1 /* mpn_sec_pi1_div_qr, mpn_sec_pi1_div_r -- Compute Q = floor(U / V), U = U
2    mod V.  Side-channel silent under the assumption that the used instructions
3    are side-channel silent.
4 
5    Contributed to the GNU project by Torbjörn Granlund.
6 
7    THE FUNCTIONS IN THIS FILE ARE INTERNAL WITH MUTABLE INTERFACES.  IT IS ONLY
8    SAFE TO REACH THEM THROUGH DOCUMENTED INTERFACES.  IN FACT, IT IS ALMOST
9    GUARANTEED THAT THEY WILL CHANGE OR DISAPPEAR IN A FUTURE GNU MP RELEASE.
10 
11 Copyright 2011-2013 Free Software Foundation, Inc.
12 
13 This file is part of the GNU MP Library.
14 
15 The GNU MP Library is free software; you can redistribute it and/or modify
16 it under the terms of either:
17 
18   * the GNU Lesser General Public License as published by the Free
19     Software Foundation; either version 3 of the License, or (at your
20     option) any later version.
21 
22 or
23 
24   * the GNU General Public License as published by the Free Software
25     Foundation; either version 2 of the License, or (at your option) any
26     later version.
27 
28 or both in parallel, as here.
29 
30 The GNU MP Library is distributed in the hope that it will be useful, but
31 WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
32 or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
33 for more details.
34 
35 You should have received copies of the GNU General Public License and the
36 GNU Lesser General Public License along with the GNU MP Library.  If not,
37 see https://www.gnu.org/licenses/.  */
38 
39 #include "gmp-impl.h"
40 #include "longlong.h"
41 
42 /* This side-channel silent division algorithm reduces the partial remainder by
43    GMP_NUMB_BITS/2 bits at a time, compared to GMP_NUMB_BITS for the main
44    division algorithm.  We actually do not insist on reducing by exactly
45    GMP_NUMB_BITS/2, but may leave a partial remainder that is D*B^i to 3D*B^i
46    too large (B is the limb base, D is the divisor, and i is the induction
47    variable); the subsequent step will handle the extra partial remainder bits.
48 
49    With that partial remainder reduction, each step generates a quotient "half
50    limb".  The outer loop generates two quotient half limbs, an upper (q1h) and
51    a lower (q0h) which are stored sparsely in separate limb arrays.  These
52    arrays are added at the end; using separate arrays avoids data-dependent
53    carry propagation which could else pose a side-channel leakage problem.
54 
55    The quotient half limbs may be between -3 to 0 from the accurate value
56    ("accurate" being the one which corresponds to a reduction to a principal
57    partial remainder).  Too small quotient half limbs correspond to too large
58    remainders, which we reduce later, as described above.
59 
60    In order to keep quotients from getting too big, corresponding to a negative
61    partial remainder, we use an inverse which is slightly smaller than usually.
62 */
63 
64 #if OPERATION_sec_pi1_div_qr
65 /* Needs (dn + 1) + (nn - dn) + (nn - dn) = 2nn - dn + 1 limbs at tp. */
66 #define FNAME mpn_sec_pi1_div_qr
67 #define Q(q) q,
68 #define RETTYPE mp_limb_t
69 #endif
70 #if OPERATION_sec_pi1_div_r
71 /* Needs (dn + 1) limbs at tp.  */
72 #define FNAME mpn_sec_pi1_div_r
73 #define Q(q)
74 #define RETTYPE void
75 #endif
76 
77 RETTYPE
FNAME(Q (mp_ptr qp)mp_ptr np,mp_size_t nn,mp_srcptr dp,mp_size_t dn,mp_limb_t dinv,mp_ptr tp)78 FNAME (Q(mp_ptr qp)
79        mp_ptr np, mp_size_t nn,
80        mp_srcptr dp, mp_size_t dn,
81        mp_limb_t dinv,
82        mp_ptr tp)
83 {
84   mp_limb_t nh, cy, q1h, q0h, dummy, cnd;
85   mp_size_t i;
86   mp_ptr hp;
87 #if OPERATION_sec_pi1_div_qr
88   mp_limb_t qh;
89   mp_ptr qlp, qhp;
90 #endif
91 
92   ASSERT (dn >= 1);
93   ASSERT (nn >= dn);
94   ASSERT ((dp[dn - 1] & GMP_NUMB_HIGHBIT) != 0);
95 
96   if (nn == dn)
97     {
98       cy = mpn_sub_n (np, np, dp, dn);
99       mpn_cnd_add_n (cy, np, np, dp, dn);
100 #if OPERATION_sec_pi1_div_qr
101       return 1 - cy;
102 #else
103       return;
104 #endif
105     }
106 
107   /* Create a divisor copy shifted half a limb.  */
108   hp = tp;					/* (dn + 1) limbs */
109   hp[dn] = mpn_lshift (hp, dp, dn, GMP_NUMB_BITS / 2);
110 
111 #if OPERATION_sec_pi1_div_qr
112   qlp = tp + (dn + 1);				/* (nn - dn) limbs */
113   qhp = tp + (nn + 1);				/* (nn - dn) limbs */
114 #endif
115 
116   np += nn - dn;
117   nh = 0;
118 
119   for (i = nn - dn - 1; i >= 0; i--)
120     {
121       np--;
122 
123       nh = (nh << GMP_NUMB_BITS/2) + (np[dn] >> GMP_NUMB_BITS/2);
124       umul_ppmm (q1h, dummy, nh, dinv);
125       q1h += nh;
126 #if OPERATION_sec_pi1_div_qr
127       qhp[i] = q1h;
128 #endif
129       mpn_submul_1 (np, hp, dn + 1, q1h);
130 
131       nh = np[dn];
132       umul_ppmm (q0h, dummy, nh, dinv);
133       q0h += nh;
134 #if OPERATION_sec_pi1_div_qr
135       qlp[i] = q0h;
136 #endif
137       nh -= mpn_submul_1 (np, dp, dn, q0h);
138     }
139 
140   /* 1st adjustment depends on extra high remainder limb.  */
141   cnd = nh != 0;				/* FIXME: cmp-to-int */
142 #if OPERATION_sec_pi1_div_qr
143   qlp[0] += cnd;
144 #endif
145   nh -= mpn_cnd_sub_n (cnd, np, np, dp, dn);
146 
147   /* 2nd adjustment depends on remainder/divisor comparison as well as whether
148      extra remainder limb was nullified by previous subtract.  */
149   cy = mpn_sub_n (np, np, dp, dn);
150   cy = cy - nh;
151 #if OPERATION_sec_pi1_div_qr
152   qlp[0] += 1 - cy;
153 #endif
154   mpn_cnd_add_n (cy, np, np, dp, dn);
155 
156   /* 3rd adjustment depends on remainder/divisor comparison.  */
157   cy = mpn_sub_n (np, np, dp, dn);
158 #if OPERATION_sec_pi1_div_qr
159   qlp[0] += 1 - cy;
160 #endif
161   mpn_cnd_add_n (cy, np, np, dp, dn);
162 
163 #if OPERATION_sec_pi1_div_qr
164   /* Combine quotient halves into final quotient.  */
165   qh = mpn_lshift (qhp, qhp, nn - dn, GMP_NUMB_BITS/2);
166   qh += mpn_add_n (qp, qhp, qlp, nn - dn);
167 
168   return qh;
169 #else
170   return;
171 #endif
172 }
173