j] */
247 /*----------------------------------------------------------------------
248 // SIMPLEX TABLE
249 //
250 // Due to (8) and (9) the system of equality constraints (7) for the
251 // current basis can be written as follows:
252 //
253 //    xB = A~ * xN,                                                 (14)
254 //
255 // where
256 //
257 //    A~ = - inv(B) * N                                             (15)
258 //
259 // is a mxn matrix called the simplex table.
260 //
261 // The revised simplex method uses only two components of A~, namely,
262 // pivot column corresponding to non-basic variable xN[q] chosen to
263 // enter the basis, and pivot row corresponding to basic variable xB[p]
264 // chosen to leave the basis.
265 //
266 // Pivot column alfa_q is q-th column of A~, so
267 //
268 //    alfa_q = A~ * e[q] = - inv(B) * N * e[q] = - inv(B) * N[q],   (16)
269 //
270 // where N[q] is q-th column of the matrix N.
271 //
272 // Pivot row alfa_p is p-th row of A~ or, equivalently, p-th column of
273 // A~', a matrix transposed to A~, so
274 //
275 //    alfa_p = A~' * e[p] = - N' * inv(B') * e[p] = - N' * rho_p,   (17)
276 //
277 // where (*)' means transposition, and
278 //
279 //    rho_p = inv(B') * e[p],                                       (18)
280 //
281 // is p-th column of inv(B') or, that is the same, p-th row of inv(B).
282 ----------------------------------------------------------------------*/
283       int p;
284       /* number of basic variable xB[p], 1 <= p <= m, chosen to leave
285          the basis */
286       mpq_t *rho; /* mpq_t rho[1+m]; */
287       /* p-th row of the inverse inv(B); see (18) */
288       mpq_t *ap; /* mpq_t ap[1+n]; */
289       /* p-th row of the simplex table; see (17) */
290       int q;
291       /* number of non-basic variable xN[q], 1 <= q <= n, chosen to
292          enter the basis */
293       mpq_t *aq; /* mpq_t aq[1+m]; */
294       /* q-th column of the simplex table; see (16) */
295 /*--------------------------------------------------------------------*/
296       int q_dir;
297       /* direction in which non-basic variable xN[q] should change on
298          moving to the adjacent vertex of the polyhedron:
299          +1 means that xN[q] increases
300          -1 means that xN[q] decreases */
301       int p_stat;
302       /* non-basic status which should be assigned to basic variable
303          xB[p] when it has left the basis and become xN[q] */
304       mpq_t delta;
305       /* actual change of xN[q] in the adjacent basis (it has the same
306          sign as q_dir) */
307 /*--------------------------------------------------------------------*/
308 #if 1 /* 25/XI-2017 */
309       int msg_lev;
310       /* verbosity level:
311          GLP_MSG_OFF no output
312          GLP_MSG_ERR report errors and warnings
313          GLP_MSG_ON  normal output
314          GLP_MSG_ALL highest verbosity */
315 #endif
316       int it_lim;
317       /* simplex iterations limit; if this value is positive, it is
318          decreased by one each time when one simplex iteration has been
319          performed, and reaching zero value signals the solver to stop
320          the search; negative value means no iterations limit */
321       int it_cnt;
322       /* simplex iterations count; this count is increased by one each
323          time when one simplex iteration has been performed */
324       double tm_lim;
325       /* searching time limit, in seconds; if this value is positive,
326          it is decreased each time when one simplex iteration has been
327          performed by the amount of time spent for the iteration, and
328          reaching zero value signals the solver to stop the search;
329          negative value means no time limit */
330       double out_frq;
331       /* output frequency, in seconds; this parameter specifies how
332          frequently the solver sends information about the progress of
333          the search to the standard output */
334 #if 0 /* 10/VI-2013 */
335       glp_long tm_beg;
336 #else
337       double tm_beg;
338 #endif
339       /* starting time of the search, in seconds; the total time of the
340          search is the difference between xtime() and tm_beg */
341 #if 0 /* 10/VI-2013 */
342       glp_long tm_lag;
343 #else
344       double tm_lag;
345 #endif
346       /* the most recent time, in seconds, at which the progress of the
347          the search was displayed */
348 };
349 
350 #define ssx_create            _glp_ssx_create
351 #define ssx_factorize         _glp_ssx_factorize
352 #define ssx_get_xNj           _glp_ssx_get_xNj
353 #define ssx_eval_bbar         _glp_ssx_eval_bbar
354 #define ssx_eval_pi           _glp_ssx_eval_pi
355 #define ssx_eval_dj           _glp_ssx_eval_dj
356 #define ssx_eval_cbar         _glp_ssx_eval_cbar
357 #define ssx_eval_rho          _glp_ssx_eval_rho
358 #define ssx_eval_row          _glp_ssx_eval_row
359 #define ssx_eval_col          _glp_ssx_eval_col
360 #define ssx_chuzc             _glp_ssx_chuzc
361 #define ssx_chuzr             _glp_ssx_chuzr
362 #define ssx_update_bbar       _glp_ssx_update_bbar
363 #define ssx_update_pi         _glp_ssx_update_pi
364 #define ssx_update_cbar       _glp_ssx_update_cbar
365 #define ssx_change_basis      _glp_ssx_change_basis
366 #define ssx_delete            _glp_ssx_delete
367 
368 #define ssx_phase_I           _glp_ssx_phase_I
369 #define ssx_phase_II          _glp_ssx_phase_II
370 #define ssx_driver            _glp_ssx_driver
371 
372 SSX *ssx_create(int m, int n, int nnz);
373 /* create simplex solver workspace */
374 
375 int ssx_factorize(SSX *ssx);
376 /* factorize the current basis matrix */
377 
378 void ssx_get_xNj(SSX *ssx, int j, mpq_t x);
379 /* determine value of non-basic variable */
380 
381 void ssx_eval_bbar(SSX *ssx);
382 /* compute values of basic variables */
383 
384 void ssx_eval_pi(SSX *ssx);
385 /* compute values of simplex multipliers */
386 
387 void ssx_eval_dj(SSX *ssx, int j, mpq_t dj);
388 /* compute reduced cost of non-basic variable */
389 
390 void ssx_eval_cbar(SSX *ssx);
391 /* compute reduced costs of all non-basic variables */
392 
393 void ssx_eval_rho(SSX *ssx);
394 /* compute p-th row of the inverse */
395 
396 void ssx_eval_row(SSX *ssx);
397 /* compute pivot row of the simplex table */
398 
399 void ssx_eval_col(SSX *ssx);
400 /* compute pivot column of the simplex table */
401 
402 void ssx_chuzc(SSX *ssx);
403 /* choose pivot column */
404 
405 void ssx_chuzr(SSX *ssx);
406 /* choose pivot row */
407 
408 void ssx_update_bbar(SSX *ssx);
409 /* update values of basic variables */
410 
411 void ssx_update_pi(SSX *ssx);
412 /* update simplex multipliers */
413 
414 void ssx_update_cbar(SSX *ssx);
415 /* update reduced costs of non-basic variables */
416 
417 void ssx_change_basis(SSX *ssx);
418 /* change current basis to adjacent one */
419 
420 void ssx_delete(SSX *ssx);
421 /* delete simplex solver workspace */
422 
423 int ssx_phase_I(SSX *ssx);
424 /* find primal feasible solution */
425 
426 int ssx_phase_II(SSX *ssx);
427 /* find optimal solution */
428 
429 int ssx_driver(SSX *ssx);
430 /* base driver to exact simplex method */
431 
432 #endif
433 
434 /* eof */
435